首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
46,XY女性患者SRY基因启动子区域的突变分析   总被引:1,自引:0,他引:1  
大约15%的46,XY女性患者中发现SRY基因编码区突变,其他患者可能是SRY基因的调节区, 包括启动子区域发生了突变,或者其他相关基因发生突变所致。本文采用限制性酶切、PCR-SSCP及银染检测技术,对7例患者SRY基因的启动子区域进行了突变筛查, 结果未发现异常,提示这些患者的病因与SRY基因启动子区域本身无关,结合对患者SRY基因HMG基序DNA的突变分析结果,表明除SRY基因异常外还存在其他导致46,XY女性性反转综合征的遗传机制。 Abstract:Using restriction endonuelease digestion and PCR-SSCP with silver staining,we analyzed the promotor region of SRY gene in seven 46,XY femalcs.The results showed no abnormality,thus ruling out the mutations in the promotor region of the SRY gene as a possible cause of sex reversal in these XY females.In view with the absence of the mutations in the HMG regions of the SRY genes of several patients,it is suggested that SRY gene is not the only gene responsible for testicular development but is one of many hierarchical genes involved in a genetic cascade for sexual differentiation.  相似文献   

2.
Y染色体上的性别决定区域——SRY基因作为睾丸决定因子,可以调控男性性别发育过程。SRY基因是一种转录因子,属于带有高迁移率族蛋白家族,该家族成员包含能与DNA结合的HMG盒基序。已知SRY基因的缺失和点突变是造成XY女性性反转的病因之一。通过筛查10位中国46,XY女性性反转病人SRY基因的开放阅读框区域,探寻新的突变类型。用标准方法从外周血中抽提gDNA,通过聚合酶链式反应扩增SRY基因中部的609bp的DNA片段。扩增后的PCR片段被克隆到pUCm-T载体中,在ABI377-3自动测序仪上完成测序。运用限制性内切酶酶切分析的方法验证DNA测序的结果。结果表明,在两个患者的SRY基因中分别发现了新的核苷酸点突变,并都导致氨基酸替代。一个突变发生在SRY基因的5’端HMG盒外的核苷酸第113位腺嘌呤(A)被鸟嘌呤(G)取代,并导致谷氨酸被甘氨酸替换;另一个突变是第387位核苷酸发生T被A替换,该突变引起第129位的酪氨酸变成终止密码,她父亲的SRY序列被证明是正常的野生型。通过查询文献和人类基因突变数据库(HGMD),这两个突变都是以前未见报道过的新型SRY基因突变,并使因核苷酸替换引起SRY基因突变总数增加到45。  相似文献   

3.
对217例无精和严重少精症患者外周血淋巴细胞染色体核型进行分析,并采用聚合酶链反应对7例Y染色体结构异常患者的AZFc区进行检测。发现187例无精症患者中检出异常核型77例(41.18%)(其中46,XY,t(6;14)(p21;p13),46,XY,t(8;12)(p21;q24)为世界首报核型),主要涉及染色体异常(数目异常和结构异常);染色体异态(Y染色体异态和9号染色体臂间倒位)及46,XX性反转;30例严重少精症患者中检出异常核型4例(13.33%)(结构异常和46,XX性反转)。由此可见,性染色体数目和结构异常是精子发生障碍的主要原因,其次常染色体的某些断裂点也可能影响精子发生。AZFc区的缺失与否与精子发生也有直接关系。  相似文献   

4.
人类体细胞中共有 46条染色体 ,其中 1~ 2 2对为常染色体 ,另 1对为性染色体。在这些染色体上分布着大量的基因。人类体细胞中常染色体是成对存在的 ,其上的基因也总是成对存在的。若成对的基因失去 1个 ,则将对发育造成极为不利的影响。例如 ,5P- 综合征(又称猫叫综合征 ) ,其核型为 46,XX(XY)del(5 ) (P15) ,分析患者的核型 ,成对的第 5号染色体中的 1条比正常的短 ,主要是缺失了其短臂的一部分 ,即该部位的基因是成单存在的。再比如 ,1 8 三体综合征 (又称爱德华综合征 ) ,患者核型为 47,XX(XY) ,+1 8,其核型分析表明 ,患者的 1 8号…  相似文献   

5.
人体细胞内有46条染色体,其中44条常染色体为男女共有,两条性染色体,男女有别,正常女性有两条X染色体,核型为46,XX;正常男性有一条X染色体和一条Y染色体,核型为46,XY。按人类染色体命名的国际体制,人类的46条染色体两两相配成23对,分7组,X染色体属C组,具亚中着丝粒,Y染色体属G组,有近端着丝粒。随着基因定位技术的不断发展,人们已将三千多个基因  相似文献   

6.
本文报道了用绒毛细胞直接制备染色体的方法,诊断出一个家系中3例染色体异常胎儿。一例核型为:46,XX,rec(4),dup p, inv(4)(P12 q35)另外两例核型为:46, XY, inv(4)(p12 q35)pat。对此家系2代中8人进行了染色体检查。其中3人核型为46, XY, inv(4)(p12q35)。3例胎儿的异常染色体是来自他们的父亲(4号染色体臂间倒位携带者)。并讨论了臂间倒位染色提携带者对后代的影响。  相似文献   

7.
六例性反转综合征患者的分子遗传学分析   总被引:2,自引:0,他引:2  
对六例性反转综合征患者(3例XX男性)(3例XY女性)用Y-特异性DNA探针进行了Southern印迹杂交分析,并用PCR技术扩增了SRY基因部分序列。结果表明,1例XX男性缺乏源于Y染色体的杂交信号,也无SRY基因;其余2例XX男性和3例XY女性都检测到Yp-DNA序列和SRY基因。这对进一步阐明性反转综合征的病因和SRY基因的作用机制具有重要意义。  相似文献   

8.
本文报告各种类型的两性畸形19例,其中包括46,XX女性假两性畸形10例,46,XY/45,XO男性假两性畸形2例,46,XY完全型睾丸女性化2例,46,XY不完全型睾丸女性化2例,假阴道会阴囊尿道下裂综合症工例,46,XY无性腺症1例,和46,XX/46,XY真两性畸形1例。两性畸形的正确诊断要依靠临床检查、内分泌检查和染色体检查,综合而作出诊断。本文对于两性畸形的分类、诊断、鉴别诊断和治疗进行了讨论。  相似文献   

9.
目的:对亲子鉴定中检出的三带型等位基因座进一步探讨其发生原因,与同行共享。方法:亲子鉴定中发现一个体两个等位基因座(D21S11和Penta D)检出三等位基因,进一步采集其静脉血进行血细胞培养作染色体分析。结果:该个体染色体核型为:47,XY,+21。结论:染色体为三体型的个体在基因检测时能检测到三等位基因。  相似文献   

10.
人SOX9基因同时参与胚胎骨骼形成和睾丸发育调控.对一例多发畸形的早产女性胎儿进行SRY基因扩增和SOX9基因突变分析,发现其具有男性特异性SRY基因,且SOX9基因发生R178L(G→T)的突变,提示该病例为SOX9基因突变导致的广泛性先天发育不良合并常染色体男一女性性反转.该突变此前未见报道,这也是中国人群中首次报道致病性SOX9基因突变。  相似文献   

11.
Genetic analysis of a family with 46, XY “female” associated with infertility was performed using the conventional G-banding and gene mutation screening. The karyotypes of the two female patients were 46, XY and those of their parents were normal. The mutation screenings in sex-determining region Y (SRY) gene and androgen receptor (AR) gene were carried out. No mutation has been found in the whole coding sequence of SRY gene. The mutation of codon 840 CGT (arginine) to CAT (histidine) of AR gene led to the infertility in the patients. The patients showed androgen insensitivity. The clinical phenotype of theirs presented more deleteriously than and different from the one reported before, though they had the same mutation of codon 840 CGT (arginine) to CAT (histidine) of AR gene, which was very different from the mutation of 840 CGT (arginine) to TGT (cysteine) at the same codon.  相似文献   

12.
We describe a novel double nucleotide substitution in the SRY gene of a 46,XY female with gonadal dysgenesis or Swyer syndrome. The SRY sequence was analysed by both the single-strand conformational polymorphism assay and direct DNA sequencing of products from the polymerase chain reaction. A double nucleotide substitution was identified at codon 18 of the conserved HMG box motif, causing an arginine to asparagine amino-acid substitution. The altered residue is situated in the high mobility group (HMG)-related box of the SRY protein, a potential DNA-binding domain. Since the mutation abolishes one HhaI recognition site, the results were confirmed by HhaI restriction mapping. No other mutations were found in the remaining regions of the gene. The corresponding DNA region from the patient’s brother was analysed and found to be normal. We conclude that the SRY mutation in the reported XY female occurred de novo and is associated with sex reversal. Received: 16 December 1996 / Accepted: 5 May 1997  相似文献   

13.
14.
BACKGROUND: An absent or dysfunctional androgen receptor (AR) in 46,XY individuals is the most common cause of various degrees of undermasculinization. Therefore, we routinely perform sequencing of the AR gene in all cases with suspected androgen insensitivity. METHODS: In a newborn 46,XY male diagnosed with partial androgen insensitivity syndrome and a phenotypically normal man, who in childhood had bilateral cryptorchidism, the AR was directly sequenced. Seven additional men with cryptorchidism in infancy were chosen as controls. RESULTS: An AR variant (S597R) was identified in both males. Treatment of the newborn with 1% dihydrotestosterone ointment locally, resulted in normal penile size for age. Sequencing of the region in 7 other men with cryptorchidism in infancy did not reveal any additional deviation from the normal reference sequence. CONCLUSION: The same mutation at this codon can cause significantly different phenotypes as shown by the variation in masculinization of these individuals, with 1 severely affected child and 1 normally developed man. However, the S597R mutation does not seem to be a common cause of undescended testes in boys. Despite the S597R mutation and severe undermasculinization, as seen in the baby, normal male phenotype for age could be achieved with treatment.  相似文献   

15.
Mutations in the sex-determining region of the Y chromosome (the SRY gene) have been reported in low frequency in patients with 46,XY gonadal dysgenesis. We investigated 21 Brazilian 46,XY sex-reversed patients, who presented either complete or partial gonadal dysgenesis or embryonic testicular regression syndrome. Using Southern blotting, polymerase chain reaction, denaturing gradient gel electrophoresis and direct sequencing, we analyzed deletions and point mutations in the SRY gene. We found a missense mutation at codon 18 upstream of the 5′ border of the HMG box of the SRY gene in one patient with partial gonadal dysgenesis. This variant sequence was also found in DNA obtained from blood and sperm cells of his father and in blood cells of his normal brother. The S18N mutation was not found in 50 normal males, ruling out the possibility of a common polymorphism. We identified a novel familial missense mutation (S18N) in the 5’ non-HMG box of the SRY gene in 1 of 21 patients with 46,XY sex reversal. Received: 6 May 1997 / Accepted: 2 October 1997  相似文献   

16.
The Y chromosome gene SRY (sex-determining region, Y gene) has been equated with the mammalian testis-determining factor. The SRY gene of five subjects with 46,XY complete gonadal dysgenesis (46,XY karyotype, completely female external genitalia, normal Müllerian ducts, and streak gonads) was evaluated for possible mutations in the coding region by using both single-strand conformation polymorphism (SSCP) assay and DNA sequencing. Mutations were identified in three subjects, of which two gave altered SSCP patterns. Two of them were point mutations causing amino acid substitutions, and the third was a single-base deletion causing a frameshift. All three mutations caused alterations in the putative DNA-binding region of the SRY protein. Genomic DNA was obtained from the fathers of two of the three mutant patients: one mutation was demonstrated to be de novo, and the other was inherited. The presence of SRY mutations in three of five patients suggests that the frequency of SRY mutations in XY females is higher than current estimates.  相似文献   

17.
The action of testosterone and 5 alpha-dihydrotestosterone are essential to the development of the male phenotype. Patients with karyotype 46,XY, resistant to these hormones, exhibit a wide spectrum of phenotypes: from phenotypic female, through a range of incomplete masculinization, to under-virilized, infertile man. These disturbances are caused by mutations in the androgen receptor gene (AR). We studied a 46,XY fenotypic female with typical symptoms of Complete Androgen Insensitivity Syndrome (CAIS). Multiple temperature single-stranded conformation polymorphism (MSSCP) and sequence analysis of exon 6 of the AR gene in a patient revealed a C2718T transition causing R786X mutation in the loop between helices VII and VIII of the LBD of the androgen receptor. The R786X mutation has been described in a patient with CAIS only once and no such mutations have been described in Eastern Europe.  相似文献   

18.
19.
Cong P  Ye Y  Wang Y  Lu L  Yong J  Yu P  Joseph KK  Jin F  Qi M 《Gene》2012,500(2):220-223
Androgen insensitivity syndrome (AIS) is an X-linked recessive genetic disorder with a normal 46, XY karyotype caused by abnormality of the androgen receptor (AR) gene. One Chinese family consisting of the proband and 5 other members with complete androgen insensitivity syndrome (CAIS) was investigated. Mutation analysis by DNA sequencing on all 8 exons and flanking intron regions of the AR gene revealed a unique large deletion/insertion mutation in the family. A 287 bp deletion and 77 bp insertion (c.933_1219delins77) mutation at codon 312 resulted in a frameshift which caused a premature stop (p.Phe312Aspfs*7) of polypeptide formation. The proband's mother and grandmother were heterozygous for the mutant allele. The proband's father, uncle and grandfather have the normal allele. From the pedigree constructed from mutational analysis of the family, it is revealed that the probably pathogenic mutation comes from the maternal side.  相似文献   

20.
We report a molecular and cytogenetic investigation of a psu dic(Yp) chromosome identified in blood and ovarian tissue from a female with mosaic karyotype 45,X/46,X,+ psu dic(Yp). FISH analysis showed that the psu dic(Yp) has two copies of the short arm, two centromeres and two copies of the proximal long arm. PCR analysis also confirmed the presence of the SRY gene and the Y centromere, and also confirmed the deletion of the Y-heterochromatic region. Because of the possibility of a mutation, a fragment of 609 bp of the SRY gene was sequenced from independent PCR products. The analysis of the sequence indicated the presence of two different copies of the gene: one presented a point mutation, R59G, within the HMG-box; the other had a sequence identical to that already published. Both sequences were found at a proportion of 1:1. The absence of a 46,XY cell line suggests that the rearrangement took place during gametogenesis or during the first division after fertilization. Also, the existence of different sequences of the SRYgene in the same Y chromosome suggests that the formation of the dicentric took place prior to the mutation of the SRY gene. To our knowledge, this is the first time that a mutation has been described in codon 59 within the HMG- SRY box, and also the first case of a psu dic(Yp) chromosome that displays two different copies of the SRY gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号