首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study plant growth in microgravity, we grew Super Dwarf wheat (Triticum aestivum L.) in the Svet growth chamber onboard the orbiting Russian space station, Mir, and in identical ground control units at the Institute of BioMedical Problems in Moscow, Russia. Seedling emergence was 56% and 73% in the two root-module compartments on Mir and 75% and 90% on earth. Growth was vigorous (produced ca. 1 kg dry mass), and individual plants produced 5 to 8 tillers on Mir compared with 3 to 5 on earth-grown controls. Upon harvest in space and return to earth, however, all inflorescences of the flight-grown plants were sterile. To ascertain if Super Dwarf wheat responded to the 1.1 to 1.7 micromoles mol-1 atmospheric levels of ethylene measured on the Mir prior to and during flowering, plants on earth were exposed to 0, 1, 3, 10, and 20 micromoles mol-1 of ethylene gas and 1200 micromoles mol-1 CO2 from 7 d after emergence to maturity. As in our Mir wheat, plant height, awn length, and the flag leaf were significantly shorter in the ethylene-exposed plants than in controls; inflorescences also exhibited 100% sterility. Scanning-electron-microscopic (SEM) examination of florets from Mir-grown and ethylene-treated, earth-grown plants showed that development ceased prior to anthesis, and the anthers did not dehisce. Laser scanning confocal microscopic (LSCM) examination of pollen grains from Mir and ethylene-treated plants on earth exhibited zero, one, and occasionally two, but rarely three nuclei; pollen produced in the absence of ethylene was always trinucleate, the normal condition. The scarcity of trinucleate pollen, abrupt cessation of floret development prior to anthesis, and excess tillering in wheat plants on Mir and in ethylene-containing atmospheres on earth build a strong case for the ethylene on Mir as the agent for the induced male sterility and other symptoms, rather than microgravity.  相似文献   

2.
Decapitation induced an additional formation of secondary shoots and anomalous spikes in all the species. The moan numbers of nodes, spikelets per spike, seeds per spikelet and spike, and the mean length of the stem and spike were reduced on secondary shoots of decapitated plants, while the mean and peak numbers of flowers per spikelet and the peak number of seeds per spikelet increased. The increase in the number of flowers per spikelet was the most striking on spike base; the seeds regularly occurred even in spikelets with an expressively increased number of flowers. The post-decapitation changes of the spike could be well expressed quantitatively according to the increased mean number of the flowers per one seed. Morphological ohanges in anomalous spikes of all the wheat species resemble phylogenetic reversions described in literature. Moreover, the peak numbers of flowers and seeds per spikelet were recorded in 52 varieties belonging to 21 wheat species. As compared with the decapitation trial, the greatest variability and the greatest differences between the speoies were also reoorded in the tetraploid group, and the smallest variability and differences between the species in the diploid group. We suppose that the striking morphological differences in post-decapitation spikes take place because the apical dominance was interrupted before differentiation of the recent form had been controlled in meristems on the decapitated stem base. Ancestral forms were morphologically realized with the help of an assimilating part of the decapitated stem.  相似文献   

3.
Effectiveness of SC2053 as a chemical hybridizing agent for winter wheat   总被引:1,自引:0,他引:1  
The use of chemical hybridizing agents (CHA) allows production of hybrid wheat seeds. We evaluated the effectiveness of a new CHA (SC2053) to induce male sterility on winter wheat in controlled growth conditions. CHA effectiveness was measured with the application of 4 doses (0–400–700–1000 g.ha–1) at 7 stages. These stages were defined by the length of the main stem spike (1–4–7–11–15–20–40 mm). At heading, individual ears were isolated with a greaseproof paper bag. The seeds formed were counted on treated and control ears. The spikes' sterility was calculated three weeks after flowering. The sterility of the main stem's spike reached 95% to 100% for application of 700 g.ha–1 and 1000 g.ha–1 for main stem spike length of 7 mm to 20 mm. The effects of ear tillering (5 tillers per plant) on CHA effectiveness were also investigated. We observed a significant delay of ear development between the main stem and tillers so that complete sterilities were not reached for each dose. Since tillering in field conditions rarely exceeds 3 ears per plant, CHA effectiveness was studied on plants bearing 3 ears. The mean sterility of the first 3 ears was close to 100% for applications with 700 g.ha–1 and 1000 g.ha–1 at stages from 11 mm to 20 mm of main stem spike length.  相似文献   

4.
The aftereffects of the Russian wheat aphid (RWA) Diuraphis noxia on sowing and productive qualities of barley and spring bread wheat grain were assessed. Seeds of 4 cultivars of barley (Volgar, Povolzhsky 65, Kazak, and Povolzhsky 16) and 4 cultivars of spring wheat (Kinelskaya 59, Kinelskaya Otrada, Kinelskaya Niva, and Kinelskaya 2010) from spikes infested and uninfested with RWA in 2007 and in 2014 were sown in the subsequent years, using 0.5 m2 experimental plots in four replications, at a seeding rate of 300 grains/m2. The least significant difference (LSD0.5) was used to compare the mean ± standard deviation (SD) values. The field germination rate of seeds from spring wheat spikes damaged by RWA was reduced by 15%. Of the components of grain yield, barley and spring wheat grown from seeds from the infested spikes showed a 23-31% smaller number of productive tillers before harvesting, a 16% smaller number of grains per spike, a 13-16% lower grain weight per spike, and a total yield loss of 33-42%. In hulless bread wheat RWA fed on the developing kernels inflicting greater damage, whereas the hulled barley seeds were practically not damaged. The mean yield loss of the barley and spring wheat spikes infested with RWA was 24-32% and 50-66%, respectively. Due to the greater tillering capacity and formation of secondary productive tillers in barley, about 52% of the productive barley tillers and 37-39% of spring wheat ones were infested with RWA, which resulted in a comparable yield loss (20-25% in barley and 19-23% in spring wheat). Resistance to RWA was higher in spring wheat and barley cultivars with a shorter vegetation period, looser spikes, and thinner culm walls. The length of productive tillers damaged by RWA was reduced by 21-28%, which determined a lower incidence of leaf diseases.  相似文献   

5.
Wheat grain yield consists of three components: spikes per plant, grains per spike (i.e. head or ear), and grain weight; and the grains per spike can be dissected into two subcomponents: spikelets per spike and grains per spikelet. An increase in any of these components will directly contribute to grain yield. Wheat morphology biology tells that a wheat plant has no lateral meristem that forms any branching shoot or spike. In this study, we report two novel shoot and spike traits that were produced from lateral meristems in bread wheat. One is supernumerary shoot that was developed from an axillary bud at the axil of leaves on the elongated internodes of the main stem. The other is supernumerary spike that was generated from a spikelet meristem on a spike. In addition, supernumerary spikelets were generated on the same rachis node of the spike in the plant that had supernumerary shoot and spikes. All of these supernumerary shoots/spikes/spikelets found in the super wheat plants produced normal fertility and seeds, displaying huge yield potential in bread wheat.  相似文献   

6.
Successful plant reproduction under spaceflight conditions has been problematic in the past. During a 122 d opportunity on the Mir space station, full life cycles of Brassica rapa L. were completed in microgravity in a series of three experiments in the Svet greenhouse. Ultrastructural and cytochemical analyses of storage reserves in mature dry seeds produced in these experiments were compared with those of seeds produced during a high-fidelity ground control. Additional analyses were performed on developing Brassica embryos, 15 d post pollination, which were produced during a separate experiment on the Shuttle (STS-87). Seeds produced on Mir had less than 20% of the cotyledon cell number found in seeds harvested from the ground control. Cytochemical localization of storage reserves in mature cotyledons showed that starch was retained in the spaceflight material, whereas protein and lipid were the primary storage reserves in ground control seeds. Protein bodies in mature cotyledons produced in space were 44% smaller than those in the ground control seeds. Fifteen days after pollination, cotyledon cells from mature embryos formed in space had large numbers of starch grains, and protein bodies were absent, while in developing ground control seeds at the same stage, protein bodies had already formed and fewer starch grains were evident. These data suggest that both the late stage of seed development and maturation are changed in Brassica by growth in a microgravity environment. While gravity is not absolutely required for any step in the plant life cycle, seed quality in Brassica is compromised by development in microgravity.  相似文献   

7.
The objectives of this study were to induce callus from single immature wheat embryos, produce multiple seedlings from the induced callus, and analyse the somaclonal regenerants for potential grain production in a space garden. Immature wheat, Triticum aestivum L. (cv. PCYT-10), embryos were excised 10 to 12 days post-anthesis and cultured on modified Murashige & Skoog's inorganic salts. Embryos cultured on medium containing kinetin (6-furfurylaminopurine) at 0.5 mgl–1 plus 2 or 3 mgl–1 dicamba (1-methoxy-3,6-dichlorobenzoic acid) or 0.2 mgl–1 2,4-dichlorophenoxyacetic acid produced calli from which 24, 35 and 39% of the explant tissue exhibited regenerants, respectively. The size of flag leaves, plant heights, tillers per plant, spike lengths, awn lengths, and seeds per spike were significantly different in regenerants of two-selfed recurrent generations (SC1, SC2) than in parental controls. However, there were no significant differences in spikelets per spike between the SC2 and parental controls. Desirable characteristics that were obtained included longer spikes, more seeds per spike, supernumerary spikelets, and larger flag leaves, variants that should be useful in wheat improvement programs.Contribution from the Plant Science Dept., Utah State University, Logan, UT 84322-4820. Utah Agricultural Experiment Station Journal Paper No. 3611  相似文献   

8.
创制和利用矮秆资源对于小麦品种改良具有重要意义。到目前为止,在小麦属中虽然已鉴定了多个矮秆资源,但多数矮秆资源在小麦中的利用价值有限。本研究对利用无性系变异途径获得的小麦矮秆材料AS34及其与模式小麦品种中国春杂交F1、F2材料进行了株高构成和主要农艺性状分析。结果发现,AS34共有4个节间,比其野生型豫麦66少了1个节间,各个节间长度按相似比例缩短,穗下节长度短于第2节长度;F1株高、节间长度指数介于2个亲本之间,节数与AS34相同,穗长、小穗数、穗粒数超过2个亲本;F2株高、穗长、穗粒数、小穗数变异范围广泛,约70%植株株高为60~89 cm,穗长6.0~9.9 cm、穗粒数50~79粒、小穗数20~24个。结果表明,AS34的矮秆变异由多基因控制,表现为数量性状,其矮秆性状对杂交后代穗长、小穗数、穗粒数等主要农艺性状有正向遗传效应,F2选择穗大、粒多、株高适中优良单株的机率较大,具有很好的育种利用价值。  相似文献   

9.
Tibetan semi-wild wheat (Triticum aestivum ssp. tibetanum Shao) is one of the Chinese endemic hexaploid wheat genetic resources, distributed only in the Qinghai-Xizang Plateau of China. It has special characters, such as a hulled glume and spike disarticulation. However, seed dormancy, another important character for wheat resistance to pre-harvest sprouting, was rarely reported. Seed dormancy of more than 10 Tibetan semi-wild wheat accessions was evaluated, and their germinations were 0% or near 0% with both treatments of threshed seeds and intact spikes at hard dough stage. Tibetan semi-wild wheat accession Q1028 was investigated for its seed dormant characters by testing the seed germination percentages of intact spikes, seeds with bract powder, normal seeds, seeds with pierced coat, and sectioned embryos. It was observed that embryo dormancy of Q1028 accounted for its seed dormancy. Using threshed seeds and intact spikes at hard dough stage, the inheritance of seed dormancy was carried out using the F1, F2, F3 and F2BC1 populations of the cross between Q1028 and a wheat line 88-1643, susceptible to preharvest sprouting. The germinations of seeds and intact spikes in F1 plants were 1.0% and 0.9%, respectively. It indicated that seed dormancy of Q1028 was inherited as a dominant trait. From the genetic analysis of the F2, F3 and F2BC1 populations it was found that the strong seed dormancy of Q1028 was controlled by two dominant genes.  相似文献   

10.
The effect of the nonionic detergent polyethylene glycol octylphenyl ester, Triton X-100 (TX-100) on the spring common wheat cultivar Alem was studied under laboratory and field conditions. Treatment of seeds and vegetating plants with 0.1 and 0.01% TX-100 (aqueous solution) changed the spike morphology in all plants of the first posttreatment generation. The changes were inherited by the second generation without additional treatment with TX-100. Square-headed dense spikes with doubled spikelets of the duospiculum type (an additional spikelet at the top of the main one), elongate dense and lax spikes, mid-dense spikes, and fusiform spikes were observed. An epigenetic nature was assumed for the observed changes.  相似文献   

11.
12.
普通小麦与簇毛麦双二倍体的合成,育性及细胞遗传学研究   总被引:16,自引:3,他引:16  
傅杰  陈漱阳 《遗传学报》1989,16(5):348-356
通过杂种幼胚无性系培养获得大量再生植株F_1,经秋水仙碱处理,合成了普通小麦与簇毛麦属间双二倍体(AABBDDVV)。其形态特征除株高、穗长、小穗数,籽粒大小和育性明显增加,生育期延长外,分别与各自的再生植株F_1相似。双二倍体的体细胞染色体数目变化范围为48—56。花粉母细胞减数分裂中期Ⅰ 2n=28Ⅱ的细胞占56.82%,每个细胞平均有27.10个二价体,1.44个单价体,0.08个三价体,0.03个四价体。经过连续两代单穗单株选择,结实率由15.91%提高到36.52%。  相似文献   

13.
Somaclones regenerated from three wheat (Triticum aestivum L.) cultivars, Glennson, Pavon and PAK-16171 were evaluated for variation in agronomic and morphological characters. Calli were initiated from germinating seeds on Linsmaier and Skoog (LS) medium plus 2 mg/l 2,4-dichlorophenoxyacetic acid, 2% sucrose and 1% agar. Calli were isolated and regenerated into whole plants on LS medium containing 0.1 mg/l indole - 3-acetic acid and 0.5 mg/l benzyladenine. Comparisons among the somaclones and their parents were made for plant height, spike length, number of grains per spike, and 100 grain weight. Significant variation was observed in these characters between the somaclones and parents. Genotypic differences were observed among the somaclones for many of these agronomic and morphological characters.  相似文献   

14.
Gravity independence of seed-to-seed cycling in Brassica rapa   总被引:2,自引:0,他引:2  
 Growth of higher plants in the microgravity environment of orbital platforms has been problematic. Plants typically developed more slowly in space and often failed at the reproductive phase. Short-duration experiments on the Space Shuttle showed that early stages in the reproductive process could occur normally in microgravity, so we sought a long-duration opportunity to test gravity's role throughout the complete life cycle. During a 122-d opportunity on the Mir space station, full life cycles were completed in microgravity with Brassica rapa L. in a series of three experiments in the Svet greenhouse. Plant material was preserved in space by chemical fixation, freezing, and drying, and then compared to material preserved in the same way during a high-fidelity ground control. At sampling times 13 d after planting, plants on Mir were the same size and had the same number of flower buds as ground control plants. Following hand-pollination of the flowers by the astronaut, siliques formed. In microgravity, siliques ripened basipetally and contained smaller seeds with less than 20% of the cotyledon cells found in the seeds harvested from the ground control. Cytochemical localization of storage reserves in the mature embryos showed that starch was retained in the spaceflight material, whereas protein and lipid were the primary storage reserves in the ground control seeds. While these successful seed-to-seed cycles show that gravity is not absolutely required for any step in the plant life cycle, seed quality in Brassica is compromised by development in microgravity. Received: 3 August 1999 / Accepted: 27 August 1999  相似文献   

15.
矮秆基因对小麦部分农艺性状的效应   总被引:1,自引:1,他引:1  
以中国主要麦区的124份小麦品种为材料,利用分子标记和系谱分析相结合,对其按照所含的矮秆基因Rht-B1b、Rht-D1b和Rht8进行分类,结合田间株高、旗叶长、小穗数和穗粒数以及室内苗期根系长度等农艺形状的调查,分析不同矮秆基因对小麦农艺性状的效应.结果显示:(1)参试的124份小麦品种(系)中23份含有Rht-B1b,7份含有Rht-D1b,22份含有Rht8基因,34份同时含有Rht-B1b和Rht8,16份同时含有Rht-D1b和Rht8,可分为6组.(2)Rht-B1b和Rht-D1b在降低株高的同时也缩短了旗叶的长度和苗期叶长,Rht8对株高的影响较弱,对旗叶和苗期叶长的影响也较小;3个矮秆基因对苗期根系长度、小穗数没有显著影响;Rht-D1b和Rht8显著增加穗粒数.研究表明,矮秆基因Rht8对小麦株高以及其他农艺性状的影响均较小,但能够显著增加穗粒数,是小麦矮化育种中比较理想的矮秆基因.  相似文献   

16.
The development and morphology of the wheat spike is important because the spike is where reproduction occurs and it holds the grains until harvest. Therefore, genes that influence spike morphology are of interest from both theoretical and practical stand points. When substituted for the native chromosome 2A in the tetraploid Langdon (LDN) durum wheat background, the Triticum turgidum ssp. dicoccoides chromosome 2A from accession IsraelA confers a short, compact spike with fewer spikelets per spike compared to LDN. Molecular mapping and quantitative trait loci (QTL) analysis of these traits in a homozygous recombinant population derived from LDN × the chromosome 2A substitution line (LDNIsA-2A) indicated that the number of spikelets per spike and spike length were controlled by linked, but different, loci on the long arm of 2A. A QTL explaining most of the variation for spike compactness coincided with the QTL for spike length. Comparative mapping indicated that the QTL for number of spikelets per spike overlapped with a previously mapped QTL for Fusarium head blight susceptibility. The genes governing spike length and compactness were not orthologous to either sog or C, genes known to confer compact spikes in diploid and hexaploid wheat, respectively. Mapping and sequence analysis indicated that the gene governing spike length and compactness derived from wild emmer could be an ortholog of the barley Cly1/Zeo gene, which research indicates is an AP2-like gene pleiotropically affecting cleistogamy, flowering time, and rachis internode length. This work provides researchers with knowledge of new genetic loci and associated markers that may be useful for manipulating spike morphology in durum wheat.  相似文献   

17.
魏亦勤  张改生等 《西北植物学报》2001,21(6):1092-1102,T001
利用Ven、K型小麦雄性不育系与北方春性普通小麦杂交,研究了Ven、K型春性F1杂种的优势表现及其与叶绿素含量、同工酶谱的关系。结果表明:Ven型和K型杂种F1存在显著的个体杂种优质,在主要农艺性状中尤其以单株穗数、千粒重、单株生产力的杂种优势明显,其中单株穗数对单株生产力的贡献最大;相关分析表明:单株生产力与单株穗数呈正相关,相关系数为0.7122;与每穗粒数和千粒重的相关系数分别为-0.1183和0.4941。灌浆期旗叶、倒二叶叶绿素含量与千粒重的相关性最大,呈正相关。杂种F1优势强的组合其种子和苗期的过氧化物同工酶和酯酶的酶谱一般呈双亲互补型或“杂种型”酶带,该特征可作为杂种优势预测的指标。  相似文献   

18.
The capability of various immature inflorescence fragments of winter wheat cv. Grana to regenerate via callus was studied. The induction and regeneration efficiency of callus derived from spikes at different developmental stages (2–50 mm in length) was determined. Callus was initiated from the following organs of spike: whole segments of the youngest spikes (pairs of spikelets with a part of rachis), single spikelets and rachis of the middle stage spikes and finally individual flowers within spikelets excised from the oldest spikes. Morphogenic callus, capable to regenerate new plants, was obtained from segments derived from spikes being at early stage of organogenesis (2–10 mm in length) and distal flowers (3rd and 4th order) within spikelets of most advanced spikes (41–50 mm in length). Explants derived from spikes at the middle stage of organogenesis (11–40 mm in length) were not able to regenerate into new plants. No regeneration occurred also from developed rachis and glumes. All regenerants obtained in this study reached heading phase without additional vernalization, they were fertile and produced normally formed grains. It indicates that callus transferred the physiological state of the mother tissue i. e. the readiness to flowering.  相似文献   

19.
A simple anther culture protocol for Australian spring wheat cultivars was developed using ovary co-culture. The inclusion of ovaries in the induction medium significantly increased the production of embryo-like structures (ELS), green and albino plants in two spring wheat cultivars tested. When five ovaries were added to the induction medium, the mean number of ELS per spike increased from 7.6 to 50.1 and green plants per spike increased from 0.6 to 8.9. The addition of 10 ovaries, however, did not further increase the production of ELS or green plants. The growth regulator combination of 2,4-D and KIN was compared with IAA and BA. There were no significant differences in the numbers of ELS or green plants although significantly fewer albino plants were produced with IAA and BA. Eight additional cultivars were screened using the protocol with either 5 or 10 ovaries in the induction medium. Green plants were obtained from nine varieties at frequencies ranging from 0.3 to 33.0 green plants per spike. Regenerant plants at maturity exhibited chromosome fertility rates in different cultivars ranging from 15% to 100%.  相似文献   

20.
Inoculation with the rhizosphere bacterium Azospirillum brasilense NH, originally isolated from salt-affected soil in northern Algeria, greatly enhanced growth of durum wheat (Triticum durum var. waha) under saline soil conditions. Important plant parameters like the rate of germination, stem height, spike length, dry weight of roots and shoots, chlorophyll a and b content, proline and total sugar contents, 1000-seed weight, seed number per spike, and weight of seeds per spike were measured. At salt stress conditions (160 and 200 mM NaCl) A. brasilense NH restored almost completely vegetative growth and seed production. The combination with extracts of the marine alga Ulva lactuca resulted in even more improved salt tolerance of durum wheat. Proline and total sugar accumulation, a sign of physiological plant stress under inhibitory salt conditions, was reduced in plants inoculated with A. brasilense NH with and without addition of algal extracts. Inoculation with the salt-sensitive A. brasilense strain Sp7 could not restore salt-affected plant growth at 200 mM NaCl. Furthermore, it could be demonstrated by fluorescence in situ hybridization and confocal laser scanning microscopy that A. brasilense NH is able to colonize roots of durum wheat endophytically under salt-stressed conditions. Thus, the salt-tolerant rhizobacterium A. brasilense NH could effectively provide alone or in combination with extracts of U. lactuca a promising solution to overcome salt inhibition which is a major threat hindering productive wheat cultivation in arid saline soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号