首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Embryos derived from calf oocytes were compared with adult cow oocyte-derived embryos (1) by studying the kinetics of embryo development using time-lapse cinematography (2) by evaluating the ratio between inner cell mass (ICM) and trophectoderm (TE) cells in blastocysts (3) by measuring the triglyceride content of the blastocysts. The rate of calf oocyte-derived embryos reaching the blastocyst stage was reduced (26 vs. 46% for adult derived embryos). Calf oocyte-derived embryos preferably arrested their development before the 9-cell stage. Those that developed into blastocysts had cleaved earlier to reach the 2-cell or 3-cell stages than embryos that arrested before the 9-cell stage. The 9-cell stage tended to appear later in calf oocyte-derived embryo that reached the blastocyst stage than in adult-derived embryos. This difference became significant at the morula stage. Accordingly, the fourth cell cycle duration was longer for calf oocyte-derived embryos. Day 8 blastocysts from both sources had similar total cell numbers (calf: 89 +/- 20; cow: 100 +/- 30) and cell distribution between TE and ICM. The triglyceride content of day 7 blastocysts was similar for both sources (64 +/- 15 vs. 65 +/- 6 ng/embryo, respectively). In conclusion, calf oocyte-derived embryos are characterized by a higher rate of developmental arrest before the 9-cell stage and by a longer lag phase preceding the major onset of embryonic genome expression. These changes might be related to insufficient "capacitation" of the calf oocyte during follicular growth. Despite these differences, modifications in the quality of the resulting blastocysts were not detected.  相似文献   

2.
Studies with intact preimplantation mouse embryos and some types of chimaeric aggregates have shown that the most advanced cells are preferentially allocated to the inner cell mass (ICM) rather than the trophectoderm. Thus, differences between 4-cell and 8-cell stage embryos could contribute to the tendency for tetraploid cells to colonise the trophectoderm more readily than the ICM in 4-cell tetraploid<-->8 cell diploid chimaeras. The aim of the present study was to test whether 4-cell stage embryos in 4-cell diploid<-->8-cell diploid aggregates contributed equally to all lineages present in the E12.5 conceptus. These chimaeras were compared with those produced from standard aggregates of two whole 8-cell embryos and aggregates of half an 8-cell embryo with a whole 8-cell embryo. As expected, the overall contribution of 4-cell embryos was lower than that of 8-cell embryos and similar to that of half 8-cell stage embryos. In the 4-cell<-->8-cell chimaeras the 4-cell stage embryos did not contribute more to the trophectoderm than the ICM derivatives. Thus, differences between 4-cell and 8-cell embryos cannot explain the restricted tissue distribution of tetraploid cells previously reported for 4-cell tetraploid<-->8-cell diploid chimaeras. It is suggested that cells from the more advanced embryo are more likely to contribute to the ICM but, for technical reasons, are prevented from doing so in simple aggregates of equal numbers of whole 4-cell and whole 8-cell stage embryos.  相似文献   

3.
In this study, cytoplasmic effects on the development of nuclear transplant embryos were examined. In addition, the production of offspring from nuclear transplant embryos was attempted. Nuclei from cleavage-stage embryos were transplanted to enucleated zygotes at different cell cycle stages and with different cytoplasmic volumes. A greater developmental rate to the blastocyst stage was observed in reconstituted late stage zygotes that received nuclei from late 2-cell stage embryos than in early stage zygotes (46.3% vs. 16.9%). A further increase in developmental rate to the blastocyst stage (85.5%) and in cell number was obtained in reconstituted late stage zygotes with reduced cytoplasmic volume. However, developmental potential of nuclei from 4- and 8-cell stage embryos was very limited, although they were transferred to enucleated late stage zygotes with reduced cytoplasm. After the transfer of blastocysts derived from nuclear transplant embryos to recipient females, live young were obtained from reconstituted embryos that received nuclei from late 2-cell stage embryos (28.6%). These results confirm that the development of nuclear transplant embryos can be affected by recipient cell cycle stage and cytoplasmic volume. Furthermore, the nuclei from late 2-cell stage embryos in which activation of the embryonic genome had occurred can be reprogrammed to a certain extent when transplanted into enucleated zygotes, especially late stage zygotes with reduced cytoplasmic content.  相似文献   

4.
目的:通过建立慢病毒载体感染猪胚胎体系实现胚胎标记,进而研究不同发育阶段猪孤雌胚胎之间的嵌合能力,为进一步研究猪早期胚胎发育以及细胞分化奠定基础.方法:首先,通过显微注射的方法把2×109I.U./ml、2×108I.U./ml和2×107I.U./ml三个梯度的表达绿色荧光的慢病毒载体分别注射到猪1-细胞胚胎和2-细胞胚胎的透明带下,进行胚胎的GFP转基因标记,在荧光显微镜下观察比较卵裂率、阳性胚胎率、囊胚率、阳性囊胚率和囊胚细胞数.然后,采用凹窝聚合法对同步发育胚胎在不同阶段(2-细胞,4-细胞,8-细胞)进行嵌合,2-细胞胚胎与不同发育阶段(2-细胞、4-细胞、8-细胞)胚胎进行嵌合以及2-细胞胚胎卵裂球互换制作嵌合体胚胎,发育到囊胚时在荧光显微镜下检测胚胎的嵌合状态.结果:2×109I.U./ml的慢病毒感染猪2-细胞胚胎组中,体外受精和孤雌胚胎感染阳性率( 80.00%、76.36%)和阳性囊胚率(90.74%、89.56%)都显著高于其它滴度组(P<0.05),另外,慢病毒感染的两种胚胎与对照组对卵裂率、囊胚率和囊胚细胞数三个指标没有显著影响(P>0.05).2-细胞胚胎之间嵌合囊胚率和2-细胞卵裂球互换嵌合囊胚率( 53.85%、62.50%)显著高于2-细胞胚胎与4-细胞胚胎的嵌合率(18.60%,P<0.05),在同步发育胚胎中8-细胞胚胎之间的嵌合率(75.00%)高于4-细胞胚胎之间和2-细胞胚胎之间的嵌合率( 65.00%、53.80%).结论:2×109I.U./ml的慢病毒感染2-细胞期胚胎效率最高,另外,慢病毒感染对猪胚胎发育没有明显影响.8-细胞间的嵌合率比较高;发育同步胚胎间的嵌合率高于发育非同步胚胎间的嵌合率.  相似文献   

5.
One-cell embryos from certain mouse strains were found incapable of developing beyond the 2-cell stage in vitro (2-cell block), but a microinjection of EDTA effectively overcame this block. When 2-cell arrested embryos were fused with embryos that had developed to the late 2-cell stage in vivo, the fusants developed beyond the 2-cell stage. Microinjection of cytoplasm of in vivo 2-cell embryos into 1-cell embryos also obviated the 2-cell block. Analyses of 35S-labeled embryos by 2-dimensional polyacrylamide gel electrophoresis indicated changes in synthetic protein patterns possibly related to this block.  相似文献   

6.
Preimplantation mouse embryos of many strains become arrested at the 2-cell stage if the osmolarity of culture medium that normally supports development to blastocysts is raised to approximately that of their normal physiological environment in the oviduct. Arrest can be prevented if molecules that serve as "organic osmolytes" are present in the medium, because organic osmolytes, principally glycine, are accumulated by embryos to provide intracellular osmotic support and regulate cell volume. Medium with an osmolarity of 310 mOsM induced arrest of approximately 80% of CF1 mouse embryos at the 2-cell stage, in contrast to the approximately 100% that progressed beyond the 2-cell stage at 250 or 301 mOsM with glycine. The nature of this arrest induced by physiological levels of osmolarity is unknown. Arrest was reversible by transfer to lower-osmolarity medium at any point during the 2-cell stage, but not after embryos would normally have progressed to the 4-cell stage. Cessation of development likely was not due to apoptosis, as shown by lack of external annexin V binding, detectable cytochrome c release from mitochondria, or nuclear DNA fragmentation. Two-cell embryos cultured at 310 mOsM progressed through the S phase, and zygotic genome activation markers were expressed. However, most embryos failed to initiate the M phase, as evidenced by intact nuclei with decondensed chromosomes, low M-phase promoting factor activity, and an inactive form of CDK1, although a few blastomeres were arrested in metaphase. Thus, embryos become arrested late in the G(2) stage of the second embryonic cell cycle when stressed by physiological osmolarity in the absence of organic osmolytes.  相似文献   

7.
In vitro produced, 2-cell bovine embryos were cultured in serum-free medium supplemented with various combinations of growth factors to test the hypothesis that these polypeptide factors are able to signal preimplantation development. The developmental arrest that occurs during the 8-cell stage with typical culture methods might be relieved by a growth factor-dependent mechanism that would stimulate expression of the embryonic genome, thereby mimicking events that occur in vivo in the oviduct during the fourth cell cycle (8- to 16-cell stage). Subsequently, other growth factors might promote compaction and blastulation, processes which normally occur in the uterus. The effects of growth factors on early embryos were evaluated using phase contrast microscopy to monitor progression to the 8-cell stage, completion and duration of the fourth cell cycle, and blastocyst formation. Platelet derived growth factor (PDGF) promoted development beyond the 16-cell stage in 39.1% of the 2-cell embryos examined in all experiments. The duration of the fourth cell cycle among these embryos was approximately 26 hours. During development after the 16-cell stage, PDGF reduced the proportion of embryos bastulating from 12.7% to 5.8%; in contrast, transforming growth factor alpha (TGF alpha), acting during the same developmental time period, increased the proportion of embryos blastulating from 8.6% to 40.6%. These results, using serum-free medium, indicated that PDGF signalled completion of the fourth cell cycle. TGF alpha, and perhaps basic fibroblast growth factor (bFGF), promoted blastulation of 16-cell embryos during subsequent culture.  相似文献   

8.
In 4-cell embryos (but not in blastocysts), Triton X-100, a non-ionic detergent, stimulated leucine, phenylalanine, methionine and glutamic acid transport from 1.6 to 3.2-fold. All of these amino acids were transported exclusively by a sodium-independent mechanism. Triton X-100, however, did not stimulate the transport of other amino acids tested in 4-cell embryos. Furthermore, phenylalanine transport rates were stimulated about 2-fold at the 4-cell stage by all of the non-ionic and zwitterionic detergents tested at concentrations which were approximately one-tenth of the critical micellar concentration for each detergent. These concentrations did not block development, disrupt the cells, or make the cell membranes freely permeable. At the blastocyst stage, Z312, a zwitterionic detergent, inhibited the transport of phenylalanine and alanine and stimulated the transport of lysine, a pattern previously found to be linked to the sodium-dependent amino acid transport mechanism. We suggest that Z312 may be acting upon some component of sodium-dependent amino acid transport in blastocysts. The non-ionic and zwitterionic detergents seemed to have a common effect on amino acid transport in 4-cell embryos but elicited varied transport responses from blastocysts. These differential responses to detergents by blastocysts may reflect intrinsic changes in membrane composition and/or organization which occur during the normal course of preimplantation development.  相似文献   

9.
Mouse embryos were grown in vitro from the 2-cell or 8-cell to the blastocyst stage in the presence of DNA. Blastocyst diameter and cell number were increased when freshly prepared DNA was used, but stored material was deleterious. Comparisons of the uptake of tritiated DNA in high molecular weight form with that of DNA degraded by shearing or sonication, and with the uptake of tritiated thymidine, showed that less radioactivity was incorporated when the molecular weight of the DNA was reduced. The data suggest that polymerized DNA can be taken into the embryo, but no evidence of integration was obtained. Treatment of embryos homozygous for several recessive alleles with DNA from a strain carrying the corresponding dominants failed to induce any detectable modifications in either the treated animals or their progeny.  相似文献   

10.
体细胞来源及培养代数对核移植重构胚发育的影响   总被引:2,自引:0,他引:2  
为探讨体细胞来源及培养代数对核移植重构胚发育的影响,实验采用电融合法将小鼠2—细胞胚胎卵裂球、胚胎干细胞(ES)、胎儿成纤维细胞、耳成纤维细胞、尾尖成纤维细胞、睾丸支持细胞和精原细胞以及不同培养代次的胎儿成纤维细胞进行了核移植。结果显示:2—细胞胚胎卵裂球供核重构胚发育最好,囊胚率为7.4%;ES细胞重构胚虽然发育率低,但仍有囊胚出现,比例为0.7%;胎儿成纤维细胞重构胚最高发育阶段为桑椹胚,比例为0.2%;精原细胞重构胚只能发育到8-细胞阶段,比例为0.3%;其他几类细胞重构胚则仅能发育至4-细胞阶段。不同培养代数的胎儿成纤维细胞重构胚除第3代外都可发育到8-细胞阶段,且发育率差异不显著,但第一代细胞重构胚2-细胞发育率(40.7%)显著低于2、3和4代细胞重构胚。结果表明:不同分化程度的细胞核移植后,重新编程的难易程度是不一样的,分化程度越高则重新编程越难;未调整细胞周期的ES细胞由于多数处于S期,所以重构胚发育率很低;体外培养传代有利于体细胞核移植后重新编程。  相似文献   

11.
Starfish blastomeres are reported to be totipotent up to the 8-cell stage. We reinvestigated the development of blastomeres of 8-cell stage embryos with a regular cubic shape consisting of two tiers of 4 blastomeres. On dissociation of the embryo by disrupting the fertilization membrane at the 8-cell stage, each of the 4 blastomeres of the vegetal hemisphere gave rise to an embryo that gastrulated, whereas blastomeres from the animal hemisphere did not. By injection of a cell lineage tracer into blastomeres of 8-cell stage embryos, we found that only those of the vegetal hemisphere formed cells constituting the archenteron. Next, we compressed 4-cell stage embryos along the animal-vegetal axis so that all the blastomeres in the 8-cell stage were in a single layer. When these 8 blastomeres were then dissociated, an average of 7 of them developed into gastrulae. By cell lineage analysis, all the blastomeres in single-layered embryos at the 8-cell stage were shown to have the capacity to form cells constituting an archenteron. Taken together, these findings indicate that the fate to form the archenteron is specified by a cytoplasmic factor(s) localized at the vegetal hemisphere, and that isolated blastomeres that have inherited this factor develop into gastrulae.  相似文献   

12.
The present study was conducted to establish a porcine cell line from blastocysts produced in vitro and to examine the developmental ability of nuclear transfer embryos reconstituted with the cells and enucleated mature oocytes. When hatched blastocysts were cultured in Dulbecco's modified Eagle's medium with supplements, no colonies of embryo-derived cells were observed. In contrast, 56% of embryos that were attached to feeder layers of STO cells formed colonies in NCSU-23 with supplements. When the colonies were subcultured in the absence of feeder cells, a cell line with an epithelial-like cell morphology was obtained. This cell morphology was stable up to at least passage 30. Although no fused embryos were observed when a pulse of 100 V/mm was applied, the fusion rate increased significantly at 150 V/mm (28%) and 200 V/mm (64%). At 200 V/mm, 39% of fused embryos cleaved, but no embryos developed beyond the 3-cell stage. When cocultured with electro-activated oocytes, percentages of reconstructed embryos cleaved (65%) and developed to the 4-cell stage (23%) were significantly higher than percentages for those (cleavage: 38%; 4-cell stage: 3%) in the absence of activated oocytes. At 7 days after culture, one reconstructed embryo successfully developed to the blastocyst stage in the presence of activated oocytes. When green fluorescent protein-expressing cells and enucleated oocytes were fused and the fused embryos were cultured with electro-activated oocytes, 3 of 102 reconstructed embryos developed to the blastocyst stage. All of the blastocysts were positive for fluorescent green under ultraviolet light. The results of the present study indicate that a porcine cell line can be established from the hatched blastocyst and maintained in vitro for a long period, and that reconstructed embryos obtained by transferring the blastocyst-derived cells into enucleated oocytes have the ability to develop to the blastocyst stage in vitro.  相似文献   

13.
This study focused on nucleolar changes in bovine embryos reconstructed from enucleated mature oocytes fused with blastomeres of morulae or with cultured, serum unstarved bovine fetal skin fibroblasts (embryonic vs. somatic cloning). The nucleotransferred (NT) embryos were collected and fixed at time intervals of 1-2 h (early 1-cell stage), 10-15 h (late 1-cell stage), 22-24 h (2-cell stage), 37-38 h (4-cell stage), 40-41 h (early 8-cell stage), 47-48 h (late 8-cell stage), and 55 h (16-cell stage) after fusion. Immunocytochemistry by light and electron microscopy was used for structure-function characterization of nucleolar components. Antibodies against RNA, protein B23, protein C23, and fibrillarin were applied. In addition, DNA was localized by the terminal deoxynucleotidyl transferase (TdT) technique, and the functional organization of chromatin was determined with the nick-translation immunogold approach. The results show that fully reticulated (active) nucleoli observed in donor cells immediately before fusion as well as in the early 1-cell stage after fusion were progressively transformed into nucleolar bodies displaying decreasing numbers of vacuoles from the 2- to 4-cell stage in both types of reconstructed embryos. At the late 8-cell stage, morphological signs of resuming nucleolar activity were detected. Numerous new small vacuoles appeared, and chromatin blocks reassociated with the nucleolar body. During this period, nick-translation technique revealed numerous active DNA sites in the periphery of chromatin blocks associated with the nucleolar body. Fully reticulated nucleoli were again observed as early as the 16-cell stage of embryonic cloned embryos. In comparison, the embryos obtained by fetal cloning displayed a lower tendency to develop, mainly during the first cell cycle and during the period of presumed reactivation. Correlatively, the changes in nucleolar morphology (desegregation and rebuilding) were at least delayed in many somatic NT embryos in comparison with the embryonic NT group. It is concluded that complete reprogramming of rRNA gene expression is part of the general nuclear reprogramming necessary for development after NT.  相似文献   

14.
The allocation of cells to the trophectoderm and inner cell mass (ICM) in the mouse blastocyst has been examined by labelling early morulae (16-cell stage) with the short-term cell lineage marker yellow-green fluorescent latex (FL) microparticles. FL is endocytosed exclusively into the outside polar cell population and remains autonomous to the progeny of these blastomeres. Rhodamine-concanavalin A was used as a contemporary marker for outside cells in FL-labelled control (16-cell stage) and cultured (approximately 32- to 64-cell stage) embryos, immediately prior to the disaggregation and analysis of cell labelling patterns. By this technique, the ratio of outside to inside cell numbers in 16-cell embryos was shown to vary considerably between embryos (mean 10.8:5.2; range 9:7 to 14:2). In cultured embryos, the trophectoderm was derived almost exclusively (over 99% cells) from outside polar 16-cell blastomeres. The origin of the ICM varied between embryos; on average, most cells (75%) were descended from inside nonpolar blastomeres with the remainder derived from the outside polar lineage, presumably by differentiative cleavage. In blastocysts examined by serial sectioning, polar-derived ICM cells were localised mainly in association with trophectoderm and were absent from the ICM core. In nascent blastocysts with exactly 32 cells an inverse relationship was found between the proportion of the ICM descended from the polar lineage and the deduced size of the inside 16-cell population. From these results, it is concluded that interembryonic variation in the outside to inside cell number ratio in 16-cell morulae is compensated by the extent of polar 16-cell allocation to the ICM at the next division, thereby regulating the trophectoderm to ICM cell number ratio in early blastocysts.  相似文献   

15.
Fucosylated glycoconjugates in mouse preimplantation embryos   总被引:1,自引:0,他引:1  
Preimplantation mouse embryos were metabolically labelled with 3H or 14C-fucose to investigate the synthesis of fucosylated macromolecules. Scintillation counting revealed that there was a progressive increase in both total fucose taken up by the embryo and incorporation of fucose into TCA-precipitable material as embryos developed from the 4-cell to the blastocyst stage. This was reflected in the increasing intensity of bands on autoradiographs of radioactive fucose labelled proteins separated on 10% SDS-PAGs between the 4-cell embryo (at which stage bands were first detectable) and the blastocyst. Minor qualitative changes in fucoproteins were detected at the time of compaction and additional bands appeared at the blastocyst stage. Preliminary analysis of fucolipids in 6- to 8-cell embryos indicated that an approximately equal amount of fucose was incorporated into lipid and protein. Autoradiographs of semi-thin sections of 3H-fucose-labelled embryos showed substantial amounts of radioactive material in the vicinity of the plasma membrane both adjacent to other cells and facing the zona pellucida. These data would support a predominant role for fucoconjugates in cell surface events in the preimplantation embryo from the 8-cell stage.  相似文献   

16.
An antiserum to prostaglandin (PG) E-2 and indirect immunofluorescence were used to demonstrate immunohistochemically the presence of PGE-2 in preimplantation mouse embryos. Fluorescence was observed in the cytoplasm of unfertilized 1-cell embryos to the blastocyst stage. The strongest fluorescence was detected at the 8-cell and morula stages. In embryos cultured from the 2-cell stage on, the fluorescence was observed in the cytoplasm of 4-cell embryos to the blastocyst stage. No differences were observed in the intensity and the distribution of the fluorescence between embryos in vivo and those in vitro. However, when blastocysts were cultured in a medium containing 100 microM-indomethacin, the fluorescence was diminished markedly. We therefore suggest that preimplanted mouse embryos contain PGE-2 during their early developmental stages and that the embryos synthesize the PGE-2.  相似文献   

17.
In early embryos of molluscs, different clones of successively determined trochoblasts differentiate into prototroch cells and together contribute to the formation of a ciliated ring of cells known as the prototroch. Trochoblasts differentiate after cell cycle arrest, which occurs two cell cycles after the commitment of their stem cell. To study the changes of junctional communication in embryos of Patella vulgata in relation to commitment, cell cycle arrest, and differentiation of the trochoblasts, we have monitored electrical coupling as well as transfer of fluorescent dyes. The appearance of dye coupling in embryos of Patella occurs after the fifth cleavage (at the 32-cell stage), when the cell cycles of all embryonic cells become asynchronous and longer. At the 32- and 64-cell stages all cells are well coupled. However, after the 72-cell stage dye transfer to or from any cell of the four interradial clones of four primary trochoblasts becomes abruptly reduced, whereas electrical coupling between these cells and the rest of the embryo can still be detected. From scanning electron microscopical analysis of the cell pattern we conclude that this change in gap junctional communication coincides with cell cycle arrest and with the development of cilia in all four clones of primary trochoblasts. Similarly, after the 88-cell stage the four radial clones of accessory trochoblasts stop dividing, reduce cell coupling, and become ciliated. By the formation of the prototroch, the embryo becomes subdivided into an anterior (pretrochal) and a posterior (posttrochal) domain which will develop different structures of the adult. At the 88-cell stage, the cells within each of these two domains remain well coupled and form two different communication compartments that are separated from each other by the interposed ring of uncoupled trochoblasts. The relations among control of cell cycle, changes in junctional communication, and differentiation are discussed.  相似文献   

18.
19.
Summary Objectives were to characterize developmental changes in response to heat shock in the preimplantation mouse embryo and to evaluate whether ability to synthesize glutathione is important for thermal resistance in mouse embryos. Heat shock (41° C for 1 or 2 h) was most effective at disrupting development to the blastocyst stage when applied to embryos at the 2-cell stage that were delayed in development. Effects of heat shock on ability of embryos to undergo hatching were similar for 2-cell, 4-cell, and morula stage embryos. The phenomenon of induced thermotolerance, for which exposure to a mild heat shock increases resistance to a more severe heat shock, depended upon stage of development and whether embryos developed in vitro or in vivo. In particular, induced thermotolerance was observed for morulae derived from development in vivo but not for 2-cell embryos or morulae that developed in culture. Administration of buthionine sulfoximine to inhibit glutathione synthesis did not increase thermal sensitivity of 2-cell embryos or morulae but did reduce subsequent development of 2-cell embryos at both 37° and 41° C. In summary, changes in the ability of 2-cell through morula stages to continue to develop following a single heat shock were generally minimal. However, 2-cell embryos delayed in development had reduced thermal resistance, and therefore, maternal heat stress may be more likely to cause mortality of embryos that are already compromised in development. There were also developmental changes in the capacity of embryos to undergo induced thermotolerance. Glutathione synthesis was important for development of embryos but inhibition of glutathione synthesis did not make embryos more susceptible to heat shock.  相似文献   

20.
Preimplantation goat embryos were cultured with or without goat oviduct epithelial cells in Earle's 199 medium + 10% goat serum (E199 + 10%GS), and in three different simple chemically defined media. In-vivo development was characterized by an extended 8- to 16-cell stage followed by a rapid cleavage rate in the next 3 cell cycles. Culture of 1-8-cell embryos in Medium E199 + 10%GS led to cleavage arrest at the 8-16-cell stage, while in the chemically defined media embryos developed poorly and a high percentage failed to pass the 8-16-cell stage. In co-culture, however, a high percentage (77% and 96%) of 1-2-cell and 4-8-cell embryos, respectively, developed beyond the 16-cell stage. In co-culture, 1-2-cell embryos maintained cleavage rates equivalent to those in vivo until the 8-cell stage, but thereafter cell numbers lagged behind those in vivo, and by 168 h after ovulation, cell numbers (+/- s.e.) in vitro were 47.6 +/- 7.9 compared to 238 +/- 27.2 in vivo (t = 6.93, P less than 0.001). The results demonstrate that co-culture of embryos with oviduct cells allows a high percentage of embryos to develop through the period of cleavage arrest, providing a favourable environment for development through the 1-16-cell stages but a less adequate environment for development to the blastocyst stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号