首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The frequency of desmosome formation was examined in aggregates of old cells, which form many junctions, combined with young cells, which form few. Cells of chick corneal epithelium and mouse epidermis, which can be distinguished morphologically, were combined. Desmosomes between these cell types are stable. Further, young cells make more desmosomes than they otherwise would on those surfaces adjoining old cells. Desmosomes increase in number in aggregates while cell sorting is occurring. Cells consistently sort, with those which form most desmosomes lying internally. Gap junctions and intermediate junctions are also present, but are uncommon. A carbohydrate cell-surface coat has regenerated by the time desmosome formation starts. The possible relation of desmosome formation to cell sorting is discussed.  相似文献   

2.
EXPERIMENTAL MANIPULATION OF DESMOSOME FORMATION   总被引:6,自引:5,他引:1       下载免费PDF全文
In the corneal epithelium of the embryonic chick there is a 3- to 4-fold increase in desmosomes between the 15th and 16th days of incubation which has not been noted in earlier studies of this tissue. This finding has made it feasible to study the effects of the local cell environment on desmosome formation. Cells of 15-day corneas which were forming desmosomes rapidly, were dispersed and combined in culture with cells from 10-day corneas which were forming few desmosomes. Surfaces of the same 15-day cell which were confronted with either another 15-day cell or a 10-day cell were compared. Desmosomes formed preferentially on the surface adjacent to a like cell. When 15-day cells were confronted with pigment cells, desmosomes formed almost exclusively on the surface adjacent to a like cell. Evidence for such localized differences on the same cell surface emphasize the importance of the immediate cell environment in desmosome formation. The observation that single desmosome plaques form occasionally on lateral cell surfaces has been noted previously. This finding was confirmed.  相似文献   

3.
Corneal epithelial cells have been used to study cell surface changes during cell aggregation. Tissue was taken from developmental stages in which desmosomes were forming rapidly. When corneal cells are dispersed, adjacent desmosome plaques are separated and single plaques are left on the cell surface. As cells aggregate, changes in the frequency of single plaques or of full desmosomes (double plaques) per micrometer of cell surface cross section can be followed. Single plaques are lost from the surface by endocytosis. Quantitative studies show a loss of single plaques beginning in the first hour of culture and formation of double plaques at 2 to 3 hr. In cells treated with cytochalasin B or D, single plaques are not lost during the first 2 hr and double plaques form with a higher frequency. Formation of double plaques is suppressed by actinomycin D, cycloheximide, and dinitrophenol. Thus desmosome formation requires de novo protein synthesis. In addition, inhibition of cell surface turnover by drugs which modify the cytoskeleton will enhance the rate at which desmosomes form.  相似文献   

4.
Abstract

Desmosomes anchor intermediate filaments at sites of cell contact established by the interaction of cadherins extending from opposing cells. The incorporation of cadherins, catenin adaptors, and cytoskeletal elements resembles the closely related adherens junction. However, the recruitment of intermediate filaments distinguishes desmosomes and imparts a unique function. By linking the load-bearing intermediate filaments of neighboring cells, desmosomes create mechanically contiguous cell sheets and, in so doing, confer structural integrity to the tissues they populate. This trait and a well-established role in human disease have long captured the attention of cell biologists, as evidenced by a publication record dating back to the mid-1860s. Likewise, emerging data implicating the desmosome in signaling events pertinent to organismal development, carcinogenesis, and genetic disorders will secure a prominent role for desmosomes in future biological and biomedical investigations.  相似文献   

5.
Intermediate filaments and the initiation of desmosome assembly   总被引:7,自引:23,他引:7       下载免费PDF全文
The desmosome junction is an important component in the cohesion of epithelial cells, especially epidermal keratinocytes. To gain insight into the structure and function of desmosomes, their morphogenesis has been studied in a primary mouse epidermal (PME) cell culture system. When these cells are grown in approximately 0.1 mM Ca2+, they contain no desmosomes. They are induced to form desmosomes when the Ca2+ level in the culture medium is raised to approximately 1.2 mM Ca2+. PME cells in medium containing low levels of Ca2+, and then processed for indirect immunofluorescence using antibodies directed against desmoplakins (desmosomal plaque proteins), display a pattern of discrete fluorescent spots concentrated mainly in the perinuclear region. Double label immunofluorescence using keratin and desmoplakin antibodies reveals that the desmoplakin-containing spots and the cytoplasmic network of tonofibrils (bundles of intermediate filaments [IFB]) are in the same juxtanuclear region. Within 1 h after the switch to higher levels of Ca2+, the spots move toward the cell surface, primarily to areas of cell-cell contact and not to free cell surfaces. This reorganization occurs at the same time that tonofibrils also move toward cell surfaces in contact with neighboring cells. Once the desmoplakin spots have reached the cell surface, they appear to aggregate to form desmosomes. These immunofluorescence observations have been confirmed by immunogold ultrastructural localization. Preliminary biochemical and immunological studies indicate that desmoplakin appears in whole cell protein extracts and in Triton high salt insoluble residues (i.e., cytoskeletal preparations consisting primarily of IFB) prepared from PME cells maintained in medium containing both low and normal Ca2+ levels. These findings show that certain desmosome components are preformed in the cytoplasm of PME cells. These components undergo a dramatic reorganization, which parallels the changes in IFB redistribution, upon induction of desmosome formation. The reorganization depends upon both the extracellular Ca2+ level and the establishment of cell-to-cell contacts. Furthermore, the data suggests that desmosomes do not act as organizing centers for the elaboration of IFB. Indeed, we postulate that the movement of IFB and preformed desmosomal components to the cell surface is an important initiating event in desmosome morphogenesis.  相似文献   

6.
Plakophilin 2 (PKP2), an armadillo family member closely related to p120 catenin (p120ctn), is a constituent of the intercellular adhesive junction, the desmosome. We previously showed that PKP2 loss prevents the incorporation of desmosome precursors enriched in the plaque protein desmoplakin (DP) into newly forming desmosomes, in part by disrupting PKC-dependent regulation of DP assembly competence. On the basis of the observation that DP incorporation into junctions is cytochalasin D–sensitive, here we ask whether PKP2 may also contribute to actin-dependent regulation of desmosome assembly. We demonstrate that PKP2 knockdown impairs cortical actin remodeling after cadherin ligation, without affecting p120ctn expression or localization. Our data suggest that these defects result from the failure of activated RhoA to localize at intercellular interfaces after cell–cell contact and an elevation of cellular RhoA, stress fibers, and other indicators of contractile signaling in squamous cell lines and atrial cardiomyocytes. Consistent with these observations, RhoA activation accelerated DP redistribution to desmosomes during the first hour of junction assembly, whereas sustained RhoA activity compromised desmosome plaque maturation. Together with our previous findings, these data suggest that PKP2 may functionally link RhoA- and PKC-dependent pathways to drive actin reorganization and regulate DP–IF interactions required for normal desmosome assembly.  相似文献   

7.
Organization of cytokeratin bundles by desmosomes in rat mammary cells   总被引:13,自引:11,他引:2       下载免费PDF全文
In a rat mammary epithelial cell line, LA-7, cytokeratin bundles recognized in immunofluorescence by a monoclonal antibody (24B42) disappear after trypsinization of cultures and are gradually reformed after replating. We have followed the time course of cytokeratin filament reappearance by growing cells in low calcium medium (0.1 mM) which prevents desmosome formation, and then shifting to high calcium (1.8 mM) to start the process. By fixing the cells at various intervals and staining them in immunofluorescence for 24B42 cytokeratin and for desmosomal proteins, we found that cell to cell contact and desmosome formation are prerequisites for keratin filament formation in these cells. EGTA treatment, by disassembling desmosomes, causes the cytokeratin filaments to disappear and the 24B42 protein to pass into a soluble form in this cell line, as ascertained by 100,000 g fractionation and immunoenzymatic assay. Cycloheximide treatment also causes cytokeratin filaments to disappear, indicating that protein synthesis is needed for normal filament maintenance. In another related cell line (106A-10a) and in HeLa cells, trypsinization and EGTA exposure do not cause a complete loss of 24B42 immunofluorescence, although distinct filaments disappear, indicating the presence in these cells of different organizing centers, besides desmosomes, for cytokeratin bundle formation. LA7 cells therefore seem to have a cytokeratin system strictly dependent on the presence of desmosomes, which act as an organizing center for filament assembly. 106A-10a cells (also rich in desmosomes) and HeLa cells (showing instead a reduced number of desmosomes) have a cytokeratin system partially or totally independent from that of desmosomes, with different organizing centers.  相似文献   

8.
Plakophilins (pkp-1, -2, and -3) comprise a family of armadillo-repeat containing proteins that are found in the desmosomal plaque and in the nucleus. Plakophilin-1 is most highly expressed in the suprabasal layers of the epidermis and loss of plakophilin-1 expression results in skin fragility-ectodermal dysplasia syndrome, which is characterized by a reduction in the number and size of desmosomes in the epithelia of affected individuals. To investigate the role of plakophilin-1 during desmosome formation, we fused plakophilin-1 to the hormone-binding domain of the estrogen receptor to create a fusion protein (plakophilin-1/ER) that can be activated in cell culture by the addition of 4-hydroxytamoxifen. When plakophilin-1/ER was expressed in A431 cells it was incorporated into endogenous desmosomes and did not disrupt desmosome formation. A derivative of A431 cells (A431D) do not form desmosomes, even though they express all the components believed to be necessary for desmosome assembly. Expression and activation of plakophilin-1/ER in A431D cells resulted in punctate desmoplakin staining on the cell surface. Co-expression of a classical cadherin (N-cadherin) and plakophilin-1/ER in A431D cells resulted in punctate desmoplakin staining at cell-cell borders. These data suggest that plakophilin-1 can induce assembly of desmosomal components in A431D cells in the absence of a classical cadherin; however a classical cadherin (N-cadherin) is required to direct assembly of desmosomes between adjacent cells. The activatable plakophilin-1/ER system provides a unique culture system to study the assembly of the desmosomal plaque in culture.  相似文献   

9.
Plakoglobin (PG) is a member of the Armadillo family of adhesion/signaling proteins that can be incorporated into both adherens junctions and desmosomes. Loss of PG results in defects in the mechanical integrity of heart and skin and decreased adhesive strength in keratinocyte cultures established from the skin of PG knock-out (PG-/-) mice, the latter of which cannot be compensated for by overexpressing the closely related beta-catenin. In this study, we examined the mechanisms of PG-regulated adhesion in murine keratinocytes. Biochemical and morphological analyses indicated that junctional incorporation of desmosomal, but not adherens junction, components was impaired in PG-/- cells compared with PG+/- controls. Re-expression of PG, but not beta-catenin, in PG-/- cells largely reversed these effects, indicating a key role for PG in desmosome assembly. Epidermal growth factor (EGF) receptor activation resulted in Tyr phosphorylation of PG, which was accompanied by a loss of desmoplakin from desmosomes and decreased adhesive strength following 18-h EGF treatment. Importantly, introduction of a phosphorylation-deficient PG mutant into PG null cells prevented the EGF receptor-dependent loss of desmoplakin from junctions, attenuating the effects of long term EGF treatment on cell adhesion. Therefore, PG is essential for maintaining and regulating adhesive strength in keratinocytes largely through its contributions to desmosome assembly and structure. As a target for modulation by EGF, regulation of PG-dependent adhesion may play an important role during wound healing and tumor metastasis.  相似文献   

10.
Squamous epithelial cells have both adherens junctions and desmosomes. The ability of these cells to organize the desmosomal proteins into a functional structure depends upon their ability first to organize an adherens junction. Since the adherens junction and the desmosome are separate structures with different molecular make up, it is not immediately obvious why formation of an adherens junction is a prerequisite for the formation of a desmosome. The adherens junction is composed of a transmembrane classical cadherin (E-cadherin and/or P-cadherin in squamous epithelial cells) linked to either β-catenin or plakoglobin, which is linked to α-catenin, which is linked to the actin cytoskeleton. The desmosome is composed of transmembrane proteins of the broad cadherin family (desmogleins and desmocollins) that are linked to the intermediate filament cytoskeleton, presumably through plakoglobin and desmoplakin. To begin to study the role of adherens junctions in the assembly of desmosomes, we produced an epithelial cell line that does not express classical cadherins and hence is unable to organize desmosomes, even though it retains the requisite desmosomal components. Transfection of E-cadherin and/or P-cadherin into this cell line did not restore the ability to organize desmosomes; however, overexpression of plakoglobin, along with E-cadherin, did permit desmosome organization. These data suggest that plakoglobin, which is the only known common component to both adherens junctions and desmosomes, must be linked to E-cadherin in the adherens junction before the cell can begin to assemble desmosomal components at regions of cell–cell contact. Although adherens junctions can form in the absence of plakoglobin, making use only of β-catenin, such junctions cannot support the formation of desmosomes. Thus, we speculate that plakoglobin plays a signaling role in desmosome organization.Squamous epithelial cells typically contain two prominent types of cell–cell junctions: the adherens junction and the desmosome. The adherens junction is an intercellular adhesion complex that is composed of a transmembrane protein (a classical cadherin) and numerous cytoplasmic proteins (α-catenin, β-catenin and plakoglobin, vinculin and α-actinin; for reviews see Takeichi, 1990; Geiger and Ayalon, 1992). The cadherins are directly responsible for adhesive interactions via a Ca2+-dependent, homotypic mechanism, i.e., in the presence of sufficient Ca2+, cadherin on one cell binds to an identical molecule on an adjacent cell. The desmosome, also an intercellular adhesion complex, is composed of at least two different transmembrane proteins (desmoglein and desmocollin) as well as several cytoplasmic proteins, including desmoplakins and plakoglobin (Koch and Franke, 1994). The transmembrane components of the desmosome are members of the broadly defined cadherin family and also require Ca2+ for adhesive activity. However, decisive experimental evidence for homophilic or heterophilic interactions between desmosomal cadherins via their extracellular domains has not yet been presented (Koch and Franke, 1994; Kowalczyk et al., 1996). While members of the cadherin family constitute the transmembrane portion of both adherens junctions and desmosomes, the different classes of cadherins are linked to different cytoskeletal elements by the cytoplasmic components of each junction. Specifically, the classical cadherins are linked to actin filaments and the desmosomal cadherins to intermediate filaments.The organization of the proteins within the adherens junction is well understood (for reviews see Kemler, 1993; Cowin, 1994; Wheelock et al., 1996). Specifically, the intracellular domain of cadherin interacts directly with either plakoglobin or β-catenin, which in turns binds to α-catenin (Jou et al., 1995; Sacco et al., 1995). α-Catenin interacts with α-actinin and actin filaments, thereby linking the cadherin/ catenin complex to the cytoskeleton (Knudsen et al., 1995; Rimm et al., 1995). Cadherin/catenin complexes include either plakoglobin or β-catenin but not both (Näthke et al., 1994). The importance of the classical cadherins to the formation of adherens junctions and desmosomes has been demonstrated. Keratinocytes maintained in medium with low Ca2+ (i.e., 30 μM) grow as a monolayer and do not exhibit adherens junctions or desmosomes; however, elevation of Ca2+ concentration induces the rapid formation of adherens junctions followed by the formation of desmosomes (Hennings et al., 1980; Tsao et al., 1982; Boyce and Ham, 1983; Hennings and Holbrook, 1983; O''Keefe et al., 1987; Wheelock and Jensen, 1992; Hodivala and Watt, 1994; Lewis et al., 1994). Simultaneous blocking with functionperturbing antibodies against the two classical cadherins (E- and P-cadherin) found in keratinocytes inhibits not only Ca2+-induced adherens junction formation but also severely limits desmosome formation (Lewis et al., 1994; Jensen et al., 1996). Consistent with these findings, expression of a dominant-negative cadherin by keratinocytes results in decreased E-cadherin expression and delayed assembly of desmosomes (Fujimori and Takeicki, 1993; Amagai, et al., 1995). These data suggest some form of cross-talk between the proteins of the adherens junction and those of the desmosome. One candidate protein that might mediate such cross-talk is plakoglobin, since it is the only known common component of both junctions.Plakoglobin is found to be associated with the cytoplasmic domains of both the classical cadherins and the desmosomal cadherins. Despite the high degree of identity between plakoglobin and β-catenin (65% at the amino acid level; Fouquet et al., 1992), β-catenin only associates with the classical cadherins and not with the desmosomal cadherins. In the adherens junction, plakoglobin and β-catenin have at least one common function, i.e., the linking of cadherin to α-catenin and thus to actin. However, there is emerging evidence that other functions of these two proteins are not identical. For example, in a study by Navarro et al. (1993), E-cadherin transfected into a spindle cell carcinoma was shown to associate with α- and β-catenin, but not with the low levels of endogenous plakoglobin. The transfected cells did not revert to a more epithelial morphology in spite of the presence of functional E-cadherin, and the authors suggested that the lack of plakoglobin may have prevented such morphological reversion.In the present study, we have tested the hypothesis that plakoglobin, through its interaction with E- or P-cadherin, serves as a regulatory molecule for desmosome organization. Even though plakoglobin is not an essential structural component of the adherens junction (Sacco et al., 1995), our data indicate that plakoglobin can function as a regulator of desmosome formation only when it is associated with a classical cadherin. Thus, we propose that plakoglobin has at least two functions: (a) as a structural component of the adherens junction and the desmosome and (b) as a signaling molecule that regulates communication between the adherens junction and the desmosome.  相似文献   

11.
Dysregulated cell-cell adhesion plays a critical role in epithelial cancer development. Studies of human and mouse cancers have indicated that loss of adhesion complexes known as adherens junctions contributes to tumor progression and metastasis. In contrast, little is known regarding the role of the related cell-cell adhesion junction, the desmosome, during cancer development. Studies analyzing expression of desmosome components during human cancer progression have yielded conflicting results, and therefore genetic studies using knockout mice to examine the functional consequence of desmosome inactivation for tumorigenesis are essential for elucidating the role of desmosomes in cancer development. Here, we investigate the consequences of desmosome loss for carcinogenesis by analyzing conditional knockout mice lacking Perp, a p53/p63 regulated gene that encodes an important component of desmosomes. Analysis of Perp-deficient mice in a UVB-induced squamous cell skin carcinoma model reveals that Perp ablation promotes both tumor initiation and progression. Tumor development is associated with inactivation of both of Perp's known functions, in apoptosis and cell-cell adhesion. Interestingly, Perp-deficient tumors exhibit widespread downregulation of desmosomal constituents while adherens junctions remain intact, suggesting that desmosome loss is a specific event important for tumorigenesis rather than a reflection of a general change in differentiation status. Similarly, human squamous cell carcinomas display loss of PERP expression with retention of adherens junctions components, indicating that this is a relevant stage of human cancer development. Using gene expression profiling, we show further that Perp loss induces a set of inflammation-related genes that could stimulate tumorigenesis. Together, these studies suggest that Perp-deficiency promotes cancer by enhancing cell survival, desmosome loss, and inflammation, and they highlight a fundamental role for Perp and desmosomes in tumor suppression. An understanding of the factors affecting cancer progression is important for ultimately improving the diagnosis, prognostication, and treatment of cancer.  相似文献   

12.
The formation and stability of epithelial tissue involves cell adhesion and the connection of the intermediate filaments of contiguous cells, mediated by desmosomes. The cadherin family members Desmocollins (Dsc) and Desmogleins (Dsg) mediate desmosome extracellular adhesion. The main intracellular molecules identified linking Dscs and Dsgs with the intermediate filament network are Plakoglobin (PG), Plakophilins (PPs) and Desmoplakin (DP). Previous studies on desmosome-mediated adhesion have focused on the intracellular domains of Dsc and Dsg because of their capacity to interact with PG, PPs and DP. This study examines the role of the extracellular domain of Dsg1 upon desmosome stability in MDCK cells. Dsg1 was constructed containing an extracellular deletion (Dsg delta 1EC) and was expressed in MDCK cells. A high expressor Dsg delta 1EC/MDCK clone was obtained and analysed for its capacity to form desmosomes in cell monolayers and when growing under mechanical stress in three-dimensional collagen cultures. Phenotypic changes associated with the ectopic expression of Dsg1 delta EC in MDCK cells were: disturbance of the cytokeratin network, a change in the quality and number of desmosomes and impairment of the formation of cysts in suspension cultures. Interestingly, Dsg1 delta EC was not localized in desmosomes, but was still able to maintain its intracytoplasmic interaction with PG, suggesting that the disruptive effects were largely due to PG and/or PP sequestration.  相似文献   

13.
In the normal ciliary epithelia of the rhesus monkey, owl monkey, albino rabbit, and human eye, a previously unreported relationship exists between mitochondria and certain desmosomes. At these sites, two mitochondria appear like "sentinels" attached to the cytoplasmic surfaces of their respective sides of a desmosome. In other instances, only one side of the junction may be afforded an associated mitochondrion. In each case the cytoplasmic filaments of the desmosome are seen to blend with the outer membrane of the mitochondrion. The relationship between desmosomes and mitochondria in the ciliary epithelium is unique among ocular tissues. A survey of ocular epithelia in the various species examined, failed to give any evidence of similar junctional/organelle complexes. Various functional roles for this relationship are discussed including the possibility that the mitochondria could control the cytoplasmic calcium ion concentration in the microenvironment of their associated desmosomal junctions.  相似文献   

14.
Plakophilins are armadillo repeat-containing proteins, initially identified as desmosomal plaque proteins that have subsequently been shown to also localize to the nucleus. Loss of plakophilin-1 is the underlying cause of ectodermal dysplasia/skin fragility syndrome, and skin from these patients exhibits desmosomes that are reduced in size and number. Thus, it has been suggested that plakophilin-1 plays an important role in desmosome stability and/or assembly. In this study, we used a cell culture system (A431DE cells) that expresses all of the proteins necessary to assemble a desmosome, except plakophilin-1. Using this cell line, we sought to determine the role of plakophilin-1 in de novo desmosome assembly. When exogenous plakophilin-1 was expressed in these cells, desmosomes were assembled, as assessed by electron microscopy and immunofluorescence localization of desmoplakin, into punctate structures. Deletion mutagenesis experiments revealed that amino acids 686-726 in the carboxyl terminus of plakophilin-1 are required for its localization to the plasma membrane. In addition, we showed that amino acids 1-34 in the amino terminus were necessary for subsequent recruitment of desmoplakin to the membrane and desmosome assembly.  相似文献   

15.
Desmosomes (macula adherens) have been associated with the function of adhesion. Their possible role in aggregation and sorting of chick and mouse epithelial cells has been investigated. Treatment of aggregates with 2-5 microgram/ml of actinomycin D which inhibited RNA synthesis also inhibited both desmosome formation and aggregation if administered at the beginning of the aggregation process. In contrast, if the drug was administered at six hours, when the cells had recovered from the process of dissociation, then aggregation over the following six hours appeared normal from observation of living samples. Such aggregates incorporated leucine-3H at roughly 85% of the control level. A quantitative comparison was made of desmosome formation in aggregates treated with actinomycin D for hours 6-12 and those cultured in normal medium. Desmosome formation was inhibited by the drug, although aggregation could proceed. Combinations of chick corneal and mouse skin cells sorted out in the presence of actinomycin D to the same extent as controls. Thus desmosome formation, which normally occurs during aggregation of the epithelial cells studied here, is not coupled with the aggregation or cell sorting process in these cells of stratified epithelia. When cells were treated with cycloheximide (100 muM) both desmosome formation and the progressive rounding up of aggregates was inhibited.  相似文献   

16.
Neither stratifying (primary keratinocytes) nor simple (Madin-Darby canine kidney [MDCK] and Madin-Darby bovine kidney [MDBK]) epithelial cell types from desmosomes in low calcium medium (LCM; less than 0.1 mM), but they can be induced to do so by raising the calcium level to physiological concentrations (standard calcium medium [SCM], 2 mM). We have used polyclonal antisera to the major bovine epidermal desmosome components (greater than 100 kD) in a sensitive assay involving immunoprecipitation of the components from metabolically labeled MDCK cell monolayers to investigate the mechanism of calcium-induced desmosome formation. MDCK cells, whether cultured in LCM or SCM, were found to synthesize the desmosome protein, DPI and desmosome glycoproteins DGI and DGII/III with identical electrophoretic mobility, and also, where relevant, with similar carbohydrate addition/processing and proteolytic processing. The timings of these events and of transport of DGI to the cell surface were similar in low and high calcium. Although the rates of synthesis of the various desmosome components were also similar under both conditions, the glycoprotein turnover rates increased dramatically in cells cultured in LCM. The half-lives decreased by a factor of about 7 for DGI and 12 for DGII/III and, consistent with this, MDCK cells labeled for 48 h in SCM had three and six times the amount of DGI and DGII/III, respectively, as cells labeled for 48 h in LCM. The rate of turnover and the levels of DPI were changed in the same direction, but to much lesser extents. Possible mechanisms for the Ca2+-dependent control of desmosome formation are discussed in the light of this new evidence.  相似文献   

17.
Desmosomes are prominent cell-cell adhesive junctions in stratified squamous epithelia and disruption of desmosomal adhesion has been shown to have dramatic effects on the function and integrity of these tissues. During normal physiologic processes, such as tissue development and wound healing, intercellular adhesion must be modified locally to allow coordinated cell movements. The mechanisms that control junction integrity and adhesive strength under these conditions are poorly understood. We utilized a proteomics approach to identify plakophilin-3 associated proteins and identified the 14-3-3 family member stratifin. Stratifin interacts specifically with plakophilin-3 and not with other plakophilin isoforms and mutation analysis demonstrated the binding site includes serine 285 in the amino terminal head domain of plakophilin-3. Stratifin interacts with a cytoplasmic pool of plakophilin-3 and is not associated with the desmosome in cultured cells. FRAP analysis revealed that decreased stratifin expression leads to an increase in the exchange rate of cytoplasmic plakophilin-3/GFP with the pool of plakophilin-3/GFP in the desmosome resulting in decreased desmosomal adhesion and increased cell migration. We propose a model by which stratifin plays a role in regulating plakophilin-3 incorporation into the desmosomal plaque by forming a plakophilin-3 stratifin complex in the cytosol and thereby affecting desmosome dynamics in squamous epithelial cells.  相似文献   

18.
Pemphigus vulgaris antigen (PVA) is a member of the desmoglein subfamily of cadherin cell adhesion molecules. Because autoantibodies in this disease cause blisters due to loss of epidermal cell adhesion, and because desmoglein is found in the desmosome cell adhesion junction, we wanted to determine if PVA is also found in desmosomes. By immunofluorescence, PV IgG bound, in a dotted pattern, to the cell surface of cultured human keratinocytes induced to differentiate with calcium, suggesting junctional staining. However, by preembedding, immunogold electron microscopic studies only slight labeling could be detected in desmosomes, presumably because of difficulty in gold penetration of intact desmosomes. We therefore treated the keratinocytes with 0.01% trypsin in 1 mM calcium, conditions known to preserve cadherin antigenicity but that caused slight separation of desmosomes, before immunogold staining. In this case there was extensive labeling of the extracellular part of desmosomes but not of the interdesmosomal cell membrane which was stained with anti-beta 2- microglobulin antibodies. To confirm the specificity of this binding we showed that antibodies raised in rabbits against the extracellular portions of PVA also bound desmosomes in these cultures. In intact mouse epidermis we could also show slight, but specific, immunogold desmosomal labeling with PV IgG. Furthermore, neonatal mice injected with PV IgG affinity purified on PVA showed desmosomal separation with the IgG localized to desmosomal cores. These results indicate that PVA is organized and concentrated within the desmosome where it presumably functions to maintain the integrity of stratifying epithelia.  相似文献   

19.
Subclones of human carcinoma-derived A-431 cell line stably producing fusion proteins consisting of the enhanced green fluorescent protein and either human desmoglein 2 (Dsg-GFP) or human plakoglobin (GFP-Pg) were used to examine the behavior of desmosomes in living cells. Immunofluorescence microscopy of the fixed cells showed that both fusion proteins, which were expressed in significantly lower levels relative to their endogenous counterparts, were efficiently recruited into desmosomes. Time-lapse confocal imaging of these cells reveals that such GFP-labeled desmosomes (GFP desmosomes) are stable structures which exhibit various dynamic and motile activities. The most notable are independent lateral mobility and fusion. Furthermore, the continual assembly of new nascent desmosomes is observed within stable contacts located at the middle of the epithelial sheet. A new GFP desmosome appears as a closely apposed group of fine patches which after a few minutes aggregate into a single structure. These three dynamic processes resulted in constant changes of desmosome distribution, numbers, and sizes. In addition, fluorescence recovery after photobleaching experiments showed that fine patches of desmosomal proteins may participate in desmosome maintenance. Such a diverse range of dynamic activities of desmosomes apparently produces flexible but tight cell-cell adhesion required for different morphogenetic events in epithelial structures.This work was supported by grant AR44016-04 from the National Institutes of Health  相似文献   

20.
ABSTRACT

To elucidate the underlying mechanism of secretory leukocyte protease inhibitor (SLPI)-induced cell migration, we compared SLPI-deleted human gingival carcinoma Ca9-22 (ΔSLPI) cells and original (wild-type: wt) Ca9-22 cells using several microscopic imaging methods and gene expression analysis. Our results indicated reduced migration of ΔSLPI cells compared to wtCa9-22 cells. The lamellipodia/dorsal ruffles were smaller and moved slower in ΔSLPI cells compared to wtCa9-22 cells. Furthermore, well-developed intermediate filament bundles were observed at the desmosome junction of ΔSLPI cells. In addition, Galectin4 was strongly expressed in ΔSLPI cells, and its forced expression suppressed migration of wtCa9-22 cells. Taken together, SLPI facilitates cell migration by regulating lamellipodia/ruffles and desmosomes, in which Galectin4 plays an important role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号