首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using organically synthesized hydroxyalkanoate coenzyme A thioesters, the activities of two short-chain polyhydroxalkanoate (PHA) synthases were investigated--Ralstonia eutropha PHA synthase (a type I PHA synthase) and Ectothiorhodospira shaposhnikovii PHA synthase (a type III synthase). The results indicate that the two synthases have similar activities towards most of the monomers tested. 3-Hydroxybutyryl CoA was found to be the most efficient substrate for both synthases. Changes in the side-chain length of the monomers affect monomer reactivity, with shortening of the side-chain length having the more severe effect. Hydrophobicity in the side chain appears to play an important role in the catalytic reaction. The configuration and the position of the hydroxyl group also affect the reactivity of a monomer. Monomers with the [S] configuration can not be recognized by either synthase. Moving the hydroxyl group from the beta carbon to the alpha carbon has a much more severe effect on the reactivity of the monomer than moving the hydroxyl group to the gamma carbon. The results demonstrate that the in vitro system can be used to prepare entirely novel polymers that may not be obtainable from living cells because of metabolic restrictions.  相似文献   

2.
Ectothiorhodospira shaposhnikovii is able to accumulate polyhydroxybutyrate (PHB) photoautotrophically during nitrogen-limited growth. The activity of polyhydroxyalkanoate (PHA) synthase in the cells correlates with PHB accumulation. PHA synthase samples collected during the light period do not show a lag phase during in vitro polymerization. Synthase samples collected in the dark period displays a significant lag phase during in vitro polymerization. The lag phase can be eliminated by reacting the PHA synthase with the monomer, 3-hydroxybutyryl-CoA (3HBCoA). The PHA synthase genes (phaC and phaE) were cloned by screening a genomic library for PHA accumulation in E. coli cells. The PHA synthase expressed in the recombinant E. coli cells was purified to homogeneity. Both sequence analysis and biochemical studies indicated that this PHA synthase consists of two subunits, PhaE and PhaC and, therefore, belongs to the type III PHA synthases. Two major complexes were identified in preparations of purified PHA synthase. The large complex appears to be composed of 12 PhaC subunits and 12 PhaE subunits (dodecamer), whereas the small complex appears to be composed of 6 PhaC and 6 PhaE subunits (hexamer). In dilute aqueous solution, the synthase is predominantly composed of hexamer and has low activity accompanied with a significant lag period at the initial stage of reaction. The percentage of dodecameric complex increases with increasing salt concentration. The dodecameric complex has a greatly increased specific activity for the polymerization of 3HBCoA and a negligible lag period. The results from in vitro polymerizations of 3HBCoA suggest that the PHA synthase from E. shaposhnikovii may catalyze a living polymerization and demonstrate that two PhaC and two PhaE subunits comprise a single catalytic site in the synthase complex.  相似文献   

3.
In this study, the enhancement of photosynthetic PHA production was achieved using the highly active mutants of PHA synthase created by the in vitro evolutionally techniques. The wild-type and mutated PHA synthase genes from Aeromonas caviae were introduced into Arabidopsis thaliana together with the NADPH-dependent acetoacetyl-CoA reductase gene from Ralstonia eutropha. Expression of the highly active mutated PHA synthase genes, N149S and D171G, led to an 8-10-fold increase in PHA content in the T1 transgenic Arabidopsis, compared to plants harboring the wild-type PHA synthase gene. In homozygous T2 progenies, PHA content was further increased up to 6.1 mg/g cell dry weight. GC/MS analysis of the purified PHA from the transformants revealed that these PHAs were poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] copolymers consisting of 0.2-0.8 mol % 3HV. The monomer composition of the P(3HB-co-3HV) copolymers synthesized by the wild-type and mutated PHA synthases reflected the substrate specificities observed in Escherichia coli. These results indicate that in vitro evolved PHA synthases can enhance the productivity of PHA and regulate the monomer composition in transgenic plants.  相似文献   

4.
Jia Y  Kappock TJ  Frick T  Sinskey AJ  Stubbe J 《Biochemistry》2000,39(14):3927-3936
Polyhydroxybutyrate (PHB) synthases catalyze the conversion of beta-hydroxybutyryl coenzyme A (HBCoA) to PHB. These enzymes require an active site cysteine nucleophile for covalent catalysis. A protein BLASTp search using the Class III Chromatium vinosum synthase sequence reveals high homology to prokaryotic lipases whose crystal structures are known. The homology is very convincing in the alpha-beta-elbow (with the active site nucleophile)-alpha-beta structure, residues 131-175 of the synthase. A conserved histidine of the Class III PHB synthases aligns with the active site histidine of the lipases using the ClustalW algorithm. This is intriguing as this histidine is approximately 200 amino acids removed in sequence space from the catalytic nucleophile. Different threading algorithms suggest that the Class III synthases belong to the alpha/beta hydrolase superfamily which includes prokaryotic lipases. Mutagenesis studies were carried out on C. vinosum synthase C149, H331, H303, D302, and C130 residues. These studies reveal that H331 is the general base catalyst that activates the nucleophile, C149, for covalent catalysis. The model indicates that C130 is not involved in catalysis as previously proposed [Müh, U., Sinskey, A. J., Kirby, D. P., Lane, W. S., and Stubbe, J. (1999) Biochemistry 38, 826-837]. Studies with D302 mutants suggest D302 functions as a general base catalyst in activation of the 3-hydroxyl of HBCoA (or a hydroxybutyrate acyl enzyme) for nucleophilic attack on the covalently linked thiol ester intermediate. The relationship of the lipase model to previous models based on fatty acid synthases is discussed.  相似文献   

5.
Class I polyhydroxyalkanoic acid (PHA) synthase gene (phaC) of Ralstonia eutropha strain B5786 was cloned and characterized. R. eutropha B5786 features the ability to synthesize multicomponent PHAs with short- and medium-chain-length monomers from simple carbohydrate substrate. A correlation was made between the molecular structure of PHA synthase and substrate specificity and the ability of strain-producers to accumulate PHAs of this or that structure. A strong similarity of PHA synthase of R. eutropha strain B5786 with PHA synthase of R. eutropha strain H16, which, as opposed to strain B5786, enables to incorporate medium chain length PHAs if hexanoate is used as carbon source, exhibited 99%. A correlation between the structure of PHA synthase of B5786 strain with synthases of microorganisms which synthesize short and medium chain length PHAs similarly to B5786 strain, showed an identity level from 26 to 41% (homology with synthase of Rhodospirillum rubrum makes 41%, Ectothiorhodospira shaposhnikovii makes 26%, Aeromonas punctata makes 40%, Thiococcus pfennigii makes 28%, Rhodococcus ruber makes 38%, and with PhaCl and PhaC2 synthases of Pseudomonas sp. 61–3 makes 34 and 37%, respectively). This allows for speaking about the absence of a direct connection between the molecular organization of PHA synthases and their functional abilities, namely, the ability to synthesize PHAs of a particular composition.  相似文献   

6.
The synthesis of bacterial polyhydroxyalkanoates (PHA) is very much dependent on the expression and activity of a key enzyme, PHA synthase (PhaC). Many efforts are being pursued to enhance the activity and broaden the substrate specificity of PhaC. Here, we report the identification of a highly active wild-type PhaC belonging to the recently isolated Chromobacterium sp. USM2 (PhaC(Cs)). PhaC(Cs) showed the ability to utilize 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), and 3-hydroxyhexanoate (3HHx) monomers in PHA biosynthesis. An in vitro assay of recombinant PhaC(Cs) expressed in Escherichia coli showed that its polymerization of 3-hydroxybutyryl-coenzyme A activity was nearly 8-fold higher (2,462 ± 80 U/g) than that of the synthase from the model strain C. necator (307 ± 24 U/g). Specific activity using a Strep2-tagged, purified PhaC(Cs) was 238 ± 98 U/mg, almost 5-fold higher than findings of previous studies using purified PhaC from C. necator. Efficient poly(3-hydroxybutyrate) [P(3HB)] accumulation in Escherichia coli expressing PhaC(Cs) of up to 76 ± 2 weight percent was observed within 24 h of cultivation. To date, this is the highest activity reported for a purified PHA synthase. PhaC(Cs) is a naturally occurring, highly active PHA synthase with superior polymerizing ability.  相似文献   

7.
The mitochondrial and glyoxysomal citrate synthase (EC 4.1.3.7) from the endosperm of germinating castor beans ( Ricinus communis L., type Sanzibaricnsis) were purified to a final specific activity of 76 and 78 U (mg protein)−1, respectively. Both citrate synthases could be bound to ATP-Sepharose. However, only the mitochondrial enzyme could be eluted by either 100 μ M oxaloacetate or 100 μ M coenzyme A (indicative of affinity chromatography), while the glyoxysomal enzyme was only eluted by 0.5 M KCI (indicative of ion-exchange chromatography). Many properties of the two isoenzymes were similar including the pH dependence and temperature dependence of activity, the pH stability, and the inactivation of the enzyme at elevated temperatures. The most pronounced differences between the two citrate synthases were the isolelectric points of pH 5.9 for the mitochondrial and of pH 9.1 for the glyoxysomal enzyme. Both citrate synthases are dimers in the native form with a molecular weight of 95000 each, as determined by gel filtration on Sepharose CL-6B and by polyacrylamide gel electrophoresis in the presence of 0.1% sodium dodecyl sulfate. However, the glyoxysomal citrate synthase existed also as a tetramer with a molecular weight of 200000 in the presence of 10 m M MgCl2.  相似文献   

8.
Jia Y  Yuan W  Wodzinska J  Park C  Sinskey AJ  Stubbe J 《Biochemistry》2001,40(4):1011-1019
The Class I and III polyhydroxybutyrate (PHB) synthases from Ralstonia eutropha and Chromatium vinosum, respectively, catalyze the polymerization of beta-hydroxybutyryl-coenzyme A (HBCoA) to generate PHB. These synthases have different molecular weights, subunit composition, and kinetic properties. Recent studies with the C. vinosum synthase suggested that it is structurally homologous to bacterial lipases and allowed identification of active site residues important for catalysis [Jia, Y., Kappock, T. J., Frick, T., Sinskey, A. J., and Stubbe, J. (2000) Biochemistry 39, 3927-3936]. Sequence alignments between the Class I and III synthases revealed similar residues in the R. eutropha synthase. Site-directed mutants of these residues were prepared and examined using HBCoA and a terminally saturated trimer of HBCoA (sT-CoA) as probes. These studies reveal that the R. eutropha synthase possesses an essential catalytic dyad (C319-H508) in which the C319 is involved in covalent catalysis. A conserved Asp, D480, was shown not to be required for acylation of C319 by sT-CoA and is proposed to function as a general base catalyst to activate the hydroxyl of HBCoA for ester formation. Studies of the [(3)H]sT-CoA with wild-type and mutant synthases reveal that 0.5 equiv of radiolabel is covalently bound per monomer of synthase, suggesting that a dimeric form of the enzyme is involved in elongation. These studies, in conjunction with search algorithms for secondary structure, suggest that the Class I and III synthases are mechanistically similar and structurally homologous, despite their physical and kinetic differences.  相似文献   

9.
10.
Seven strains of sulfate-reducing bacteria (SRB) were tested for the accumulation of polyhydroxyalkanoates (PHAs). During growth with benzoate Desulfonema magnum accumulated large amounts of poly(3-hydroxybutyrate) [poly(3HB)]. Desulfosarcina variabilis (during growth with benzoate), Desulfobotulus sapovorans (during growth with caproate), and Desulfobacterium autotrophicum (during growth with caproate) accumulated poly(3HB) that accounted for 20 to 43% of cell dry matter. Desulfobotulus sapovorans and Desulfobacterium autotrophicum also synthesized copolyesters consisting of 3-hydroxybutyrate and 3-hydroxyvalerate when valerate was used as the growth substrate. Desulfovibrio vulgaris and Desulfotalea psychrophila were the only SRB tested in which PHAs were not detected. When total DNA isolated from Desulfococcus multivorans and specific primers deduced from highly conserved regions of known PHA synthases (PhaC) were used, a PCR product homologous to the central region of class III PHA synthases was obtained. The complete pha locus of Desulfococcus multivorans was subsequently obtained by inverse PCR, and it contained adjacent phaE(Dm) and phaC(Dm) genes. PhaC(Dm) and PhaE(Dm) were composed of 371 and 306 amino acid residues and showed up to 49 or 23% amino acid identity to the corresponding subunits of other class III PHA synthases. Constructs of phaC(Dm) alone (pBBRMCS-2::phaC(Dm)) and of phaE(Dm)C(Dm) (pBBRMCS-2::phaE(Dm)C(Dm)) in various vectors were obtained and transferred to several strains of Escherichia coli, as well as to the PHA-negative mutants PHB(-)4 and GPp104 of Ralstonia eutropha and Pseudomonas putida, respectively. In cells of the recombinant strains harboring phaE(Dm)C(Dm) small but significant amounts (up to 1.7% of cell dry matter) of poly(3HB) and of PHA synthase activity (up to 1.5 U/mg protein) were detected. This indicated that the cloned genes encode functionally active proteins. Hybrid synthases consisting of PhaC(Dm) and PhaE of Thiococcus pfennigii or Synechocystis sp. strain PCC 6308 were also constructed and were shown to be functionally active.  相似文献   

11.
Polyhydroxyalkanoates (PHAs) are accumulated as intracellular carbon and energy storage polymers by various bacteria and a few haloarchaea. In this study, 28 strains belonging to 15 genera in the family Halobacteriaceae were investigated with respect to their ability to synthesize PHAs and the types of their PHA synthases. Fermentation results showed that 18 strains from 12 genera could synthesize polyhydroxybutyrate (PHB) or poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). For most of these haloarchaea, selected regions of the phaE and phaC genes encoding PHA synthases (type III) were cloned via PCR with consensus-degenerate hybrid oligonucleotide primers (CODEHOPs) and were sequenced. The PHA synthases were also examined by Western blotting using haloarchaeal Haloarcula marismortui PhaC (PhaC(Hm)) antisera. Phylogenetic analysis showed that the type III PHA synthases from species of the Halobacteriaceae and the Bacteria domain clustered separately. Comparison of their amino acid sequences revealed that haloarchaeal PHA synthases differed greatly in both molecular weight and certain conserved motifs. The longer C terminus of haloarchaeal PhaC was found to be indispensable for its enzymatic activity, and two additional amino acid residues (C143 and C190) of PhaC(Hm) were proved to be important for its in vivo function. Thus, we conclude that a novel subtype (IIIA) of type III PHA synthase with unique features that distinguish it from the bacterial subtype (IIIB) is widely distributed in haloarchaea and appears to be involved in PHA biosynthesis.  相似文献   

12.
Glycogen synthase I was purified from bovine polymorphonuclear leucocytes (PMNs) by a procedure involving concanavalin A-Sepharose affinity chromatography. The purified glycogen-bound glycogen synthase I had a specific activity of 9.83 U/mg protein and the glycogen free enzyme 21 U/mg protein. Molecular ratio of the native enzyme and the subunit were 340 K and 85 K respectively. After phosphorylation by the catalytic subunit of cAMP-dependent protein kinase the phosphorylated sites were studied using high-performance liquid chromatography (HPLC) of the tryptic 32P-peptides. The enzyme was phosphorylated at three different sites with retention times identical to site 1a, site 1b, and site 2 from rabbit skeletal muscle glycogen synthase.  相似文献   

13.
Tian J  Sinskey AJ  Stubbe J 《Biochemistry》2005,44(23):8369-8377
Polyhydroxybutyrate (PHB) synthase catalyzes the polymerization of (R)-3-hydroxybutyryl-CoA (CoA = coenzyme A) into high molecular weight PHB. Recombinant wild-type (wt) class III synthase from Allochromatium vinosum (PhaCPhaE(Av)), antibodies to this synthase and to PHB, and [(14)C]hydroxybutyryl-CoA (HB-CoA) have been used to detect oligomeric hydroxybutyrate (HB) units covalently bound to the synthase using sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. Although a distribution of products is typically observed, short (HB)(n)-bound synthases (designated species I) are most prevalent at low substrate to enzyme (S/E) ratios. Species I is similar to (HB)(n)-PhaC(Av) (n = 3-10 at minimum) recently identified using D302A-PhaCPhaE(Av) (Tian, J., Sinskey, A. J., and Stubbe, J. (2005) Biochemistry 44, 1495-1503). Species I is shown to be an intermediate in the elongation process of PHB synthesis in vitro. The reaction catalyzed by the wt synthase in vitro was further studied under two sets of conditions: at high (70000) and low (<200) S/E ratios. At high S/E ratios, kinetic analysis of the reaction of HB-CoA with the wt synthase monitored using antibodies to PhaCPhaE(Av) and Western blotting revealed the disappearance of PhaC(Av) at early time points and its reappearance as the molecular weight of the PHB approached 1.8 MDa. At low S/E ratios, species I was observed to increase with time after complete consumption of all of the HB-CoA. The results from studies under both sets of conditions suggest that an inherent property of the synthase is chain termination and reinitiation.  相似文献   

14.
Members of the family Geobacteraceae are commonly the predominant Fe(III)-reducing microorganisms in sedimentary environments, as well as on the surface of energy-harvesting electrodes, and are able to effectively couple the oxidation of acetate to the reduction of external electron acceptors. Citrate synthase activity of these organisms is of interest due to its key role in acetate metabolism. Prior sequencing of the genome of Geobacter sulfurreducens revealed a putative citrate synthase sequence related to the citrate synthases of eukaryotes. All citrate synthase activity in G. sulfurreducens could be resolved to a single 49-kDa protein via affinity chromatography. The enzyme was successfully expressed at high levels in Escherichia coli with similar properties as the native enzyme, and kinetic parameters were comparable to related citrate synthases (kcat= 8.3 s(-1); Km= 14.1 and 4.3 microM for acetyl coenzyme A and oxaloacetate, respectively). The enzyme was dimeric and was slightly inhibited by ATP (Ki= 1.9 mM for acetyl coenzyme A), which is a known inhibitor for many eukaryotic, dimeric citrate synthases. NADH, an allosteric inhibitor of prokaryotic hexameric citrate synthases, did not affect enzyme activity. Unlike most prokaryotic dimeric citrate synthases, the enzyme did not have any methylcitrate synthase activity. A unique feature of the enzyme, in contrast to citrate synthases from both eukaryotes and prokaryotes, was a lack of stimulation by K+ ions. Similar citrate synthase sequences were detected in a diversity of other Geobacteraceae members. This first characterization of a eukaryotic-like citrate synthase from a prokaryote provides new insight into acetate metabolism in Geobacteraceae members and suggests a molecular target for tracking the presence and activity of these organisms in the environment.  相似文献   

15.
3-Deoxy-d-manno-2-octulosonate-8-phosphate (KDO8P) synthase catalyzes the net condensation of phosphoenolpyruvate and d-arabinose 5-phosphate to form KDO8P and inorganic phosphate (Pi). Two classes of KDO8P synthases have been identified. The Class I KDO8P synthases (e.g. Escherchia coli KDO8P synthase) catalyze the condensation reaction in a metal-independent fashion, whereas the Class II enzymes (e.g. Aquifex aeolicus) require metal ions for catalysis. Helicobacter pylori (H. pylori) KDO8P synthase, a Zn2+-dependent metalloenzyme, has recently been found to be a Class II enzyme and has a high degree of clinical significance since it is an attractive molecular target for the design of novel antibiotic therapy. Although the presence of a divalent metal ion in Class II KDO8P synthases is essential for catalysis, there is a paucity of mechanistic information on the role of the metal ions and functional differences as compared with Class I enzymes. Using H. pylori KDO8P synthase as a prototypical Class II enzyme, a steady-state and transient kinetic approach was undertaken to understand the role of the metal ion in catalysis and define the kinetic reaction pathway. Metal reconstitution experiments examining the reaction kinetics using Zn2+, Cd2+, Cu2+, Co2+, Mn2+, and Ni2+ yielded surprising results in that the Cd2+ enzyme has the greatest activity. Unlike Class-I KDO8P synthases, the Class II metallo-KDO8P synthases containing Zn2+, Cd2+, Cu2+, and Co2+ show cooperativity. This study presents the first detailed kinetic characterization of a metal-dependent Class II KDO8P synthase and offers mechanistic insight for how the divalent metal ions modulate catalysis through effects on chemistry as well as quaternary protein structure.  相似文献   

16.
We identified the poly(hydroxyalkanoate) synthase (PHAS) genes of three strains of Pseudomonas oleovorans by using polymerase chain reaction (PCR)-based detection methods. P. oleovorans NRRL B-14682 contains Class I PHA synthase gene (phaC), NRRL B-14683 harbors Class II phaC1 and phaC2 genes, and NRRL B-778 contain both the Class I and II PHA synthase genes. Inverse-PCR and chromosomal walking techniques were employed to obtain the complete sequences of the Class I phaCs of NRRL B-778 (phbC778; 1698 bps) and B-14682 (phbC14682; 1899 bps). BLAST search indicated that these genes are new and had not been previously cloned. The gene product of phbC778 (i.e., PhbC778; 566 amino acid residues) is homologous to the Class I PHA synthases of Pseudomonas sp. HJ-2 and Pseudomonas sp. strain 61-3, and that of phbC14682 (PhbC14682; 632 amino acids) is homologous to PHAS of Delftia acidovorans. The PhbC14682 contains an extra sequence of 33 amino acids in its conserved α/β-hydrolase domain, making it only the second Class I PHA synthase found to contain this cellular proteolytic sequence. Consistent with their Pseudomonas origin, the codon-usage profiles of PhbC778 and PhbC14682 are similar to those of Pseudomonas Class II PHASs. These new Pseudomonas Class I phbC genes provide valuable addition to the gene pool for the construction of novel PHASs through gene shuffling.  相似文献   

17.
The purification of Neurospora crassa myo-inositol-1-phosphate synthase (EC 5.5.1.4) was studied by affinity chromatography using the substrate (glucose-6-phosphate), the inhibitor (pyrophosphate), the coenzyme (NAD+) and the coenzyme analogues (5'AMP and Cibacron Blue F3G-A) of the enzyme as adsorbents attached to agarose gel. Myo-inositol-1-phosphate synthase could be separated completely from the contaminating substance, glucose-6-phosphate dehydrogenase (EC 1.1.1.49), on Blue Sepharose CL-6B and on pyrophosphate-Sepharose. The purified enzyme had a specific activity of 16 400 U/mg. The sodium dodecyl sulfate/polyacrylamide gel electrophoresis of the 60 micrograms of this purified enzyme gave a homogenous band. The enzyme was found to be composed of four identical subunits having a molecular weight of 65 000.  相似文献   

18.
A threading model of the Ralstonia eutropha polyhydroxyalkanoate (PHA) synthase was developed based on the homology to the Burkholderia glumae lipase, whose structure has been resolved by X-ray analysis. The lid-like structure in the model was discussed. In this study, various R. eutropha PHA synthase mutants were generated employing random as well as site-specific mutagenesis. Four permissive mutants (double and triple mutations) were obtained from single gene shuffling, which showed reduced activity and whose mutation sites mapped at variable surface-exposed positions. Six site-specific mutations were generated in order to identify amino acid residues which might be involved in substrate specificity. Replacement of residues T323 (I/S) and C438 (G), respectively, which are located in the core structure of the PHA synthase model, abolished PHA synthase activity. Replacement of the two amino acid residues Y445 (F) and L446 (K), respectively, which are located at the surface of the protein model and adjacent to W425, resulted in reduced activity without changing substrate specificity and indicating a functional role of these residues. The E267K mutant exhibited only slightly reduced activity with a surface-exposed mutation site. Four site-specific deletions were generated to evaluate the role of the C-terminus and variant amino acid sequence regions, which link highly conserved regions. Deleted regions were D281-D290, A372-C382, E578-A589 and V585-A589 and the respective PHA synthases showed no detectable activity, indicating an essential role of the variable C-terminus and the linking regions between conserved blocks 2 and 3 as well as 3 and 4. Moreover, the N-terminal part of the class II PHA synthase (PhaC(Pa)) from Pseudomonas aeruginosa and the C-terminal part of the class I PHA synthase (PhaC(Re)) from R. eutropha were fused, respectively, resulting in three fusion proteins with no detectable in vivo activity. However, the fusion protein F1 (PhaC(Pa)-1-265-PhaC(Re)-289-589) showed 13% of wild type in vitro activity with the fusion point located at a surface-exposed loop region.  相似文献   

19.
A previously established improved two-phase reaction system has been applied to analyze the substrate specificities and polymerization activities of polyhydroxyalkanoate (PHA) synthases. We first analyzed the substrate specificity of propionate coenzyme A (CoA) transferase and found that 2-hydroxybutyrate (2HB) was converted into its CoA derivative. Then, the synthesis of PHA incorporating 2HB was achieved by a wild-type class I PHA synthase from Ralstonia eutropha. The PHA synthase stereoselectively polymerized (R)-2HB, and the maximal molar ratio of 2HB in the polymer was 9 mol%. The yields and the molecular weights of the products were decreased with the increase of the (R)-2HB concentration in the reaction mixture. The weight-average molecular weight of the polymer incorporating 9 mol% 2HB was 1.00 × 105, and a unimodal peak with polydispersity of 3.1 was observed in the GPC chart. Thermal properties of the polymer incorporating 9 mol% 2HB were analyzed by DSC and TG-DTA. T g, T m, and T d (10%) were observed at −1.1°C, 158.8°C, and 252.7°C, respectively. In general, major components of PHAs are 3-hydroxyalkanoates, and only engineered class II PHA synthases have been reported as enzymes having the ability to polymerize HA with the hydroxyl group at C2 position. Thus, this is the first report to demonstrate that wild-type class I PHA synthase was able to polymerize 2HB.  相似文献   

20.
The polyhydroxyalkanoate (PHA) copolymer poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(HB-co-HHx)] has been shown to have potential to serve as a commercial bioplastic. Synthesis of P(HB-co-HHx) from plant oil has been demonstrated with recombinant Ralstonia eutropha strains expressing heterologous PHA synthases capable of incorporating HB and HHx into the polymer. With these strains, however, short-chain-length fatty acids had to be included in the medium to generate PHA with high HHx content. Our group has engineered two R. eutropha strains that accumulate high levels of P(HB-co-HHx) with significant HHx content directly from palm oil, one of the world's most abundant plant oils. The strains express a newly characterized PHA synthase gene from the bacterium Rhodococcus aetherivorans I24. Expression of an enoyl coenzyme A (enoyl-CoA) hydratase gene (phaJ) from Pseudomonas aeruginosa was shown to increase PHA accumulation. Furthermore, varying the activity of acetoacetyl-CoA reductase (encoded by phaB) altered the level of HHx in the polymer. The strains with the highest PHA titers utilized plasmids for recombinant gene expression, so an R. eutropha plasmid stability system was developed. In this system, the essential pyrroline-5-carboxylate reductase gene proC was deleted from strain genomes and expressed from a plasmid, making the plasmid necessary for growth in minimal media. This study resulted in two engineered strains for production of P(HB-co-HHx) from palm oil. In palm oil fermentations, one strain accumulated 71% of its cell dry weight as PHA with 17 mol% HHx, while the other strain accumulated 66% of its cell dry weight as PHA with 30 mol% HHx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号