首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants produce a large number of secondary metabolites, such as alkaloids, terpenoids, and phenolic compounds. Secondary metabolites have various functions including protection against pathogens and UV light in plants, and have been used as natural medicines for humans utilizing their diverse biological activities. Many of these natural compounds are accumulated in a particular compartment such as vacuoles, and some are even translocated from source cells to sink organs via long distance transport. Both primary and secondary transporters are involved in such compartmentation and translocation, and many transporter genes, especially genes belonging to the multidrug and toxin extrusion type transporter family, which consists of 56 members in Arabidopsis, have been identified as responsible for the membrane transport of secondary metabolites. Better understandings of these transporters as well as the biosynthetic genes of secondary metabolites will be important for metabolic engineering aiming to increase the production of commercially valuable secondary metabolites in plant cells.  相似文献   

2.
Glycosyltransferases are members of the multigene superfamily in plants that can transfer single or multiple activated sugars to a range of plant molecules, resulting in the glycosylation of plant compounds. Although the activities of many glycosyltransferases and their products have been recognized for a long time, only in recent years were some glycosyltransferase genes identified and a few functionally characterized in detail. Glycosylation is thought to be one of the most important modification reactions towards plant secondary metabolites, and plays a key role in maintaining cell homeostasis, thus likely participating in the regulation of plant growth, development and in defense responses to stress environments. With advances in plant genome projects and the development of novel technologies in analyzing gene function, significant progress could be made in gaining new insights into the properties and precise biological roles of plant secondary product glycosyltransferases, and the new knowledge will have extensive application prospects in the catalytic synthesis of glycoconjugates and metabolic engineering of crops. In this review, we summarize the current research, highlighting the possible biological roles, of plant secondary metabolite glycosyltransferases and discuss their potential applications as well as aspects to be further studied in the near future.  相似文献   

3.
Glycosyltransferases are members of the multigene superfamily in plants that can transfer single or multiple activated sugars to a range of plant molecules,resulting in the glycosylation of plant compounds.Although the activities of many glycosyltransferases and their products have been recognized for a long time,only in recent years were some glycosyltransferase genes identified and a few functionally characterized in detail.Glycosylation is thought to be one of the most important modification reactions towards plant secondary metabolites,and plays a key role in maintaining cell homeostasis,thus likely participating in the regulation of plant growth,development and in defense responses to stress environments.With advances in plant genome projects and the development of novel technologies in analyzing gene function,significant progress could be made in gaining new insights into the properties and precise biological roles of plant secondary product glycosyltransferases,and the new knowledge will have extensive application prospects in the catalytic synthesis of glycoconjugates and metabolic engineering of crops.In this review,we summarize the current research,highlighting the possible biological roles,of plant secondary metabolite glycosyltransferases and discuss their potential applications as well as aspects to be further studied in the near future.  相似文献   

4.
For strain improvement of Aspergillus oryzae, development of the transformation system is essential, wherein dominant selectable markers, including drug-resistant genes, are available. However, A. oryzae generally has a relatively high resistance to many antifungal drugs effective against yeasts and other filamentous fungi. In the course of the study, while investigating azole drug resistance in A. oryzae, we isolated a spontaneous mutant that exhibited high resistance to azole fungicides and found that pleiotropic drug resistance (PDR)-type ATP-binding cassette (ABC) transporter genes were upregulated in the mutant; their overexpression in the wild-type strain increased azole drug resistance. While deletion of the gene designated atrG resulted in increased azole susceptibility, double deletion of atrG and another gene (atrA) resulted in further azole hypersensitivity. Overall, these results indicate that the ABC transporters AtrA and AtrG are involved in azole drug resistance in A. oryzae.  相似文献   

5.
Abstract

The increasing number of multidrug-resistant pathogenic microorganisms is a serious public health issue. Among the multitude of mechanisms that lead to multidrug resistance, the active extrusion of toxic compounds, mediated by MDR efflux pumps, plays an important role. In our study we analyzed the inhibitory capability of 26 synthesized zosuquidar derivatives on three ABC-type MDR efflux pumps, namely Saccharomyces cerevisiae Pdr5 as well as Lactococcus lactis LmrA and LmrCD. For Pdr5, five compounds could be identified that inhibited rhodamine 6G transport more efficiently than zosuquidar. One of these is a compound with a new catechol acetal structure that might represent a new lead compound. Furthermore, the determination of IC50 values for rhodamine 6G transport of Pdr5 with representative compounds reveals values between 0.3 and 0.9 μM. Thus the identified compounds are among the most potent inhibitors known for Pdr5. For the ABC-type efflux pumps LmrA and LmrCD from L. lactis, seven and three compounds, which inhibit the transport activity more than the lead compound zosuquidar, were found. Interestingly, transport inhibition for LmrCD was very specific, with a drastic reduction by one compound while its diastereomers showed hardly an effect. Thus, the present study reveals new potent inhibitors for the ABC-type MDR efflux pumps studied with the inhibitors of Pdr5 and LmrCD being of particular interest as these proteins are well known model systems for their homologs in pathogenic fungi and Gram-positive bacteria.  相似文献   

6.
David A. Bird   《Plant science》2008,174(6):563-569
The aerial surfaces of plants are enveloped by a waxy cuticle, which among other functions serves as a barrier to limit non-stomatal water loss and defend against pathogens. The cuticle is a complex three-dimensional structure composed of cutin (a lipid polyester matrix) and waxes (very long chain fatty acid derivatives), which are embedded within and layered on top of the cutin matrix. Biosynthesis of cuticular lipids is believed to take place solely within aerial epidermal cells. Once synthesized, both the waxes and the cutin precursors must leave the cytoplasm, pass through the hydrophilic apoplastic space, and finally assemble to form the cuticle. These processes of secretion and assembly are essentially unknown. Initial steps toward our understanding of these processes were the characterization of CER5/ABCG12/WBC12 and more recently ABCG11/WBC11, a pair of ABC transporters required for cuticular lipid secretion. ABCG12 is involved in wax secretion, as mutations in this gene result in a lower surface-load of wax and a concomitant accumulation of lipidic inclusions within the epidermal cell cytoplasm. Mutations in ABCG11 result in a similar wax phenotype as cer5 and similar cytoplasmic inclusions. In contrast to cer5, however, abcg11 mutants also show significantly reduced cutin, post-genital organ fusions, and reduced growth and fertility. Thus, for the first time, a transporter is implicated in cutin accumulation. This review will discuss the secretion of cuticular lipids, focusing on ABCG12, ABCG11 and the potential involvement of other ABC transporters in the ABCG subfamily.  相似文献   

7.
Madagascar periwinkle (Catharanthus roseus) is the major source of terpenoid indole alkaloids, such as vinblastine or vincristine, used as natural drugs against various cancers. In this study, we have extensively analyzed the proteome of cultured C. roseus cells. Comparison of the proteomes of two independent cell lines with different terpenoid indole alkaloid metabolism by 2D‐DIGE revealed 358 proteins that differed quantitatively by at least a twofold average ratio. Of these, 172 were identified by MS; most corresponded to housekeeping proteins. Less abundant proteins were identified by LC separation of tryptic peptides of proteins from one of the lines. We identified 1663 proteins, most of which are housekeeping proteins or involved in primary metabolism. However, 63 enzymes potentially involved in secondary metabolism were also identified, of which 22 are involved in terpenoid indole alkaloid biosynthesis and 16 are predicted transporters putatively involved in secondary metabolite transport. About 30% of the proteins identified have an unclear or unknown function, indicating important gaps in knowledge of plant metabolism. This study is an important step toward elucidating the proteome of C. roseus, which is critical for a better understanding of how this plant synthesizes terpenoid indole alkaloids.  相似文献   

8.
RNAi is an evolutionarily conserved gene-silencing phenomenon that can be triggered by exogenous delivery of double stranded RNA to organisms. In Caenorhabditis elegans, the response to dsRNA is remarkably robust, and systemic RNAi responses are often observed. We have taken a genetic approach using this organism to better understand the mechanisms that facilitate RNAi. By analyzing strains of RNAi-defective mutants, we have uncovered an unexpected role for ABC transporters in RNAi and related silencing mechanisms. Ten of the sixty ABC transporter genes encoded in the C. elegans genome are required for robust RNAi. We will present data that highlights common features of these genes relative to their roles in RNAi, including genetic interactions with other components of the RNAi machinery. We will also describe unique roles for some transporter genes in endogenous RNAi-related processes.  相似文献   

9.
ATP binding cassette (ABC) transporters comprise an extended protein family involved in the transport of a broad spectrum of solutes across membranes. They consist of a common architecture including two ATP-binding domains converting chemical energy into conformational changes and two transmembrane domains facilitating transport via alternating access. This review focuses on the biogenesis, and more precisely, on the degradation of mammalian ABC transporters in the endoplasmic reticulum (ER). We enlighten the ER-associated degradation pathway in the context of misfolded, misassembled or tightly regulated ABC transporters with a closer view on the cystic fibrosis transmembrane conductance regulator (CFTR) and the transporter associated with antigen processing (TAP), which plays an essential role in the adaptive immunity. Three rather different scenarios affecting the stability and degradation of ABC transporters are discussed: (1) misfolded domains caused by a lack of proper intra- and intermolecular contacts within the ABC transporters, (2) deficient assembly with auxiliary factors, and (3) arrest and accumulation of an intermediate or ‘dead-end’ state in the transport cycle, which is prone to be recognized by the ER-associated degradation machinery.  相似文献   

10.
11.
Carbon dioxide uptake and water release through stomata, controlling the opening and closure of stomatal pore size in the leaf surface, is critical for optimal plant performance. Stomatal movements are regulated by multiple signalling pathways involving guard cell ion channels. Using reverse genetics, we recently isolated a T-DNA insertion mutant for the Arabidopsis ABC-transporter AtMRP5 (mrp5-1). Guard cells from mrp5-1 mutant plants were found to be insensitive to the sulfonylurea compound glibenclamide, which in the wild type induces stomatal opening in the dark. Here, we report that the knockout in AtMRP5 affects several signalling pathways controlling stomatal movements. Stomatal apertures of mrp5-1 and wild-type Ws-2 were identical in the dark. In contrast, opening of stomata of mrp5-1 plants was reduced in the light. In the light, stomatal closure of mrp5-1 was insensitive to external calcium and abscisic acid, a phytohormone responsible for stomatal closure during drought stress. In contrast to Ws-2, the phytohormone auxin could not stimulate stomatal opening in the mutant in darkness. All stomatal phenotypes were complemented in transgenic mrp5-1 plants transformed with a cauliflower mosaic virus (CaMV) 35S-AtMRP5 construct. Both whole-plant and single-leaf gas exchange measurements demonstrated a reduced transpiration rate of mrp5-1 in the light. Excised leaves of mutant plants exhibited reduced water loss, and water uptake was strongly decreased at the whole-plant level. Finally, if plants were not watered, mrp5-1 plants survived much longer due to reduced water use. Analysis of CO2 uptake and transpiration showed that mrp5-1 plants have increased water use efficiency. Mutant plants overexpressing AtMRP5 under the control of the CaMV 35S promoter again exhibited wild-type characteristics. These results demonstrate that multidrug resistance-associated proteins (MRPs) are important components of guard cell functioning.  相似文献   

12.
The ABC superfamily is a diverse group of integral membrane proteins involved in the ATP-dependent transport of solutes across biological membranes in both prokaryotes and eukaryotes. Although ABC transporters have been studied for over 30 years, very little is known about the mechanism by which the energy of ATP hydrolysis is used to transport substrate across the membrane. The recent report of the high resolution crystal structure of HisP, the nucleotide-binding subunit of the histidine permease complex of Salmonella typhimurium, represents a significant breakthrough toward the elucidation of the mechanism of solute translocation by ABC transporters. In this review, we use data from the crystallographic structures of HisP and other nucleotide-binding proteins, combined with sequence analysis of a subset of atypical ABC transporters, to argue a new model for the dimerisation of the nucleotide-binding domains that embraces the notion that the C motif from one subunit forms part of the ATP-binding site in the opposite subunit. We incorporate this dimerisation of the ATP-binding domains into our recently reported beta-barrel model for P-glycoprotein and present a general model for the cooperative interaction of the two nucleotide-binding domains and the translocation of mechanical energy to the transmembrane domains in ABC transporters.  相似文献   

13.
Abstract Plants accumulate a diverse array of natural products, which can serve either to defend the plant against various microbes in its environment or to attract various microbes, both beneficial and pathogenic. Plants must also attract pollinators, repel or poison herbivores, compete with other plant species, and protect themselves from environmental dangers such as high light intensities. Some compounds have been implicated in playing a role in multiple interactions. Although the structures vary immensely in size and complexity, most are derived from a limited number of core biosynthetic pathways. This review briefly summarizes the biosynthetic origins of phenylpropanoid (including simple phenolics, flavonoids, anthocyanins and isoflavonoids), polyacetate, terpenoid, and alkaloid classes of metabolites. Compounds reported to be important in plant-microbe, plant-animal, and plant-plant interactions will be given as examples of each of these classes. Other aspects of biosynthesis also will be discussed, including the timing or location of biosynthesis, the potential for genetic manipulation of these pathways, and various questions regarding the biosynthesis of these compounds.  相似文献   

14.
Transport of phospholipids across cell membranes plays a key role in a wide variety of biological processes. These include membrane biosynthesis, generation and maintenance of membrane asymmetry, cell and organelle shape determination, phagocytosis, vesicle trafficking, blood coagulation, lipid homeostasis, regulation of membrane protein function, apoptosis, etc. P4-ATPases and ATP binding cassette (ABC) transporters are the two principal classes of membrane proteins that actively transport phospholipids across cellular membranes. P4-ATPases utilize the energy from ATP hydrolysis to flip aminophospholipids from the exocytoplasmic (extracellular/lumen) to the cytoplasmic leaflet of cell membranes generating membrane lipid asymmetry and lipid imbalance which can induce membrane curvature. Many ABC transporters play crucial roles in lipid homeostasis by actively transporting phospholipids from the cytoplasmic to the exocytoplasmic leaflet of cell membranes or exporting phospholipids to protein acceptors or micelles. Recent studies indicate that some ABC proteins can also transport phospholipids in the opposite direction. The importance of P4-ATPases and ABC transporters is evident from the findings that mutations in many of these transporters are responsible for severe human genetic diseases linked to defective phospholipid transport. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.  相似文献   

15.
Plants produce a variety of secondary metabolites to protect themselves from pathogens and herbivores and/or to influence the growth of neighbouring plants. Some of these metabolites are toxic to the producing cells when their target sites are present in the producing organisms. Therefore, a specific self-resistance mechanism must exist in these plants. Self-resistance mechanisms, including extracellular excretion, vacuolar sequestration, vesicle transport, extracellular biosynthesis, and accumulation of the metabolite in a non-toxic form, have been proposed thus far. Recently, a new mechanism involving mutation of the target protein of the toxic metabolite has been elucidated. We review here the mechanisms that plants use to prevent self-toxicity from the following representative compounds: cannabinoids, flavonoids, diterpene sclareol, alkaloids, benzoxazinones, phenylpropanoids, cyanogenic glycosides, and glucosinolates.  相似文献   

16.
17.
Polychlorinated biphenyls (PCBs) are toxic and persistent compounds that are difficult to break down and biodegrade. Plant secondary metabolites (PSMs) on root exudates can act as inducers of the biphenyl catabolic pathway, enhancing PCB biodegradation. In this study, the authors evaluated the effect of root exudates and PSMs obtained from Avena sativa, Brachiaria decumbens, Medicago sativa, and Brassica juncea on the biodegradation of PCB 44, PCB 66, PCB 118, PCB 138, PCB 153, PCB 170, and PCB 180 by a microbial consortium isolated from the rhizosphere of plants grown on soil contaminated with Aroclor 1260. Microorganisms were identified as Pseudomonas sp. and Stenotrophomonas sp. based on their 16S rRNA sequence. The plant root exudates increased the degradation percentage of PCB 44, PCB 66, and PCB 118, which were used as carbon source by the microorganisms. Flavanone, flavone, isoflavone, 7-hydroxyflavanone, 7-hydroxyflavone, and 6-hydroxyflavone were the PSMs identified in the root exudates, which increased the degradation percentage of all seven PCB congeners; they were also used as growth substrates by microbial consortium. These results showed the importance of the interaction between plants and microorganisms for achieving the removal of persistent pollutants such as PCBs from soil.  相似文献   

18.
19.
20.
The presence of lipopolysaccharide (LPS) in the outer leaflet of the outer membrane (OM) of Gram-negative bacteria creates a permeability barrier that prevents the entry of most currently available antibiotics. The seven lipopolysaccharide transport (Lpt) proteins involved in transporting and assembling this glycolipid are essential for growth and division in Escherichia coli; therefore, inhibiting their functions leads to cell death. LptB, the ATPase that provides energy for LPS transport and assembly, forms a complex with three other inner membrane (IM) components, LptC, F, and G. We demonstrate that inhibitors of pure LptB can also inhibit the full IM complex, LptBFGC, purified in detergent. We also compare inhibition of LptB and the LptBFGC complex with the antibiotic activity of these compounds. Our long-term goal is to develop tools to study inhibitors of LPS biogenesis that could serve as potentiators by disrupting the OM permeability barrier, facilitating entry of clinically used antibiotics not normally used to treat Gram-negative infections, or that can serve as antibiotics themselves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号