首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of Inhibitors on Alanine Transport in Isolated Rabbit Ileum   总被引:4,自引:4,他引:0  
The effects of metabolic inhibitors and ouabain on alanine transport across rabbit ileum, in vitro, have been investigated. Net transport of alanine and Na across short-circuited segments of ileum is virtually abolished by cyanide, 2,4-dinitrophenol, iodoacetate, and ouabain. However, these inhibitors do not markedly depress alanine influx from the mucosal solution, across the brush border, into the intestinal epithelium, and they do not significantly affect the Na dependence of this entry process. The results of this investigation indicate that: (a) the Na dependence of alanine influx does not reflect a mechanism in which the sole function of Na is to link metabolic energy directly to the influx process; and (b) the inhibition of net alanine transport across intestine is, in part, the result of an increased rate coefficient for alanine efflux out of the cell across the brush border. Although these findings do not exclude a direct link between metabolic energy and alanine efflux, the increased efflux may be the result of the increased intracellular Na concentration in the presence of these inhibitors. The results of these studies are qualitatively consistent with a model for alanine transport across the brush border which does not include a direct link to metabolic energy.  相似文献   

2.
A role has been sought for the calcium binding protein (CaBP) which is synthesised de novo after giving cholecalciferol (CC, vitamin D3) to rachitic chicks. After homogenation of mucosal cells in sucrose media, the CaBP was found in the 78,000 X g supernatant. Therefore, the CaBP is either present in the cytoplasm or in some labile membrane structure, e.g. the microvilli, that is disrupted by homogenation. This intracellular CaBP may facilitate diffusion of Ca into intestinal cells. No secretion of CaBP into the lumen could be detected nor did excess CaBP placed in the lumen increase Ca absorption of rachitic chicks. The mitochondria of duodenal mucosal cells contained most of the Ca being translocated by the small intestine. CaBP caused release of Ca already present in mitochondria and diminished Ca uptake by mitochondria and it appreared to do this by increasing the rate of Ca flux across the mitochondrial membrane. This would explain the greater "turnover" of Ca in mucosal cells of cholecalciferol-treated chicks. These and previous findings have been used to propose a scheme for the effect of cholecalciferol on Ca transport from the small intestine.  相似文献   

3.
Changes in the Ca(2+) homeostasis have been implicated in cell injury and death. However, Ca(2+) participation in ethanol-induced chronic gastric mucosal injury has not been elucidated. We have developed a model of ethanol-induced chronic gastric injury in rats, characterized by marked alterations in plasma membranes from gastric mucosa and a compensatory cell proliferation, which follows ethanol withdrawal. Therefore, the present study explored the possible role of intracellular Ca(2+) in the oxidative metabolism and in acid secretion in this experimental model. Glucose oxidation was greatly enhanced in the injured mucosa, as evaluated by CO(2) production by isolated mucosal preparations incubated with (14)C-radiolabeled glucose in different carbons. Oxygen consumption and acid secretion (aminopyrine accumulation) were also stimulated. A predominating secretory status was morphologically identified by electron microscopy in oxyntic cells of gastric mucosa from ethanol-treated rats. A coupling between secretory and metabolic effects induced by ethanol (demonstrated by an inhibitory effect of omeprazole in both parameters) was found. These ethanol-induced effects were also inhibited by addition of Ca(2+) chelators to isolated gastric mucosa samples. Lanthanum, a Ca(2+) channel blocker, inhibited ethanol-promoted increase of oxidative metabolism. In addition, a stimulated Ca(2+) uptake by mucosal minces and increased in vivo Ca(2+) levels in cytosolic and mitochondrial fractions, were also noticed. Enhanced glucose and oxygen consumptions were associated with higher ATP and NADP+ availability, whereas cytosolic NAD/NADH ratio (assessed by mucosal levels of lactate and pyruvate) was not significantly modified by the chronic ethanol administration. In conclusion, changes in Ca(2+) homeostasis, probably mainly due to increased extracellular Ca(2+) uptake, could mediate secretory and metabolic alterations found in the gastric mucosa from rats chronically treated with ethanol.  相似文献   

4.
Vanadate alters intestinal transport and may have a role in regulating cell function. To determine whether it influences calcium absorption, we tested the effects of acute and chronic vanadate administration on calcium absorption using single-pass perfusion of jejunal and ileal segments of the in vivo rat intestine. Acute vanadate administration increased the lumen-to-mucosa and net fluxes of calcium in both the jejunum and ileum. The increase was largely due to an enhancement of the saturable fluxes of calcium and was observed at 10(-4) M concentration of vanadate, but not at higher or lower concentrations of the oxyanion, except at the highest concentration used, 10(-2) M, where calcium absorption was inhibited. Chronic vanadate administration caused, on the other hand, no changes in calcium absorption. We have demonstrated previously that rat intestinal (Na+ + K+)-ATPase is inhibited by vanadate, an effect that could raise cell sodium and increase the efflux of sodium across the brush border membrane. The results suggest that the vanadate enhancement of calcium absorption may be related to an increased entry of calcium into the mucosa, possibly as a result of an augmented exchange through the Na+/Ca+ antiport system. Alternatively, vanadate may influence access to a calcium channel in the mucosal membrane of the intestinal epithelium, leading to the observed increase in absorption.  相似文献   

5.
In muscle cells the sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA) couples the free energy of ATP hydrolysis to pump Ca(2+) ions from the cytoplasm to the SR lumen. In addition, SERCA plays a key role in non-shivering thermogenesis through uncoupled reactions, where ATP hydrolysis takes place without active Ca(2+) translocation. Capsaicin (CPS) is a naturally occurring vanilloid, the consumption of which is linked with increased metabolic rate and core body temperature. Here we document the stimulation by CPS of the Ca(2+)-dependent ATP hydrolysis by SERCA without effects on Ca(2+) accumulation. The stimulation by CPS was significantly dependent on the presence of a Ca(2+) gradient across the SR membrane. ATP activation assays showed that the drug reduced the nucleotide affinity at the catalytic site, whereas the affinity at the regulatory site increased. Several biochemical analyses indicated that CPS stabilizes an ADP-insensitive E(2)P-related conformation that dephosphorylates at a higher rate than the control enzyme. Under conditions where uncoupled SERCA was specifically inhibited by the treatment with fluoride, low temperatures, or dimethyl sulfoxide, CPS had no stimulatory effect on ATP hydrolysis by SERCA. It is concluded that CPS stabilizes a SERCA sub-conformation where Ca(2+) is released from the phosphorylated intermediate to the cytoplasm instead of the SR lumen, increasing ATP hydrolysis not coupled with Ca(2+) transport. To the best of our knowledge CPS is the first natural drug that augments uncoupled SERCA, presumably resulting in thermogenesis. The role of CPS as a SERCA modulator is discussed.  相似文献   

6.
The effects of deoxycholate, taurocholate and cholate on transport and mucosal ATPase activity have been investigated in the rat jejunum in vivo using closed-loop and perfusion techniques. In the closed-loops, 5 mM deoxycholate selectively inactivated (Na+ + K+)-ATPase, and net secretion of Na+ induced by 2.5 mM deoxycholate was due to reduced lumen to plasma flux of the ion; deoxycholate (2.5 mM) produced marked inhibition of 3-0-methylglucose transport. Luminal disappearance rates of deoxycholate (60.5 plus or minus 2.9% per g wet st of gut) greatly exceeded those of taurocholate (4.3 plus or minus 1.0). In the perfusion studies 1 mM deoxycholate induced net secretion of water, Na+ and C1-, and inhibited active glucose transport; concomitantly "total" ATPase, (Na+ + K+)-ATPase, and Mg-2+-ATPase were inhibited. At higher concentrations (5 mM) deoxycholate stimulated Mg-2+-ATPase activity. Taurocholate and cholate at 1mM had no effect on transport of (Na+ + K+)-ATPase. Mucosal lactase, sucrase and maltase activities were not affected by 1 mM deoxycholate, taurocholate or cholate. These results suggest that deoxycholate inhibits sodium-coupled glucose transport by inhibition of (Na+ + K+)-ATPase at the lateral and basal membranes of the epithelial cell, rather than from an effect at the brush-border membrane level.  相似文献   

7.
Lysine Transport across Isolated Rabbit Ileum   总被引:7,自引:2,他引:5       下载免费PDF全文
Lysine transport by in vitro distal rabbit ileum has been investigated by determining (a) transmural fluxes across short-circuited segments of the tissue; (b) accumulation by mucosal strips; and (c) influx from the mucosal solution across the brush border into the epithelium. Net transmural flux of lysine is considerably smaller than that of alanine. However, lysine influx across the brush border and lysine accumulation by mucosal strips are quantitatively comparable to alanine influx and accumulation. Evidence is presented that the "low transport capacity" of rabbit ileum for lysine is due to: (a) a carrier-mediated process responsible for efflux of lysine out of the cell across the serosal and/or lateral membranes that is characterized by a low maximal velocity; and (b) a high "backflux" of lysine out of the cell across the mucosal membrane. A possible explanation for the latter observation is discussed with reference to the relatively low Na dependence of lysine transport across the intestinal brush border.  相似文献   

8.
Hypoxia was induced by exposing rats to an atmosphere of 93% N2, 7% O2 for 4-48 hr. The animals became hypoxic as indicated by a decreased blood PaO2 (mean +/- SEM: 48 +/- 10 mm Hg). Hypoxia was accompanied by metabolic acidosis (pH 7.22 +/- 0.02) and decreased serum bicarbonate levels (9.0 +/- 4.0 meq/liter). Hypoxic rats also showed evidence of tissue hypoxia; liver tryptophan oxygenase levels were increased to 21 +/- 2 nmole/min/mg protein. In the hypoxic animals there was decreased jejunal mucosal (Na+-K+)-ATPase activity and an inhibition of active intestinal transport of sodium, glucose, 3-O-methylglucose, galactose, tyrosine, phenylalanine, and glycine as determined by in vivo perfusion studies. Jejunal fructose transport, which has a large passive component, was unaffected by hypoxia. The electrolyte, carbohydrate, and amino acid transport alterations produced by hypoxia were seen in the absence of an effect on jejunal cell number, DNA synthesis, or cell turnover. There was also no evidence of histological or ultrastructural damage. Furthermore, studies with a luminal macromolecular tracer, horseradish peroxidase, indicated that the jejunal lumen-to-blood barrier to macromolecules was also unaltered in these hypoxic animals. In vitro local oxygenation of the jejunum, by bubbling of 95% O2:5% CO2, markedly improved sodium and glucose (but not 3-O-methylglucose) absorption in hypoxic rats and control rats. The (Na+-K+)-ATPase activity of the jejunal mucosa of hypoxic rats was significantly enhanced by the local bubbling of 95% O2:5% CO2. Overall, our data indicate that during relatively mild conditions of hypoxia there is an inhibition of jejunal (Na+-K+)-ATPase activity and related transport processes that is prevented by in situ oxygenation.  相似文献   

9.
Calcium (Ca) affects many cellular functions of the respiratory tract mucosa and might alter the viscoelastic properties of mucus. To evaluate Ca homeostasis in a respiratory epithelium we investigated transport of Ca by the canine tracheal mucosa. Mucosal tissues were mounted in Ussing-type chambers and bathed with Krebs-Henseleit solution at 37 degrees C. Unidirectional fluxes of 45Ca were determined in tissues that were matched by conductance and short-circuit current (SCC). Under short-circuit conditions there was a significant net Ca secretion of 1.82 +/- 0.36 neq . cm-2 . h-1 (mean +/- SE). Under open-circuit conditions, where the spontaneous transepithelial potential difference could attract Ca toward the lumen, net Ca secretion increased significantly to 4.40 +/- 1.14 compared with 1.54 +/- 1.17 neq . cm-2 . h-1 when the preparation was short-circuited. Addition of a metabolic inhibitor, 2,4-dinitrophenol (2 mM in the mucosal bath), decreased tissue conductance and SCC and slightly decreased the unidirectional movement of Ca from submucosa to lumen. Submucosal epinephrine (10 microM) significantly enhanced Ca secretion by 2.0 +/- 0.63 neq . cm-2 . h-1. Submucosal ouabain (0.1 mM) failed to inhibit Ca secretion. The data suggest that canine tracheal mucosa secretes Ca; this secretory process is augmented by epinephrine or by the presence of a transepithelial potential difference as found under in vivo conditions.  相似文献   

10.
In vitro and in vivo Ca(2+)-uptake by the liver is increased by ferric lactate. In vitro albumin and deferoxamine inhibit ferric lactate effects. Electrophoresis demonstrates the binding of ferric lactate to albumin. In vivo, ferric lactate induces a significant increase of Ca(2+)-uptake by liver, with a maximum of 2.9 nmol/g against 0.66 nmol/g for control livers (P less than 0.005) between 5 and 24 h after administration. This uptake modification is reversible, while the amount of iron (measured as 59Fe taken up) remains constant throughout the experiment. The affinity of ferric lactate for protein and the iron mass-dependence of Ca(2+)-uptake increase support for the hypothesis of a ferric lactate-cell membrane interaction rather than an iron-catalyzed cell injury by lipid peroxidation as the major event leading to an increased Ca(2+)-uptake.  相似文献   

11.
Stimulation of muscarinic receptors in the duodenal mucosa raises cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)), thereby regulating duodenal epithelial ion transport. However, little is known about the downstream molecular targets that account for this Ca(2+)-mediated biological action. Ca(2+)-activated K(+) (K(Ca)) channels are candidates, but the expression and function of duodenal K(Ca) channels are poorly understood. Therefore, we determined whether K(Ca) channels are expressed in the duodenal mucosa and investigated their involvement in Ca(2+)-mediated duodenal epithelial ion transport. Two selective blockers of intermediate-conductance Ca(2+)-activated K(+) (IK(Ca)) channels, clotrimazole (30 muM) and 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34; 10 muM), significantly inhibited carbachol (CCh)-induced duodenal short-circuit current (I(sc)) and duodenal mucosal bicarbonate secretion (DMBS) in mice but did not affect responses to forskolin and heat-stable enterotoxin of Escherichia coli. Tetraethylammonium, 4-aminopyridine, and BaCl(2) failed to inhibit CCh-induced I(sc) and DMBS. A-23187 (10 muM), a Ca(2+) ionophore, and 1-ethyl-2-benzimidazolinone (1-EBIO; 1 mM), a selective opener of K(Ca) channels, increased both I(sc) and DMBS. The effect of 1-EBIO was more pronounced with serosal than mucosal addition. Again, both clotrimazole and TRAM-34 significantly reduced A23187- or 1-EBIO-induced I(sc) and DMBS. Moreover, clotrimazole (20 mg/kg ip) significantly attenuated acid-stimulated DMBS of mice in vivo. Finally, the molecular identity of IK(Ca) channels was verified as KCNN4 (SK4) in freshly isolated murine duodenal mucosae by RT-PCR and Western blotting. Together, our results suggest that the IK(Ca) channel is one of the downstream molecular targets for [Ca(2+)](cyt) to mediate duodenal epithelial ion transport.  相似文献   

12.
The amidated beta-casomorphin morphiceptin Tyr-Pro-Phe-Pro-NH2 is an opioid peptide isolated from bovine milk beta-casein digests whose physiological significance remains unclear. Opiates are known to modify intestinal electrolyte transport by acting on receptors located on the serosal side of the intestine. The aim of the present study was to determine under what conditions morphiceptin can act from the luminal side. When added to the serosal side of untreated rabbit ileum in an Ussing chamber in vitro, 10(-3) M morphiceptin acted through an opiate mechanism to reduce simultaneously short-circuit current (delta Isc = 0.33 +/- 0.07 muEq.hr-1.cm-2) and stimulate net Na and Cl absorption (delta JnetNa = 1.62 +/- 0.11 and delta JnetCl = 2.07 +/- 0.08 muEg.hr-1.cm-2). After mucosal addition under the same conditions, morphiceptin was degraded without any opiate action on electrolyte transport. Pretreatment of the ileum by 10(-3) M diisopropylfluorophosphate, which inhibited brush-border dipeptidylpeptidase IV, prevented mucosal degradation of morphiceptin. Under these conditions, morphiceptin was able, when added mucosally, to cross the epithelium intact (Jm----s = 1.8 +/- 0.16 nmole.hr-1.cm-2) and to stimulate electrolyte absorption by means of an opioid mechanism (delta Isc = 0.22 +/- 0.02 muEq.hr-1.cm-2). These results showed that the action of morphiceptin from the lumen depends on its transfer intact to the serosal side of the intestine where the opiate receptors are located. The limiting step in this transfer is at the brush-border membrane, where dipeptidylpeptidase IV in particular seems to play a major role.  相似文献   

13.
Airway epithelia are confronted with distinct signals emanating from the luminal and/or serosal environments. This study tested whether airway epithelia exhibit polarized intracellular free calcium (Ca(2+)(i)) and anion secretory responses to 5' triphosphate nucleotides (ATP/UTP), which may be released across both barriers of these epithelia. In both normal and cystic fibrosis (CF) airway epithelia, mucosal exposure to ATP/UTP increased Ca(2+)(i) and anion secretion, but both responses were greater in magnitude for CF epithelia. In CF epithelia, the mucosal nucleotide-induced response was mediated exclusively via Ca(2+)(i) interacting with a Ca(2+)-activated Cl(-) channel (CaCC). In normal airway epithelia (but not CF), nucleotides stimulated a component of anion secretion via a chelerythrine-sensitive, Ca(2+)-independent PKC activation of cystic fibrosis transmembrane conductance regulator. In normal and CF airway epithelia, serosally applied ATP or UTP were equally effective in mobilizing Ca(2+)(i). However, serosally applied nucleotides failed to induce anion transport in CF epithelia, whereas a PKC-regulated anion secretory response was detected in normal airway epithelia. We conclude that (1) in normal nasal epithelium, apical/basolateral purinergic receptor activation by ATP/UTP regulates separate Ca(2+)-sensitive and Ca(2+)-insensitive (PKC-mediated) anion conductances; (2) in CF airway epithelia, the mucosal ATP/UTP-dependent anion secretory response is mediated exclusively via Ca(2+)(i); and (3) Ca(2+)(i) regulation of the Ca(2+)-sensitive anion conductance (via CaCC) is compartmentalized in both CF and normal airway epithelia, with basolaterally released Ca(2+)(i) failing to activate CaCC in both epithelia.  相似文献   

14.
The influence of glutathione (1 mmol/L) (GSH) on in vitro mucosal uptake and in vivo absorption of75Se-labeled selenite (10 μmol/L) was investigated in rat jejunum. For comparison, the effect ofl-cysteine (1 mmol/L) on in vivo absorption of75Se-labeled selenite was also studied. In the in vitro, uptake experiments, only the mucosal surface was exposed to the incubation medium for 3 min. For the in vivo experiments, a luminal perfusion technique was employed. GSH inhibited in vitro mucosal Se uptake, whereas absorption in vivo was stimulated by GSH.l-Cysteine also stimulated in vivo Se absorption, confirming former in vitro mucosal uptake experiments. Thus, unlikel-cysteine, GSH affected in vitro and in vivo absorption of Se from selenite differently. Enzymatic cleavage of products of the reaction of selenite with GSH occuring more efficiently under in vivo than in vitro conditions may be a prerequisite for the stimulatory effect of GSH on Se absorption. This apparently does not apply to the stimulatory effect of cysteine. Since, GSH occurs in the intestinal lumen under physiological conditions, it may contribute to the high bioavailability of Se from selenite.  相似文献   

15.
The Ca(2+) coupling between endoplasmic reticulum (ER) and mitochondria is central to multiple cell survival and cell death mechanisms. Cytoplasmic [Ca(2+)] ([Ca(2+)](c)) spikes and oscillations produced by ER Ca(2+) release are effectively delivered to the mitochondria. Propagation of [Ca(2+)](c) signals to the mitochondria requires the passage of Ca(2+) across three membranes, namely the ER membrane, the outer mitochondrial membrane (OMM) and the inner mitochondrial membrane (IMM). Strategic positioning of the mitochondria by cytoskeletal transport and interorganellar tethers provides a means to promote the local transfer of Ca(2+) between the ER membrane and OMM. In this setting, even >100 microM [Ca(2+)] may be attained to activate the low affinity mitochondrial Ca(2+) uptake. However, a mitochondrial [Ca(2+)] rise has also been documented during submicromolar [Ca(2+)](c) elevations. Evidence has been emerging that Ca(2+) exerts allosteric control on the Ca(2+) transport sites at each membrane, providing mechanisms that may facilitate the Ca(2+) delivery to the mitochondria. Here we discuss the fundamental mechanisms of ER and mitochondrial Ca(2+) transport, particularly the control of their activity by Ca(2+) and evaluate both high- and low-[Ca(2+)]-activated mitochondrial calcium signals in the context of cell physiology.  相似文献   

16.
Villin is an actin-binding protein localized in intestinal and kidney brush borders. In vitro, villin has been demonstrated to bundle and sever F-actin in a Ca(2+)-dependent manner. We generated knockout mice to study the role of villin in vivo. In villin-null mice, no noticeable changes were observed in the ultrastructure of the microvilli or in the localization and expression of the actin-binding and membrane proteins of the intestine. Interestingly, the response to elevated intracellular Ca(2+) differed significantly between mutant and normal mice. In wild-type animals, isolated brush borders were disrupted by the addition of Ca(2+), whereas Ca(2+) had no effect in villin-null isolates. Moreover, increase in intracellular Ca(2+) by serosal carbachol or mucosal Ca(2+) ionophore A23187 application abolished the F-actin labeling only in the brush border of wild-type animals. This F-actin disruption was also observed in physiological fasting/refeeding experiments. Oral administration of dextran sulfate sodium, an agent that causes colonic epithelial injury, induced large mucosal lesions resulting in a higher death probability in mice lacking villin, 36 +/- 9.6%, compared with wild-type mice, 70 +/- 8.8%, at day 13. These results suggest that in vivo, villin is not necessary for the bundling of F-actin microfilaments, whereas it is necessary for the reorganization elicited by various signals. We postulate that this property might be involved in cellular plasticity related to cell injury.  相似文献   

17.
G Periz  M E Fortini 《The EMBO journal》1999,18(21):5983-5993
Maintaining high Ca(2+) concentrations in the lumen of the endoplasmic reticulum is important for protein synthesis and transport. We identified a lethal complementation group recovered in a screen for mutations that reduce Notch activity as loss-of-function alleles of the Drosophila Ca(2+)-ATPase gene Ca-P60A. Analysis of Ca-P60A mutants indicates that Ca(2+)-ATPase is essential for cell viability and tissue morphogenesis during development. Cultured cells treated with Ca(2+)-ATPase inhibitors exhibit impaired Notch cleavage and receptor trafficking to the cell surface, explaining the genetic interaction between Ca(2+)-ATPase and Notch. Notch and several other transmembrane proteins are mislocalized in tissue clones homozygous for Ca-P60A mutations, demonstrating a general effect on membrane protein trafficking caused by a deficiency in Ca(2+)-ATPase.  相似文献   

18.
The Ca(2+)-independent acceleration of dephosphorylation of the regulatory light chain of smooth muscle myosin and relaxation of smooth muscle by telokin are enhanced by cyclic nucleotide-activated protein kinase(s) [Wu et al. (1998) J. Biol. Chem. 273, 11362-113691. The purpose of this study was to determine the in vivo site(s) and in vitro rates of telokin phosphorylation and to evaluate the possible effects of sequential phosphorylation by different kinases. The in vivo site(s) of phosphorylation of telokin were determined in rabbit smooth muscles of longitudinal ileum and portal vein. Following stimulation of ileum with forskolin (20 microM) the serine at position 13 was the only amino acid to exhibit increased phosphorylation. Rabbit portal vein telokin was phosphorylated on both Ser-13 and -19 as a result of forskolin and GTPgammaS stimulation in vivo. Point mutation of Ser-13 (to Ala or Asp) abolished in vitro phosphorylation by cyclic nucleotide-dependent protein kinases.  相似文献   

19.
Although the role of Ca(2+) in liver transplantation injury has been the object of several studies, direct evidence for alterations in intracellular Ca(2+) homeostasis after cold preservation-warm reoxygenation (CP/WR) has never been presented. We thus investigated the effects of CP/WR on steady-state Ca(2+) and responses to a Ca(2+)-mobilizing agonist. Isolated rat hepatocytes were suspended in University of Wisconsin solution, stored at 4 degrees C for 0, 24, and 48 h, and reoxygenated at 37 degrees C for 1 h. Cytosolic Ca(2+) was measured in single cells by digitized fluorescence videomicroscopy. CP/WR caused a significant increase in steady-state cytosolic Ca(2+), which was inversely proportional to cell viability. Pretreatment of hepatocytes with an agent that protects mitochondrial function attenuated the increase in steady-state cytosolic Ca(2+) and improved hepatocyte viability. Ca(2+) responses to the purinergic agonist ATP also increased significantly as a function of cold storage time. This increase was related to an increase in the size of inositol 1,4,5-trisphosphate-sensitive Ca(2+) stores and subsequent capacitative Ca(2+) entry. Thus CP/WR significantly perturbs steady-state hepatocellular Ca(2+) and responses to Ca(2+)-mobilizing agonists, which may contribute to hepatocyte metabolic dysfunction observed after CP/WR.  相似文献   

20.
Stimulation of muscarinic receptors in duodenal mucosa raises intracellular Ca(2+), which regulates ion transport, including HCO(3)(-) secretion. However, the underlying Ca(2+) handling mechanisms are poorly understood. The aim of the present study was to determine whether Na(+)/Ca(2+) exchanger (NCX) plays a role in the regulation of duodenal mucosal ion transport and HCO(3)(-) secretion by controlling Ca(2+) homeostasis. Mouse duodenal mucosa was mounted in Ussing chambers. Net ion transport was assessed as short-circuit current (I(sc)), and HCO(3)(-) secretion was determined by pH-stat. Expression of NCX in duodenal mucosae was analyzed by Western blot, and cytosolic Ca(2+) in duodenocytes was measured by fura 2. Carbachol (100 muM) increased I(sc) in a biphasic manner: an initial transient peak within 2 min and a later sustained plateau starting at 10 min. Carbachol-induced HCO(3)(-) secretion peaked at 10 min. 2-Aminoethoxydiphenylborate (2-APB, 100 muM) or LiCl (30 mM) significantly reduced the initial peak in I(sc) by 51 or 47%, respectively, and abolished the plateau phase of I(sc) without affecting HCO(3)(-) secretion induced by carbachol. Ryanodine (100 muM), caffeine (10 mM), and nifedipine (10 muM) had no effect on either response to carbachol. In contrast, nickel (5 mM) and KB-R7943 (10-30 muM) significantly inhibited carbachol-induced increases in duodenal mucosal I(sc) and HCO(3)(-) secretion. Western blot analysis showed expression of NCX1 proteins in duodenal mucosae, and functional NCX in duodenocytes was demonstrated in Ca(2+) imaging experiments where Na(+) depletion elicited Ca(2+) entry via the reversed mode of NCX. These results indicate that NCX contributes to the regulation of Ca(2+)-dependent duodenal mucosal ion transport and HCO(3)(-) secretion that results from stimulation of muscarinic receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号