首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hemagglutinating activity of transmissible gastroenteritis virus (TGEV), an enteric porcine coronavirus, was analyzed and found to be dependent on the presence of alpha-2,3-linked sialic acid on the erythrocyte surface. N-Glycolylneuraminic acid was recognized more efficiently by TGEV than was N-acetylneuraminic acid. For an efficient hemagglutination reaction the virions had to be treated with sialidase. This result suggests that the sialic acid binding site is blocked by virus-associated competitive inhibitors. Porcine respiratory coronavirus (PRCV), which is serologically related to TGEV but not enteropathogenic, was found to be unable to agglutinate erythrocytes. Incubation with sialidase did not induce a hemagglutinating activity of PRCV, indicating that the lack of this activity is an intrinsic property of the virus and not due to the presence of competitive inhibitors. Only monoclonal antibodies to an antigenic site that is absent from the S protein of PRCV were able to prevent TGEV from agglutinating erythrocytes. The epitope recognized by these antibodies is located within a stretch of 224 amino acids that is missing in the S protein of PRCV. Our results indicate that the sialic acid binding activity is also located in that portion of the S protein. The presence of a hemagglutinating activity in TGEV and its absence in PRCV open the possibility that the sialic acid binding activity contributes to the enterotropism of TGEV.  相似文献   

2.
The coronaviruses (CoVs) are enveloped viruses of animals and humans associated mostly with enteric and respiratory diseases, such as the severe acute respiratory syndrome and 10–20% of all common colds. A subset of CoVs uses the cell surface aminopeptidase N (APN), a membrane-bound metalloprotease, as a cell entry receptor. In these viruses, the envelope spike glycoprotein (S) mediates the attachment of the virus particles to APN and subsequent cell entry, which can be blocked by neutralizing antibodies. Here we describe the crystal structures of the receptor-binding domains (RBDs) of two closely related CoV strains, transmissible gastroenteritis virus (TGEV) and porcine respiratory CoV (PRCV), in complex with their receptor, porcine APN (pAPN), or with a neutralizing antibody. The data provide detailed information on the architecture of the dimeric pAPN ectodomain and its interaction with the CoV S. We show that a protruding receptor-binding edge in the S determines virus-binding specificity for recessed glycan-containing surfaces in the membrane-distal region of the pAPN ectodomain. Comparison of the RBDs of TGEV and PRCV to those of other related CoVs, suggests that the conformation of the S receptor-binding region determines cell entry receptor specificity. Moreover, the receptor-binding edge is a major antigenic determinant in the TGEV envelope S that is targeted by neutralizing antibodies. Our results provide a compelling view on CoV cell entry and immune neutralization, and may aid the design of antivirals or CoV vaccines. APN is also considered a target for cancer therapy and its structure, reported here, could facilitate the development of anti-cancer drugs.  相似文献   

3.
The importance of IgA for protection at mucosal surfaces remains unclear, and in fact, it has been reported that IgA-deficient mice have fully functional vaccine-induced immunity against several bacterial and viral pathogens. The role of respiratory Ab in preventing colonization by Streptococcus pneumoniae has now been examined using polymeric IgR knockout (pIgR(-/-)) mice, which lack the ability to actively secrete IgA into the mucosal lumen. Intranasal vaccination with a protein conjugate vaccine elicited serotype-specific anti-capsular polysaccharide Ab locally and systemically, and pIgR(-/-) mice produced levels of total serum Ab after vaccination that were similar to wild-type mice. However, pIgR(-/-) mice had approximately 5-fold more systemic IgA and 6-fold less nasal IgA Ab than wild-type mice due to defective transport into mucosal tissues. Wild-type, but not pIgR(-/-) mice were protected against infection with serotype 14 S. pneumoniae, which causes mucosal colonization but does not induce systemic inflammatory responses in mice. The relative importance of secretory IgA in host defense was further shown by the finding that intranasally vaccinated IgA gene-deficient mice were not protected from colonization. Although secretory IgA was found to be important for protection against nasal carriage, it does not appear to have a crucial role in immunity to systemic pneumococcus infection, because both vaccinated wild-type and pIgR(-/-) mice were fully protected from lethal systemic infection by serotype 3 pneumococci. The results demonstrate the critical role of secretory IgA in protection against pneumococcal nasal colonization and suggest that directed targeting to mucosal tissues will be needed for effective vaccination in humans.  相似文献   

4.
Four new porcine respiratory coronavirus (PRCV) isolates were genetically characterized. Subgenomic mRNA patterns and the nucleotide sequences of the 5' ends of the S genes, the open reading frame (ORF) 3/3a genes, and the ORF 3-1/3b genes of these PRCV isolates were determined and compared with those of other PRCV and transmissible gastroenteritis virus (TGEV) isolates. The S, ORF 3/3a, and ORF 3-1/3b genes are under intense study because of their possible roles in determining tissue tropism and virulence. Northern (RNA) blot analysis of subgenomic mRNAs revealed that mRNA 2, which encodes for the S gene, of the PRCV isolates migrated faster than the mRNA 2 of TGEV. The PRCV isolates AR310 and LEPP produced eight subgenomic mRNA species, the same number as produced by the virulent Miller strain of TGEV. However, the PRCV isolates IA1894 and ISU-1 produced only seven subgenomic mRNA species. All four of the PRCV isolates were found to have a large in-frame deletion in the 5' end of the S gene; however, the size and location of the deletion varied. Analysis of the ORF 3/3a gene nucleotide sequences from the four PRCV isolates also showed a high degree of variability in this area. The ORF 3 gene of the PRCV isolates AR310 and LEPP was preceded by a CTAAAC leader RNA-binding site, and the ORF 3 gene was predicted to yield a protein of 72 amino acids, the same size as that of the virulent Miller strain of TGEV. The PRCV isolates AR310 and LEPP are the first PRCV isolates found to have an intact ORF 3 gene. The ORF 3a gene of the PRCV isolate IA1894 was preceded by a CTAAAC leader RNA-binding site and was predicted to yield a truncated protein of 54 amino acids due to a 23-nucleotide deletion. The CTAAAC leader RNA-binding site and ATG start codon of ORF 3 gene of the PRCV isolate ISU-1 were removed because of a 168-nucleotide deletion. Analysis of the ORF 3-1/3b gene nucleotide sequences from the four PRCV nucleotides isolates also showed variability.  相似文献   

5.
Abstract: An effective immune response involves the specific recognition of and elimination of an infectious organism at multiple levels. In this context DNA immunization can present functional antigenic proteins to the host for recognition by all arms of the immune system, yet provides the opportunity to delete any genes of the infectious organism which code for antigens or pieces of antigens that may have deleterious effects. Our group has developed the use of nucleic acid immunization as a possible method of vaccination against Human immunodeficiency virus type 1 (HIV-1) [1,2,3,10,11,12]. Sera from non-human primates immunized with DNA vectors that express the envelope proteins from HIV-1 contain antibodies specific to the HIV-1 envelope. These sera also neutralize HIV-1 infection in vitro and inhibit cell to cell infection in tissue culture. Analysis of cellular responses is equally encouraging. T cell proliferation as well as cytotoxic T cell lysis of relevant env expressing target cells were observed. In addition, evidence that DNA vaccines are capable of inducing a protective response against live virus was demonstrated using a chimeric SIV/HIV (SHIV) challenge in vaccinated cynomologous macaques. We found that nucleic acid vaccination induced protection from challenge in one out of four immunized cynomolgus macaques and viral load was lower in the vaccinated group of animals versus the control group of animals. These data encouraged us to analyze this vaccination technique in chimpanzees, the most closely related animal species to man. We observed the induction of both cellular and humoral immune responses with a DNA vaccine in chimpanzees. These studies demonstrate the utility of this technology to induce relevant immune responses in primates which may ultimately lead to effective vaccines.  相似文献   

6.

Swine coronaviruses affecting pigs have been studied sporadically in wildlife. In Argentina, epidemiological surveillance of TGEV/PRCV is conducted only in domestic pigs. The aim was to assess the prevalence of TGEV/PRCV in wild Suina. Antibodies against these diseases in wild boar and captive collared peccary were surveyed by ELISA. Antibodies against TGEV were found in three collared peccaries (n?=?87). No TGEV/PRCV antibodies were detected in wild boar (n?=?160). Preventive measures should be conducted in contact nodes where the transmission of agents may increase. Epidemiological surveillance in wildlife populations and in captive animals before their reintroduction should be attempted.

  相似文献   

7.
Monoclonal antibody (MAb) 6A.C3 neutralizes transmissible gastroenteritis coronavirus (TGEV) and is specific for a conserved epitope within subsite Ac of the spike (S) glycoprotein of TGEV. Six hybridomas secreting anti-idiotypic (Ab2) MAbs specific for MAb 6A.C3 (Ab1) have been selected. All six MAbs inhibited the binding of Ab1 to TGEV and specifically cross-linked MAb1-6A.C3. Four of these hybridomas secreted gamma-type anti-idiotypic MAbs. The other two Ab2s (MAbs 9A.G3 and 9C.E11) were recognized by TGEV-specific antiserum induced in two species. This binding was inhibited by viruses of the TGEV group but not by serologically unrelated coronaviruses. These results indicate that MAb2-9A.G3 and MAb2-9C.E11 mimic an antigenic determinant present on the TGEV surface, and they were classified as beta-type ("internal-image") MAbs. TGEV-binding Ab3 antiserum was induced in 100% of mice immunized with the two beta-type MAb2s and in 25 to 50% of mice immunized with gamma-type MAb2. Both beta- and gamma-type Ab2s induced neutralizing Ab3 antibodies in mice that were mainly directed to antigenic subsite Ac of the S protein.  相似文献   

8.
猪的“肠道-乳腺-sIgA轴”免疫通路是指侵染猪的胃肠道病原通过胃肠道免疫可以激发乳腺产生sIgA;sIgA被初生仔猪摄取可以获得针对胃肠道病原的被动免疫保护。该免疫通路的反应动力模式涉及病原侵染、抗原提呈、淋巴细胞活化、淋巴细胞的肠道和乳腺归巢以及抗体分泌等诸多环节,受到病原毒力、母猪的妊娠阶段及免疫生理状态等众多因素影响。目前,猪流行性腹泻病毒(Porcine Epidemic Diarrhea Virus,PEDV)诱发的“肠道-乳腺-sIgA轴”的理论可以解释自然感染状态下哺乳仔猪获得的被动免疫保护,但根据这一概念所设计的疫苗和免疫方案并未取得满意效果。本文综述了PEDV感染和宿主免疫各个环节的研究现状,分析了影响PEDV免疫和肠道-乳腺-sIgA轴系反应的关键病原和宿主因素,提出了在轴系理论基础上应重视PEDV灭活疫苗以及特异IgG作用的建议。  相似文献   

9.
A large-scale vaccination experiment involving a total of 138 cattle was carried out to evaluate the potential of synthetic peptides as vaccines against foot-and-mouth disease. Four types of peptides representing sequences of foot-and-mouth disease virus (FMDV) C3 Argentina 85 were tested: A, which includes the G-H loop of capsid protein VP1 (site A); AT, in which a T-cell epitope has been added to site A; AC, composed of site A and the carboxy-terminal region of VP1 (site C); and ACT, in which the three previous capsid motifs are colinearly represented. Induction of neutralizing antibodies, lymphoproliferation in response to viral antigens, and protection against challenge with homologous infectious virus were examined. None of the tested peptides, at several doses and vaccination schedules, afforded protection above 40%. Protection showed limited correlation with serum neutralization activity and lymphoproliferation in response to whole virus. In 12 of 29 lesions from vaccinated cattle that were challenged with homologous virus, mutant FMDVs with amino acid substitutions at antigenic site A were identified. This finding suggests the rapid generation and selection of FMDV antigenic variants in vivo. In contrast with previous studies, this large-scale vaccination experiment with an important FMDV host reveals considerable difficulties for vaccines based on synthetic peptides to achieve the required levels of efficacy. Possible modifications of the vaccine formulations to increase protective activity are discussed.  相似文献   

10.
To develop a safe and efficient recombinant subunit vaccine to foot-and-mouth disease virus(FMDV)type Asia 1 in sheep,a tandem repeated multiple-epitope gene consisting of residues 137-160 and 197-211 of the VP1 gene of FMDV was designed and artificially synthesized.The biologically functional molecule,the ovine IgG heavy constant region(oIgG)as a protein carrier was introduced for design of the multiple-epitope recombinant vaccine and recombinant expression plasmids pET-30a-RE and pET-30a-RE-oIgG were successfully constructed.The recombinant proteins,RE and RE-oIgG,were expressed as a formation of inclusion bodies in E.coli.The immune potential of this vaccine regime in guinea pigs and sheep was evaluated.The results showed that IgG could significantly enhance the immune potential of antigenic epitopes.The recombinant protein RE-oIgG could not only elicit the high levels of neutralizing antibodies and lymphocytes proliferation responses in the vaccinated guinea pigs,but confer complete protection in guinea pigs against virus challenge.Although the recombinant protein RE could not confer protection in the vaccinated animals,it could delay the appearance of the clinical signs and reduce the severity of disease.Inspiringly,the titers of anti-FMDV neutralizing antibodies elicited in sheep vaccinated with RE-oIgG was significantly higher than that for the RE vaccination.Therefore,we speculated that this vaccine formulation may be a promising strategy for designing a novel vaccine against FMDV in the future.  相似文献   

11.
Field trials were conducted on attenuated live virus vaccine of transmissible gastroenteritis to confer active immunity to newborn piglets. To examine innocuity and efficacy of the vaccine, a total of 714 newborn piglets were subjected to these trials. Of them, 357 piglets were administered orally with 10(7.0) TCID50 within 3 days after birth, and the other 357 piglets served as nonvaccinated controls. No undesirable postvaccinal reaction was observed in any vaccinated piglet. Suckling piglets born from nonimmune sows showed a good antibody response after vaccination. They were different, however, in antibody titer from one experimental place to another. Antibody levels were high in piglets raised in the northern experimental places. On the contrary, the antibody response of suckling piglets born from immune sows was influenced by vaccination. In most of these piglets, antibody titers declined markedly and disappeared finally 3 months after vaccination. About 25% of the non-vaccinated piglets showed an antibody response by pen contact with vaccinated ones.  相似文献   

12.
Rabbit polyclonal antiidiotypic antibodies were generated against a neutralizing mAb specific for a conformational epitope on the S glycoprotein of murine hepatitis virus, strain A59 (MHV-A59). These anti-Id were directed predominantly against an Id that was undetectable in rabbit and rat anti-MHV-A59 sera and weakly represented in syngeneic and allogeneic antiviral sera. However, some partial idiotypic sharing was observed between the Id-bearing antibody and a mAb with a similar antigenic site specificity. The anti-Id inhibited the virus-binding and neutralizing activities of the immunizing antibody, demonstrating that they recognize paratope-associated idiotopes. Mice immunized with affinity-purified anti-Id developed MHV-A59-specific antibodies that neutralized viral infectivity to high titers. Moreover, these animals survived an otherwise lethal challenge with viral murine hepatitis virus, unlike control mice immunized with normal rabbit Ig. These results indicate that at least a subpopulation of the polyclonal anti-Id could induce a protective immune response directed toward a biologically important MHV-A59 epitope, and demonstrate the feasibility of antiidiotypic vaccination against a coronavirus infection.  相似文献   

13.
Infection by the respiratory syncytial virus (RSV) can cause extensive inflammation and lung damage in susceptible hosts due to a Th2-biased immune response. Such a deleterious inflammatory response can be enhanced by immunization with formalin- or UV-inactivated RSV, as well as with vaccinia virus expressing the RSV-G protein. Recently, we have shown that vaccination with rBCG-expressing RSV Ags can prevent the disease in the mouse. To further understand the immunological mechanisms responsible for protection against RSV, we have characterized the T cell populations contributing to virus clearance in mice immunized with this BCG-based vaccine. We found that both CD4(+) and CD8(+) T cells were recruited significantly earlier to the lungs of infected mice that were previously vaccinated. Furthermore, we observed that simultaneous adoptive transfer of CD8(+) and CD4(+) RSV-specific T cells from vaccinated mice was required to confer protection against virus infection in naive recipients. In addition, CD4(+) T cells induced by vaccination released IFN-γ after RSV challenge, indicating that protection is mediated by a Th1 immune response. These data suggest that vaccination with rBCG-expressing RSV Ags can induce a specific effector/memory Th1 immune response consisting on CD4(+) and CD8(+) T cells, both necessary for a fully protective response against RSV. These results support the notion that an effective induction of Th1 T cell immunity against RSV during childhood could counteract the unbalanced Th2-like immune response triggered by the natural RSV infection.  相似文献   

14.
Hepatitis B virus surface antigen (HBsAg) vaccination has been shown to be effective in preventing hepatitis B virus (HBV) infection. The protection is based on the induction of anti-HBs antibodies against a major cluster of antigenic epitopes of HBsAg, defined as the 'a' determinant region of small HBsAg. Prophylaxis of recurrent HBV infection in patients who have undergone liver transplantation for hepatitis B-related end-stage liver disease is achieved by the administration of hepatitis B immune globulins (HBIg) derived from HBsAg-vaccinated subjects. The anti-HBs-mediated immune pressure on HBV, however, seems to go along with the emergence and/or selection of immune escape HBV mutants that enable viral persistence in spite of adequate antibody titers. These HBsAg escape mutants harbor single or double point mutations that may significantly alter the immunological characteristics of HBsAg. Most escape mutations that influence HBsAg recognition by anti-HBs antibodies are located in the second 'a' determinant loop. Notably, HBsAg with an arginine replacement for glycine at amino acid 145 is considered the quintessential immune escape mutant because it has been isolated consistently in clinical samples of HBIg-treated individuals and vaccinated infants of chronically infected mothers. Direct binding studies with monoclonal antibodies demonstrated a more dramatic impact of this mutation on anti-HBs antibody recognition, compared with other point mutations in this antigenic domain. The clinical and epidemiological significance of these emerging HBsAg mutants will be a matter of research for years to come, especially as data available so far document that these mutants are viable and infectious strains. Strategies for vaccination programs and posttransplantation prophylaxis of recurrent hepatitis need to be developed that may prevent immune escape mutant HBV from spreading and to prevent these strains from becoming dominant during the next decennia.  相似文献   

15.
A formalin-inactivated virus was previously found to be efficient in protecting fish against challenge with red seabream iridovirus (RSIV), a DNA virus belonging to the Iridoviridae family. In the present study, we determined the amount of the virus in the vaccine in terms of the number of copies of the gene for the major capsid protein (MCP) gene by quantitative real-time PCR and examined the longevity and types of immune response generated after intramuscular vaccination. We also tested whether the protein components of the vaccine are able to mount a protective immune response in fish. The vaccine contained 10(7) MCP copies per microliter of vaccine, and was detected in blood, kidney and spleen of vaccinated fish up to 15 days post-vaccination. Fish vaccinated with either the intact formalin-inactivated vaccine or its protein derivatives had increased serum neutralization antibodies and enhanced expression of MHC class I, although the kinetics of expression varied among groups. However, only those vaccinated with the intact vaccine survived the virus challenge, and this indicates that serum neutralization antibodies have scarce role in protecting the fish against RSIV. We hypothesize that the cell-mediated immunity, particularly the MHC class I pathway is responsible for such protection.  相似文献   

16.
Mucosal vaccination is an effective strategy for generating antigen-specific immune responses against mucosal infections of foot-and-mouth disease virus (FMDV). In this study, Lactobacillus plantarum strains NC8 and WCFS1 were used as oral delivery vehicles containing a pSIP411-VP1 recombinant plasmid to initiate mucosal and systemic immune responses in guinea pigs. Guinea pigs were orally vaccinated (three doses) with NC8-pSIP411, NC8-pSIP411-VP1, WCFS1-pSIP411, WCFS1-pSIP411-VP1 or milk. Animals immunized with NC8-pSIP411-VP1 and WCFS1-pSIP411-VP1 developed high levels of antigen-specific serum IgG, IgA, IgM, mucosal secretory IgA (sIgA) and neutralizing antibodies, and revealed stronger cell-mediated immune responses and enhanced protection against FMDV challenge compared with control groups. The recombinant pSIP411-VP1 effectively improved immunoprotection against FMDV in guinea pigs.  相似文献   

17.
In 2002, severe acute respiratory syndrome-associated coronavirus (SARS-CoV) emerged in humans, causing a global epidemic. By phylogenetic analysis, SARS-CoV is distinct from known CoVs and most closely related to group 2 CoVs. However, no antigenic cross-reactivity between SARS-CoV and known CoVs was conclusively and consistently demonstrated except for group 1 animal CoVs. We analyzed this cross-reactivity by an enzyme-linked immunosorbent assay (ELISA) and Western blot analysis using specific antisera to animal CoVs and SARS-CoV and SARS patient convalescent-phase or negative sera. Moderate two-way cross-reactivity between SARS-CoV and porcine CoVs (transmissible gastroenteritis CoV [TGEV] and porcine respiratory CoV [PRCV]) was mediated through the N but not the spike protein, whereas weaker cross-reactivity occurred with feline (feline infectious peritonitis virus) and canine CoVs. Using Escherichia coli-expressed recombinant SARS-CoV N protein and fragments, the cross-reactive region was localized between amino acids (aa) 120 to 208. The N-protein fragments comprising aa 360 to 412 and aa 1 to 213 reacted specifically with SARS convalescent-phase sera but not with negative human sera in ELISA; the fragment comprising aa 1 to 213 cross-reacted with antisera to animal CoVs, whereas the fragment comprising aa 360 to 412 did not cross-react and could be a potential candidate for SARS diagnosis. Particularly noteworthy, a single substitution at aa 120 of PRCV N protein diminished the cross-reactivity. We also demonstrated that the cross-reactivity is not universal for all group 1 CoVs, because HCoV-NL63 did not cross-react with SARS-CoV. One-way cross-reactivity of HCoV-NL63 with group 1 CoVs was localized to aa 1 to 39 and at least one other antigenic site in the N-protein C terminus, differing from the cross-reactive region identified in SARS-CoV N protein. The observed cross-reactivity is not a consequence of a higher level of amino acid identity between SARS-CoV and porcine CoV nucleoproteins, because sequence comparisons indicated that SARS-CoV N protein has amino acid identity similar to that of infectious bronchitis virus N protein and shares a higher level of identity with bovine CoV N protein within the cross-reactive region. The TGEV and SARS-CoV N proteins are RNA chaperons with long disordered regions. We speculate that during natural infection, antibodies target similar short antigenic sites within the N proteins of SARS-CoV and porcine group 1 CoVs that are exposed to an immune response. Identification of the cross-reactive and non-cross-reactive N-protein regions allows development of SARS-CoV-specific antibody assays for screening animal and human sera.  相似文献   

18.
19.
Aims: This work aims to characterize the utility of four newly generated monoclonal antibodies (mAbs) against transmissible gastroenteritis virus (TGEV). Methods and Results: Four monoclonal antibodies (mAbs) against the N‐terminal half of spike protein (S1 protein) of TGEV were identified. Affinity constant of these mAbs was analysed. These mAbs were capable of reacting with the TGEV S1 protein analysed by ELISA and Western blot. A competition assay between the different mAbs was performed to determine whether the different antibodies mapped in the same or a different antigenic region of the protein. Investigation on the neutralizing ability of these mAbs indicated that two of these mAbs completely neutralized TGEV at an appropriate concentration. These mAbs were able to detect the TGEV‐infected cells in immunofluorescence assays and Western blot. Moreover, they differentiated TGEV S protein from other control proteins. Conclusions: The generated four mAbs are very specific, and the established immunofluorescence assays, Western blot and discrimination ELISA are useful approaches for detecting of TGEV. Significance and Impact of the Study: It is a novel report regarding the use of the S1 protein of TGEV to generate specific mAbs. Their utility and the established immunoassays contribute to the surveillance of TGE coronavirus.  相似文献   

20.
The Mallard (Anas platyrhynchos) is an important reservoir species for influenza A viruses (IAV), and in this host, prevalence and virus diversity are high. Studies have demonstrated the presence of homosubtypic immunity, where individuals are unlikely to be reinfected with the same subtype within an autumn season. Further, evidence for heterosubtypic immunity exists, whereby immune responses specific for one subtype offer partial or complete protection against related HA subtypes. We utilized a natural experimental system to determine whether homo‐ or heterospecific immunity could be induced following experimental vaccination. Thirty Mallards were vaccinated with an inactivated H3, H6 or a sham vaccine and after seroconversion were exposed to naturally infected wild conspecifics. All ducks were infected within 2 days and had both primary and secondary infections. Overall, there was no observable difference between groups; all individuals were infected with H3 and H10 IAV. At the cessation of the experiment, most individuals had anti‐NP antibodies and neutralizing antibodies against H10. Not all individuals had H3 neutralizing antibodies. The isolated H3 IAVs revealed genetic dissimilarity to the H3 vaccine strain, specifically substitutions in the vicinity of the receptor‐binding site. There was no evidence of vaccine‐induced homosubtypic immunity to H3, a likely result of both a poor H3 immune response in the ducks and H3 immune escape. Likewise, there was no observed heterosubtypic protection related to H6 vaccination. This study highlights the need for experimental approaches to assess how exposure to pathogens and resulting immune processes translates to individual and population disease dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号