首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, we have shown that embryonic corneal epithelia can interact with, and respond to, soluble extracellular matrices (ECM) (laminin, collagen, and fibronectin). The basal surface of epithelia isolated free of the underlying ECM can be seen to be disrupted by numerous blebs that sprout from this formerly smooth surface. Laminin, collagen, or fibronectin added to the culture medium cause the epithelium to reorganize its cytoskeleton and flatten its basal surface. We show here that ECM molecules at concentrations that reorganize epithelial cytoskeletal morphology also increase the amount of collagen produced by the epithelial cells. However, molecules that do not reorganize basal epithelial morphology (concanavalin A, heparin, bovine serum albumin) have no effect on collagen production. We also report that fluorescently labeled laminin, collagen, and fibronectin, when added to the medium surrounding isolated corneal epithelia, bind to and flatten the basal epithelial cell surface. The binding site on the basal surface is protease sensitive and is specific for each ECM molecule. These results are compatible with the idea that the basal epithelial plasmalemma possesses a diverse population of binding sites for ECM that link cell surface matrix to the cytoskeleton, causing a dramatic cytoskeletal reorganization which in turn results in enhanced production of collagen by the cells.  相似文献   

2.
Corneal epithelium removed from underlying extracellular matrix (ECM) extends numerous cytoplasmic processes (blebs) from the formerly smooth basal surface. If blebbing epithelia are grown on collagen gels or lens capsules in vitro, the basal surface flattens and takes on the smooth contour typical of epithelium in contact with basal lamina in situ. This study examines the effect of soluble extracellular matrix components on the basal surface. Corneal epithelia from 9- to 11-d-old chick embryos were isolated with trypsin-collagenase or ethylenediamine tetraacetic acid, then placed on Millipore filters (Millipore Corp., Bedford, Mass.), and cultured at the medium-air interface. Media were prepared with no serum, with 10% of calf serum, or with serum from which plasma fibronectin was removed. Epithelia grown on filters in this medium continue to bleb for the duration of the experiments (12-14 h). If soluble collagen, laminin, or fibronectin is added to the medium, however, blebs are withdrawn and by 2-6 h the basal surface is flat. Epithelia grown on filters in the presence of albumin, IgG, or glycosaminoglycans continue to bleb. Epithelia cultured on solid substrata, such as glass, also continue to bleb if ECM is absent from the medium. The basal cell cortex in situ contains a compact cortical mat of filaments that decorate with S-1 myosin subfragments; some, if not all, of these filaments point away from the plasmalemma. The actin filaments disperse into the cytoplasmic processes during blebbing and now many appear to point toward the plasmalemma. In isolated epithelia that flatten in response to soluble collagens, laminin, and fibronectin, the actin filaments reform the basal cortical mat typical or epithelial in situ. Thus, extracellular macromolecules influence and organize not only the basal cell surface but also the actin-rich basal cell cortex of epithelial cells.  相似文献   

3.
Matrix-cytoskeletal interactions in the developing eye   总被引:5,自引:0,他引:5  
The embryonic avian corneal epithelium in vitro responds to extracellular matrix (ECM) molecules in either soluble or polymerized form by flattening its basal surface, organizing the basal cortical actin cytoskeleton, and stepping up its production of corneal stroma twofold. Embryonic corneal epithelia, like hepatocytes and mammary gland cells, seem to contain heparan sulfate proteoglycan (HSPG) in their plasmalemma, which may interact with actin on the one hand or underlying collagen on the other. Work on the corneal epithelium suggests that, in addition to HSPG, specific glycoprotein receptors for laminin and collagen exist in the basal plasmalemma and play the critical role in actually organizing the basal epithelial cytoskeleton. As yet, uncharacterized proteins may link such receptors to actin. We suggest that ECM-dependent organization of the cytoskeleton is responsible for ECM enhancement of corneal epithelial differentiation. Cell shape and exogenous ECM also affect mesenchymal cell differentiation. In the case of the corneal fibroblast migrating in collagen gels, an actin cortex present around the elongate cell seems to interact with myosin in the cytosol to bring about pseudopodial extension. Both microtubules and actin microfilaments are involved in fibroblast elongation in collagen gels. It follows from the rules presented in this review that the mesenchymal cell surface is quite different from the epithelial cell surface in its organization. Nevertheless, epithelial cell surface-ECM interaction can be modified in the embryo at particular times to permit predesignated epithelial-mesenchymal transformations, as for example at the primitive streak. Though basal surfaces of definitive, nonmalignant epithelia adhere rather strictly to the rules of epithelium-ECM interaction and do not invade underlying ECM, the environment can be manipulated in vitro to cause these epithelia to send out pseudopodia and give rise aberrantly to mesenchymal cells in collagen gels. Further study of this phenomenon should cast light on the manner in which epithelial and mesenchymal cells organize receptors for matrix molecules on their cell surfaces and develop appropriate cytoskeletal responses to the extracellular matrix.  相似文献   

4.
Between the third and sixth day of embryonic development, the avian corneal epithelium produces both a basal lamina and the primary corneal stroma composed of 20 orthogonally arranged layers of collagen fibrils. If the epithelium is removed by enzyme treatment from the basal lamina and stroma, the basal cell surface extends cell processes (blebs) which contain disorganized actin filaments and the epithelium decreases production of collagen. When placed on extracellular matrix or on Millipore filters in media containing soluble matrix molecules, the epithelium retracts the blebs, forms an organized basal actin cortical mat, and doubles its production of collagen. In the current investigation, we provide evidence for the hypothesis that organization of the RER by the actin cytoskeleton mediates this stimulation of collagen production. Laminin-treated epithelia and epithelia isolated with the basal lamina intact were treated with an actin-disrupting drug, cytochalasin D. Actin aggregates occur throughout the epithelium, the RER becomes disorganized, and the increase in collagen production expected to result from addition of laminin does not take place. Morphometrical analysis of the distribution of RER in the basal compartment of control and cytochalasin-treated epithelia shows that the decrease in collagen production is accompanied by displacement of the RER from the basal area of the cells, suggesting that attachment of RER to the intact actin cytoskeleton is essential to maintenance of normal RER organization and function. We also found that laminin-mediated bleb retraction requires intact actin microfilaments, whereas bleb extension does not, and that nocodazole does not inhibit bleb extension or retraction.  相似文献   

5.
We report the identification of a 65-kDa laminin-binding protein (LBP) on the basal cell surface of embryonic corneal epithelium in chicken. The 65-kDa LBP was isolated by affinity chromatography with laminin-Sepharose. When reconstituted with lipid vesicles, it demonstrated specific binding for laminin. We produced monoclonal antibodies (MAbs) against 65-k Da LBP; these MAbs immunohistochemically localized to the basal epithelial cell surface. One MAb interfered with the binding of laminin to isolated epithelia and purified 65-k Da LBP. It appears that we have identified, at least in part, a cell-surface binding site for laminin. This site would provide the important link between the extracellular laminin and the intracellular cytoskeleton, and potentially the metabolic machinery of the corneal epithelial cell.  相似文献   

6.
The localization of the extracellular matrix recognition molecule J1/tenascin was investigated in the crypt-villus unit of the adult mouse ileum by immunoelectron microscopic techniques. In the villus region, J1/tenascin was detected strongly in the extracellular matrix (ECM) between fibroblasts of the lamina propria. It was generally absent in the ECM at the interface between subepithelial fibroblasts and intestinal epithelium, except for some restricted areas along the epithelial basal lamina of villi, but not of crypts. These restricted areas corresponded approximately to the basal part of one epithelial cell. In J1/tenascin-positive areas, epithelial cells contacted the basal lamina with numerous microvillus-like processes, whereas in J1/tenascin-negative areas the basal surface membranes of epithelial cells contacted their basal lamina in a smooth and continuous apposition. In order to characterize the functional role of J1/tenascin in the interaction between epithelial cells and ECM, the intestinal epithelial cell line HT-29 was tested for its ability to adhere to different ECM components. Cells adhered to substratum-immobilized fibronectin, laminin and collagen types I to IV, but not to J1/tenascin. When laminin or collagen types I to IV were mixed with J1/tenascin, cell adhesion was as effective as without J1/tenascin. However, adhesion was completely abolished when cells were offered a mixture of fibronectin and J1/tenascin as substratum. The ability of J1/tenascin to reduce the adhesion of intestinal epithelial cells to their fibronectin-containing basal lamina suggests that J1/tenascin may be involved in the process of physiological cell shedding from the villus.  相似文献   

7.
The present study was undertaken to determine whether or not physical contact with the substratum is essential for the stimulatory effect of extracellular matrix (ECM) on corneal epithelial collagen synthesis. Previous studies showed that collagenous substrata stimulate isolated epithelia to produce three times as much collagen as they produce on noncollagenous substrate; killed collagenous substrata (e.g., lens capsule) are just as effective as living substrata (e.g., living lens) in promoting the production of new corneal stroma in vitro. In the experiments to be reported here, corneal epithelia were placed on one side of Nucleopore filters of different pore sizes and killed lens capsule on the other, with the expectation that contact of the reacting cells with the lens ECM should be limited by the number and size of the cell processes that can tranverse the pores. Transfilter cultures were grown for 24 h in [3H]proline-containing median and incorporation of isotope into hot trichloroacetic acid-soluble protein was used to measure corneal epithelial collagen production. Epithelial collagen synthesis increases directly as the size of the pores in the interposed filter increases and decreases as the thickness of the filter layer increases. Cell processes within Nucleopore filters were identified with the transmission electron microscope with difficulty; with the scanning electron microscope, however, the processes could easily be seen emerging from the undersurface of even 0.1-mum pore size filters. Morphometric techniques were used to show that cell surface area thus exposed to the underlying ECM is linearly correlated with enhancement of collagen synthesis. Epithelial cell processes did not pass through ultrathin (25-mum thick) 0.45-mum pore size Millipore filters nor did "induction" occur across them. The results are discussed in relation to current theories of embryonic tissue interaction.  相似文献   

8.
The primary stroma of the cornea of the chick embryo consists of orthogonally arranged collagen fibrils embedded in glycosaminoglycan (GAG) produced by the epithelium under the early inductive influence of the lens. The experiments reported here were designed to test whether or not the collagen of the lens basement lamina is capable of stimulating corneal epithelium to produce primary stroma. Enzymatically isolated 5-day-old corneal epithelia were grown for 24 hr in vitro in the presence of 35SO4 or proline-3H on various substrata. Epithelia cultured on lens capsule synthesized 2.5 times as much GAG (as measured by incorporation of label into CPC precipitable material) and almost 3 times as much collagen (assayed by hot TCA extraction or collagenase sensitivity) as when cultured on Millipore filter or other noncollagenous substrata. A similar stimulatory response was observed when epithelium was combined with chemically pure chondrosarcoma collagen, NaOH-extracted lens capsule, vitreous humor, frozen-killed corneal stroma or cartilage, or tendon collagen gels; in the latter case, the magnitude of the effect can be shown to be related to concentration of the collagen in the gel. All of the collagenous substrata stimulate not only extracellular matrix production, but also polymerization of corneal-type matrix, as judged by ultrastructural criteria and by the association of more radioactivity with the tissue than the medium. Since purified chondrosarcoma collagen is as effective as lens capsule, the stimulatory effect on collagen and GAG synthesis by corneal epithelium is not specific for basal lamina (lens capsule) collagen.  相似文献   

9.
Summary The distribution and organization of the extracellular matrix (ECM) proteins laminin, fibronectin, entactin, and type IV collagen were investigated in primary colonies and secondary cultures of bovine lens epithelial cells using species-specific antisera and indirect immunofluorescence microscopy. Primary cell colonies fixed in formaldehyde and permeabilized with Triton X-100 displayed diffuse clonies. In contrast, thick bundles of laminin and fibronectin were located on the basal cellsurfaces and in between cells in the densely packed center of the colonies, and as “adhesive plaques” and fine extracellular matrix cords in the sparsely populated (migratory) outer edge of the colonies. The distribution of ECM proteins observed in secondary lens epithelial cell cultures was similar to that observed at the periphery of the primary colony. Extraction of the secondary cell cultures with sodium deoxycholate confirmed that laminin and fibronectin were deposited on the basal cell surface. Indeed, the patterns of laminin and fibronectin deposition suggested that these proteins codistribute. These results establish that lens epithelial cells in culture can be used as a model system to study the synthesis and extracellular deposition of the basement membrane proteins, laminin and fibronectin. Supported by Public Health Service grant EY05570 from the National Eye Institute Bethesda, MD.  相似文献   

10.
We investigated the effect of interleukin 6 (IL-6) on the migration of rabbit corneal epithelium in vitro and on the attachment of dissociated corneal epithelial cells to a fibronectin matrix. When corneal blocks were cultured with IL-6 for 24 hours, the length of the path of epithelial migration over exposed corneal stroma increased significantly (p less than 0.005 at the concentration of 10 ng/ml) in proportion to the concentrations of IL-6 (0.1-10.0 ng/ml). The addition of antiserum against fibronectin or of GRGDSP abolished the stimulatory effect of IL-6 on epithelial migration. When corneal epithelial cells were cultured with various concentrations of IL-6, suspended, and plated on wells coated with fibronectin (10 micrograms/ml), the number of cells attached to the wells increased in a dose-dependent manner. The presence of antibody against fibronectin or of GRGDSP during the attachment assay decreased the number of cells attached to the fibronectin matrix, regardless of the fact that the cells had been cultured with IL-6 or not. IL-6 stimulated the attachment of corneal epithelial cells to collagen type IV and to laminin matrices. However, the presence of GRGDSP did not affect the cell attachment to collagen type IV and to laminin. These findings strongly indicate that IL-6 stimulates epithelial migration in the cornea by a fibronectin-dependent mechanism, presumably the increased expression of fibronectin receptors.  相似文献   

11.
The trunk neural crest originates by transformation of dorsal neuroepithelial cells into mesenchymal cells that migrate into embryonic interstices. Fibronectin (FN) is thought to be essential for the process, although other extracellular matrix (ECM) molecules are potentially important. We have examined the ability of three dimensional (3D) ECM to promote crest formation in vitro. Neural tubes from stage 12 chick embryos were suspended within gelling solutions of either basement membrane (BM) components or rat tail collagen, and the extent of crest outgrowth was measured after 22 hr. Fetal calf serum inhibits outgrowth in both gels and was not used unless specified. Neither BM gel nor collagen gel contains fibronectin. Extensive crest migration occurs into the BM gel, whereas outgrowth is less in rat tail collagen. Addition of fibronectin or embryo extract (EE), which is rich in fibronectin, does not increase the extent of neural crest outgrowth in BM, which is already maximal, but does stimulate migration into collagen gel. Removal of FN from EE with gelatin-Sepharose does not remove the ability of EE to stimulate migration. Endogenous FN is localized by immunofluorescence to the basal surface of cultured neural tubes, but is not seen in the proximity of migrating neural crest cells. Addition of the FN cell-binding hexapeptide GRGDSP does not affect migration into either the BM gel or the collagen gel with EE, although it does block spreading on FN-coated plastic. Thus, although crest cells appear to use exogenous fibronectin to migrate on planar substrata in vitro, they can interact with 3D collagenous matrices in the absence of exogenous or endogenous fibronectin. In BM gels, the laminin cell-binding peptide, YIGSR, completely inhibits migration of crest away from the neural tube, suggesting that laminin is the migratory substratum. Indeed, laminin as well as collagen and fibronectin is present in the embryonic ECM. Thus, it is possible that ECM molecules in addition to or instead of fibronectin may serve as migratory substrata for neural crest in vivo.  相似文献   

12.
The biochemical composition of the internal and external basal laminae in the junctional epithelium differs significantly, and the precise cellular origin of their respective molecules remains to be determined. In the present study, the expression and localization of three basement membrane-specific molecules—laminin 5 (γ2 chain), type IV collagen (α1 chain), and laminin 10 (α5 chain)—and one tooth-specific molecule, amelotin, was analyzed in adult murine gingiva by using in situ hybridization and immunohistochemistry. The results showed that the outermost cells in junctional epithelium facing the tooth enamel strongly expressed laminin 5 mRNA, supporting the immunohistochemical staining data. This suggests that laminin 5 is actively synthesized in junctional epithelial cells and that the products are incorporated into the internal basal lamina to maintain firm epithelial adhesion to the tooth enamel throughout life. Conversely, no amelotin mRNA signals were detected in the junctional epithelial cells, suggesting that the molecules localized on the internal basal lamina are mainly derived from maturation-stage ameloblasts. Weak and sporadic expression of type IV collagen in addition to laminin 10 in the gingiva indicates that these molecules undergo turnover less frequently in adult animals.  相似文献   

13.
Regulation by the extracellular matrix (ECM) of migration, motility, and adhesion of olfactory neurons and their precursors was studied in vitro. Neuronal cells of the embryonic olfactory epithelium (OE), which undergo extensive migration in the central nervous system during normal development, were shown to be highly migratory in culture as well. Migration of OE neuronal cells was strongly dependent on substratum- bound ECM molecules, being specifically stimulated and guided by laminin (or the laminin-related molecule merosin) in preference to fibronectin, type I collagen, or type IV collagen. Motility of OE neuronal cells, examined by time-lapse video microscopy, was high on laminin-containing substrata, but negligible on fibronectin substrata. Quantitative assays of adhesion of OE neuronal cells to substrata treated with different ECM molecules demonstrated no correlation, either positive or negative, between the migratory preferences of cells and the strength of cell-substratum adhesion. Moreover, measurements of cell adhesion to substrata containing combinations of ECM proteins revealed that laminin and merosin are anti-adhesive for OE neuronal cells, i.e., cause these cells to adhere poorly to substrata that would otherwise be strongly adhesive. The evidence suggests that the anti- adhesive effect of laminin is not the result of interactions between laminin and other ECM molecules, but rather an effect of laminin on cells, which alters the way in which cells adhere. Consistent with this view, laminin was found to interfere strongly with the formation of focal contacts by OE neuronal cells.  相似文献   

14.
Electron microscopic immunostaining of rat duodenum and incisor tooth was used to examine the location of four known components of the basement-membrane region: type IV collagen, laminin, heparan sulfate proteoglycan, and fibronectin. Antibodies or antisera against these substances were localized by direct or indirect peroxidase methods on 60-microns thick slices of formaldehyde-fixed tissues. In the basement- membrane region of the duodenal epithelium, enamel-organ epithelium, and blood-vessel endothelium, immunostaining for all four components was observed in the basal lamina (also called lamina densa). The bulk of the lamina lucida (rara) was unstained, but it was traversed by narrow projections of the basal lamina that were immunostained for all four components. In the subbasement-membrane fibrous elements or reticular lamina, immunostaining was confined to occasional "bridges" extending from the epithelial basal-lamina to that of adjacent capillaries. The joint presence of type IV collagen, laminin, heparan sulfate proteoglycan, and fibronectin in the basal lamina indicates that these substances do not occur in separate layers but are integrated into a common structure.  相似文献   

15.
We examined the synthesis and deposition of extracellular matrix (ECM) components in cultures of Sertoli cells and testicular peritubular cells maintained alone or in contact with each other. Levels of soluble ECM components produced by populations of isolated Sertoli cells and testicular peritubular cells were determined quantitatively by competitive enzyme-linked immunoabsorbent assays, using antibodies shown to react specifically with Type I collagen, Type IV collagen, laminin, or fibronectin. Peritubular cells in monoculture released into the medium fibronectin (432 to 560 ng/microgram cell DNA per 48 h), Type I collagen (223 to 276 ng/microgram cell DNA per 48 h), and Type IV collagen (350 to 436 ng/microgram cell DNA per 48 h) during the initial six days of culture in serum-free medium. In contrast, Sertoli cells in monoculture released into the medium Type IV collagen (322 to 419 ng/microgram cell DNA per 48 h) but did not form detectable amounts of Type I collagen or fibronectin during the initial six days of culture. Neither cell type produced detectable quantities of soluble laminin. Immunocytochemical localization investigations demonstrated that peritubular cells in monoculture were positive for fibronectin, Type I collagen, and Type IV collagen but negative for laminin. In all monocultures most of the ECM components were intracellular, with scant deposition as extracellular fibrils. Sertoli cells were positive immunocytochemically for Type IV collagen and laminin but negative for fibronectin and Type I collagen. Co-cultures of peritubular cells and Sertoli cells resulted in interactions that quantitatively altered levels of soluble ECM components present in the medium. This was correlated with an increased deposition of ECM components in extracellular fibrils. The data correlated with an increased deposition of ECM components in extracellular fibrils. The data presented here we interpret to indicate that the two cell types in co-culture act cooperatively in the formation and deposition of ECM components. Results are discussed with respect to the nature of interactions between mesenchymal peritubular cell precursors and adjacent epithelial Sertoli cell precursors in the formation of the basal lamina of the seminiferous tubule.  相似文献   

16.
17.
Previous studies have established that in response to wounding, the expression of amyloid precursor-like protein 2 (APLP2) in the basal cells of migrating corneal epithelium is greatly up-regulated. To further our understanding of the functional significance of APLP2 in wound healing, we have measured the migratory response of transfected Chinese hamster ovary (CHO) cells expressing APLP2 isoforms to a variety of extracellular matrix components including laminin, collagen types I, IV, and VII, fibronectin, and heparan sulfate proteoglycans (HSPGs). CHO cells overexpressing either of two APLP2 variants, differing in chondroitin sulfate (CS) attachment, exhibit a marked increase in chemotaxis toward type IV collagen and fibronectin but not to laminin, collagen types I and VII, and HSPGs. Cells overexpressing APLP2-751 (CS-modified) exhibited a greater migratory response to fibronectin and type IV collagen than their non-CS-attached counterparts (APLP2-763), suggesting that CS modification enhanced APLP2 effects on cell migration. Moreover, in the presence of chondroitin sulfate, transfectants overexpressing APLP2-751 failed to exhibit this enhanced migration toward fibronectin. The APLP2-ECM interactions were also explored by solid phase adhesion assays. While overexpression of APLP2 isoforms moderately enhanced CHO adhesion to laminin, collagen types I and VII, and HSPGs lines, especially those overexpressing APLP2-751, exhibited greatly increased adhesion to type IV collagen and fibronectin. These observations suggest that APLP2 contributes to re-epithelialization during wound healing by supporting epithelial cell adhesion to fibronectin and collagen IV, thus influencing their capacity to migrate over the wound bed. Furthermore, APLP2 interactions with fibronectin and collagen IV appear to be potentiated by the addition of a CS chain to the core proteins.  相似文献   

18.
The nature of the substrate that supports epithelial migration in vivo is of interest, particularly with respect to mechanisms of wound healing. Immunofluorescence and electron microscopy were used to search for common substrate components in prototype rabbit corneal wounds: epithelial scrape wounds, in which the corneal or conjunctival epithelium migrated over the denuded lamina densa of the corneal basement membrane (CBM), and superficial keratectomy, in which the corneal epithelium migrated over a bare stroma without CBM. The corneal epithelium moved rapidly over the CBM or stroma to cover the defect within 2-3 d, whereas the conjunctival epithelium required 1-2 wk. In all wounds, fibronectin and fibrin/fibrinogen were deposited onto the bare surface within 8 h after wounding and persisted under the migrating epithelium until migration was complete. Bullous pemphigoid antigen (BPA), a normal component of the CBM, was removed with the epithelium upon scrape wounding and reappeared in the CBM after migration was completed. In contrast, the conjunctival epithelium had a continuous subepithelial band of BPA out to the migrating tip. Laminin, also a normal component of the CBM, was not removed in the scrape wounds, indicating that the region of least resistance to shear stress was between the BPA and laminin layers. Laminin was removed by superficial keratectomy and was not detectable under the leading edge of the migrating cells. Laminin and BPA were restored in the CBM by 2-4 wk. Type IV collagen could not be detected in normal CBM, but was conspicuously present in conjunctival basement membrane and in blood vessels. Focal bands of type IV collagen did appear in the newly synthesized CBM 2-4 wk after keratectomy. These results argue that BPA, laminin, and type IV collagen are not essential for the migration of corneal epithelium during wound healing and support the hypothesis that fibronectin and fibrin/fibrinogen are the common, perhaps the essential, components of the provisional matrix that serves as a substrate until the permanent attachment components are regenerated.  相似文献   

19.
The heart-forming regions of the early embryo are composed of splanchnic mesoderm, endoderm, and the associated ECM. The ECM of the heart-forming regions in stage 7-9 chicken embryos was examined using immunofluorescence. Affinity purified antibodies to chicken collagens type I and IV, chicken fibronectin, and mouse laminin were used as probes. We report that (1) the basement membrane of the endoderm contains immunoreactive laminin and collagen IV; (2) the nascent basement membrane of the heart splanchnic mesoderm contains immunoreactive laminin, but not type IV collagen, and (3) the prominent ECM between the splanchnic mesoderm and the endoderm (the primitive-heart ECM) contains collagen IV, collagen I, fibronectin, but not laminin. In addition, we describe microscopic observations on the spatial relationship of cardiogenic cells to the primitive-heart ECM and the endodermal basement membrane.  相似文献   

20.
Rabbit intestinal epithelial cells, obtained after a limited hyaluronidase digestion, were incubated in medium with or without calf serum, on bacteriological plastic dishes. The dishes, either plain or coated with an air-dried type I collagen film, were pretreated with medium alone or with medium containing purified laminin or purified fibronectin. Cells did not attach in significant numbers to untreated bacteriological plastic, even in the presence of serum. Cells did attach to collagen-coated dishes, and were judged viable on the basis of their incorporation of radiolabeled leucine into cell protein. Cell adhesion to the collagen substrate increased in proportion to the concentration of serum in the medium, with maximal attachment at 5% serum or greater. Pretreatment of plain or collagen-coated dishes with increasing amounts of fibronectin enhanced cell adhesion in a concentration-dependent manner. Either serum, or fibronectin-free serum in the medium enhanced cell attachment to substrates pretreated with cither fibronectin or laminin. Thus, intestinal epithelial cells appear to possess surface receptors for both laminin and fibronectin. The evidence further suggests that calf serum may contain factors, other than fibronectin, capable of enhancing intestinal epithelial cell attachment to collagen substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号