首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Gene》1997,195(2):303-311
A method was developed to clone linear DNAs by overexpressing T4 phage DNA ligase in vivo, based upon recombination deficient E. coli derivatives that carry a plasmid containing an inducible T4 DNA ligase gene. Integration of this ligase-plasmid into the chromosome of such E. coli allows standard plasmid isolation following linear DNA transformation of the strains containing high levels of T4 DNA ligase. Intramolecular ligation allows high efficiency recircularization of cohesive and blunt-end terminated linear plasmid DNAs following transformation. Recombinant plasmids could be constructed in vivo by co-transformation with linearized vector plus insert DNAs, followed by intermolecular ligation in the T4 ligase strains to yield clones without deletions or rearrangements. Thus, in vitro packaged lox-site terminated plasmid DNAs injected from phage T4 were recircularized by T4 ligase in vivo with an efficiency comparable to CRE recombinase. Clones that expressed a capsid-binding 14-aa N-terminal peptide extension derivative of the HOC (highly antigenic outer capsid) protein for T4 phage hoc gene display were constructed by co-transformation with a linearized vector and a PCR-synthesized hoc gene. Therefore, the T4 DNA ligase strains are useful for cloning linear DNAs in vivo by transformation or transduction of DNAs with nonsequence-specific but compatible DNA ends.  相似文献   

2.
The change of infectivity of phage DNAs after heat and alkali denaturation (and renaturation) was measured. T7 phage DNA infectivity increased 4- to 20-fold after denaturation and decreased to the native level after renaturation. Both the heavy and the light single strand of T7 phage DNA were about five times as infective as native T7 DNA. T4 and P22 phage DNA infectivity increased 4- to 20-fold after denaturation and increased another 10- to 20-fold after renaturation. These data, combined with other authors' results on the relative infectivity of various forms of phiX174 and lambda DNAs give the following consistent pattern of relative infectivity. Covalently closed circular double-stranded DNA, nicked circular double-stranded DNA, and double-stranded DNA with cohesive ends are all equally infective and also most highly infectious for Escherichia coli lysozyme-EDTA spheroplasts; linear or circular single-stranded DNAs are about 1/5 to 1/20 as infective; double-stranded DNAs are only 1/100 as infective. Two exceptions to this pattern were noted: lambda phage DNA lost more than 99% of its infectivity after alkaline denaturation; this infectivity could be fully recovered after renaturation. This behavior can be explained by the special role of the cohesive ends of the phage DNA. T5 phage DNA sometimes showed a transient increase in infectivity at temperatures below the completion of the hyperchròmic shift; at higher temperatures, the infectivity was completely destroyed. T5 DNA denatured in alkali lost more than 99.9% of its infectivity; upon renaturation, infectivity was sometimes recovered. This behavior is interpreted in terms of the model of T5 phage DNA structure proposed by Bujard (1969). The results of the denaturation and renaturation experiments show higher efficiencies of transfection for the following phage DNAs (free of single-strand breaks): T4 renatured DNA at 10(-3) instead of 10(-5) for native DNA; renatured P22 DNA at 3 x 10(-7) instead of 3 x 10(-9) for native DNA; and denatured T7 DNA at 3 x 10(-6) instead of 3 x 10(-7) for native DNA.  相似文献   

3.
Glucosylated deoxyribonucleic acid (DNA) from phages T4 and T6 competes poorly with homologous DNA causing only a slight decrease of transformation in Group H Streptococcus strain Challis. Other types of heterologous DNAs (Micrococcus luteus, Clostridium perfringens, Escherichia coli, calf thymus and non-glucosylated phage T6 DNA), in contrast to glucosylated T4 and T6 DNAs, compete with transforming DNA to the normal, high extent. These results indicate that as in transformation of Bacillus subtilis, the presence of glucose attached to 5-hydroxymethylcytosine in phage T6 DNA considerably decreases the interaction of such DNA with competent cells of the Challis strain. It also indicates that the guanine plus cytosine content of DNA is not decisive in determining its interaction with competent cells.  相似文献   

4.
5.
6.
End structure and mechanism of packaging of bacteriophage T4 DNA.   总被引:2,自引:0,他引:2       下载免费PDF全文
We analyzed by restriction enzyme digestion the end structure of T4 phage DNA by comparing mature, concatemeric, first-packaged, and incompletely packaged DNAs. The structure of mature DNA was also studied using 3' end labeling with terminal transferase. Our data support the hypothesis that T4 DNA packaging is not initiated at specific packaging initiation sequences on the concatemeric precursor (cos or pac site mechanisms) but by a different packaging mechanism.  相似文献   

7.
This report describes a comparison of the efficiency of transduction of genes in E. coli by the generalized transducing bacteriophages T4GT7 and P1CM. Both phages are capable of transducing many genetic markers in E. coli although the frequency of transduction for particular genes varies over a wide range. The frequency of transduction for most genes depends on which transducing phage is used as well as on the donor and recipient bacterial strains. Analysis of T4GT7 phage lysates by cesium chloride density gradient centrifugation shows that transducing phage particles contain primarily bacterial DNA and carry little, if any, phage DNA. In this regard transducing phages P1CM and T4GT7 are similar; both phages package either bacterial or phage DNA but not both DNAs into the same particle.  相似文献   

8.
V B Rao  V Thaker  L W Black 《Gene》1992,113(1):25-33
Recombinant plasmid DNAs containing long DNA inserts that can be propagated in Escherichia coli would be useful in the analysis of complex genomes. We tested a bacteriophage T4 in vitro DNA packaging system that has the capacity to package about 170 kb of DNA into its capsid for cloning long DNA fragments. We first asked whether the T4 in vitro system can package foreign DNA such as concatemerized lambda imm434 DNA and phage P1-pBR322 hybrid DNA. The data suggest that the T4 system can package foreign DNA as efficiently as the mature phage T4 DNA. We then tested the system for its ability to clone foreign DNA fragments using the P1-pBR322 hybrid vectors constructed by Sternberg [Proc. Natl. Acad. Sci. USA 87 (1990) 103-107]. E. coli genomic DNA fragments were ligated with the P1 vectors containing two directly oriented loxP sites, and the ligated DNA was packaged by the T4 in vitro system. The packaged DNA was then transduced into E. coli expressing the phage P1 cyclization recombination protein recombinase to circularize the DNA by recombination between the loxP sites situated at the ends of the transduced DNA molecule. Clones with long DNA inserts were obtained by using this approach, and these were maintained as single-copy plasmids under the control of the P1 plasmid replicon. Clones with up to about 122-kb size inserts were recovered using this approach.  相似文献   

9.
A comparative study of the reactivities of free 5-hydroxymethylcytosine (5-HMC) and 5-HMC found in the composition of native, denaturated and intraphage DNA of the T2 phage with that of O-methylhydroxylamine (OMHA) demonstrated that the DNA secondary structure in situ is partially disturbed. The interaction DNA-protein in the phage particle channels the reaction into a predominant formation of 4N-methoxy-6-methoxyamino-5,6-dihydro-5-hydroxymethyl cytosine, but not 4N-methoxy-5-hydroxymethyl cytosine, which is formed in vitro. In the course of the reaction the interaction DNA-protein is probably fixed by covalent binding.  相似文献   

10.
G Ia Sherman 《Genetika》1975,11(5):127-131
The efficiency of phages T4rIIB-638v+ and T4rIIB-638v- transformation by native and denatured DNA treated with UV, nitrous acid, hydroxylamine and visible light in the presence of methylene blue is studied. A greater transformation efficiency of UV-irradiated T4r+ phage native and denatured DNA was observed in the v+ recipient as compared with v- recipients. Denatured donor DNA treated with nitrous acid has higher transformation activity in spheroplasts infected with T4v+ phage than in those infected with T4v- phage. Native donor DNA, treated with methylene blue and visible light-irradiated, developed a decrease of the transformation activity in T4v- phage-infected spheroplasts as compared with T4v+ phage-infected spheroplasts. Hydroxylamine treatment of native and denatured donor DNA did not reveal any differences in the transforming activity for v+ and v- recipients. Denatured donor DNA was more resistant to the effect of hydroxylamine than native DNA.  相似文献   

11.
We have investigated, by electron microscopy, replicative intermediate produced early after infection of Escherichia coli with two phage T4 gene 32 mutants (amA453 and tsG26) which replicate their parental DNA but are defective in secondary replications and in moderating the activities of recombination nucleases. Under conditions completely restrictive for progeny production, both of these mutant produced replicative intermediates, each containing a single internal loop. Both branches of these loops were double stranded; i.e., both leading and lagging strands were synthesized. The replicative intermediates of these mutants qualitatively and quantitatively resembled early replicating wild-type T4 chromosomes after solitary infection of E. coli. However, in contrast to intracellular wild-type T4 DNA isolated from multiple infection, the mutant DNAs showed neither multiple branches nor multiple tandem loops. These results demonstrate that a truncated gene 32 protein which consists of less than one-third of the wild-type T4 helix-destabilizing protein can facilitate the functions of T4 replication proteins, specifically those of T4 DNA polymerase and priming proteins. Our results also support the hypothesis that the generation of multiple tandem loops or branches in vegetative T4 DNA depends on recombination (Mosig et al., in B. Alberts, ed., Mechanistic Studies of DNA Replication and Genetic Recombination, p. 527-543, Academic Press, Inc., New York, 1980).  相似文献   

12.
Most of the intracellular T4 DNA made in the presence of 9-aminoacridine is of lower molecular weight than mature T4 DNA and does not get packaged into phage particles. Using a T4 DNA transformation assay, we have examined this intracellular T4 DNA for its content of 9-aminoacridine-induced revertants of certain rII gene frameshift mutations. The proportion of acridine-induced revertants in the intracellular DNA population is close to that found in the phage progency made in the presence of 9-aminoacridine. Thus, the generation of low molecular weight T4 DNA in the presence of 9-aminoacridine is not, in itself, also a mutagenic process.  相似文献   

13.
The types of methylases are found in the cellular extract of Escherichia coli B, infected with phage DDVI. One of them is a cellular enzyme, which methylates adenine to form 6-methylaminopurine (6-MAP) and is repressed in the infected cell in vivo. The second type, which is not found in the non-infected cells, is specific for phage DDVI and induces the formation of 7-methylguanine (7-MG). Both enzymes recognize various sites, which accounts for the ratio 6-MAP/7-MG to vary in heterological DNAs between 2.07 in phage Sd DNA and 0.40 in phage DDII DNA. During in vitro incubation with homologous methylases phage DDVI DNA and especially phage T2 DNA are subjected to further methylation, which is probably indicative of their "undermethylation" in vivo. The DDVI-specific enzyme, similar to B-specific type, methylates DNA with a normal set of nitrogenous bases (phages Sd and DDII), as well as DNAs containing 5-oxymethylcytosine and glucose (phages T2 and DDVI). Both methylases under study use only native double-helical DNA as substrate and are strongly inhibited by S-adenosylhomocysteine. Phage DDVI Methylase is characterized by low stability.  相似文献   

14.
The replication of plasmids containing fragments of the T4 genome, but no phage replication origins, was analyzed as a possible model for phage secondary (recombination-dependent) replication initiation. The replication of such plasmids after T4 infection was reduced or eliminated by mutations in several phage genes (uvsY, uvsX, 46, 59, 39, and 52) that have previously been shown to be involved in secondary initiation. A series of plasmids that collectively contain about 60 kilobase pairs of the T4 genome were tested for replication after T4 infection. With the exception of those known to contain tertiary origins, every plasmid replicated in a uvsY-dependent fashion. Thus, there is no apparent requirement for an extensive nucleotide sequence in the uvsY-dependent plasmid replication. However, homology with the phage genome is required since the plasmid vector alone did not replicate after phage infection. The products of plasmid replication included long concatemeric molecules with as many as 35 tandem copies of plasmid sequence. The production of concatemers indicates that plasmid replication is an active process and not simply the result of passive replication after the integration of plasmids into the phage genome. We conclude that plasmids with homology to the T4 genome utilize the secondary initiation mechanism of the phage. This simple model system should be useful in elucidating the molecular mechanism of recombination-dependent DNA synthesis in phage T4.  相似文献   

15.
16.
Nonglucosylated T6 phage (T6gtam 16am30, hereafter called T6alpha gt-) were found to have two structural anomalies when compared with wild-type T6. The DNA of T6alpha gt- phage contains single-strand interruptions. These can be seen both during infection, in the pool of replicating DNA, and in DNA extracted from purified phage. In addition, the sodium dodecyl sulfate-polyacrylamide gel pattern of T6alpha gt- phage structural proteins reveals a protein band not found in T6. The altered protein has a mobility slightly faster than that of the major head protein, and it is not removed by osmotic shock. The restriction activity of Escherichia coli B directed against T6alpha gt- phage is abolished by preinfection of the cells for 4 min with T4 im m2. The shut-off of restriction is observed either by the rescue of superinfecting T6alpha gt- or by the failure to detect degradation of incoming T6alpha gt- DNA. This effect is resistant to rifampin and chloramphenicol.  相似文献   

17.
Mutants of bacteriophage T4D that are defective in genes 42 (dCMP hydroxymethylase), 46 (DNA exonuclease), and 56 (dCTPase) produce limited amounts of phage DNA in Escherichia coli B. In this DNA, glucoylated 5-hydroxymethylcytosine is completely replaced by cytosine. We found that this DNA rapidly becomes fragmented in vivo to at least 16 discrete bands as visualized on agarose gels subjected to electrophoresis. The sizes of the fragments ranged from more than 20 to less than 2 kilobase pairs. When DNAs from two of these bands were radioactively labeled in vitro by nick translation and hybridized to XbaI restriction fragments of cytosine-containing T4 DNA, evidence was obtained that the two bands are genetically distinct, i.e., they contain DNA from different parts of the T4 genome. Mutational inactivation of T4 endonuclease II (gene denA) prevented the fragmentation. Three different mutations in T4 endonuclease IV (gene denB) caused the same minor changes in the pattern of fragments. We conclude that T4 endonuclease II is required, and endonuclease IV is involved to a minor extent, in the in vivo production of these cytosine-containing T4 DNA fragments. We view these DNA fragments as "restriction fragments" since they represent degradation products of DNA "foreign" to T4, they are of discrete size, and they are genetically distinct. Thus, this report may represent the first, direct in vivo demonstration of discretely sized genetically distinct DNA restriction fragments.  相似文献   

18.
The process of phage T4 DNA injection into the host cell was studied under a fluorescent microscope, using 4',6-diamidino-2-phenylindole as a DNA-specific fluorochrome. The phage DNA injection was observed when spheroplasts were infected with the artificially contracted phage particles having a protruding core. The DNA injection was mediated by the interaction of the core tip with the cytoplasmic membrane of the spheroplast. A membrane potential was not required for the process of DNA injection. On the other hand, DNA injection upon infection by intact noncontracted phage of the intact host cell was inhibited by an energy poison. Based on these observations, together with results from previous work, a model for the T4 infection process is presented, and the role of the membrane potential in the infection process is discussed.  相似文献   

19.
We investigated the efficiency and the mechanism of action of a tetraphenyl porphyrin derivative in its photoreaction with T7 phage as surrogate of non-enveloped DNA viruses. TPFP was able to sensitize the photoinactivation of T7 phage in spite of the lack of its binding to the nucleoprotein complex. The efficiency of TPFP photosensitization was limited by the aggregation and by the photobleaching of porphyrin molecules. Addition of sodium azide or 1,3-dimethyl-2-thiourea (DMTU) to the reaction mixture moderated T7 inactivation, however, neither of them inhibited T7 inactivation completely. This result suggests that both Type I and Type II reaction play a role in the virus inactivation. Optical melting studies revealed structural changes in the protein part but not in the DNA of the photochemically treated nucleoprotein complex. Polymerase chain reaction (PCR) also failed to demonstrate any DNA damage. Circular dichroism (CD) spectra of photosensitized nucleoprotein complex indicated changes in the secondary structure of both the DNA and proteins. We suggest that damages in the protein capsid and/or loosening of protein-DNA interaction can be responsible for the photodynamic inactivation of T7 phage. The alterations in DNA secondary structure might be the result of photochemical damage in phage capsid proteins.  相似文献   

20.
We have developed a defective phage system for the isolation and analysis of phage T4 replication origins based on the T4-mediated transduction of plasmid pBR322. During the initial infection of a plasmid-containing cell, recombinant plasmids with T4 DNA inserts are converted into fully modified linear DNA concatamers that are packaged into T4 phage particles, to create defective phage (transducing particles). In order to select T4 replication origins from genomic libraries of T4 sequences cloned into the plasmid pBR322, we searched for recombinant plasmids that transduce with an unusually high efficiency, reasoning that this should select for T4 sequences that function as origins on plasmid DNA after phage infection. We also selected for defective phage that can propagate efficiently with the aid of a coinfecting helper phage during subsequent rounds of phage infection. which should select for T4 sequences that can function as origins on the linear DNA present in the defective phage. Several T4 inserts were isolated repeatedly in one or both of these selective procedures, and these were mapped to particular locations on the T4 genome. When plasmids were selected in this way from genomic libraries constructed using different restriction nucleases, they contained overlapping segments of the T4 genome, indicating that the same T4 sequences were selected. The inserts in two of the selected plasmids permit a very high frequency of transduction from circular plasmids: these have been shown to contain a special type of T4 replication origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号