首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relation between strontium-85 uptake by young lettuce plants and soil solution composition is discussed. Uptake from soils is furthermore compared to the uptake from nutrient solutions. A close relationship is shown to exist between the concentration of Sr in the plant and the Sr/Ca ratio in the solution, either in the nutrient medium or in the soil solution. The activity of the other ions in solution is shown to have only minor effects on the uptake of Sr. Results are discussed in the context of the hypothesis that the soil liquid phase is the environment from which plants primarily withdraw their nutrients.  相似文献   

2.
Calcium/strontium and 87Sr/86Sr ratios in foliage can be used to determine the relative importance of different soil sources of Ca to vegetation, if the discrimination of Ca/Sr by the plant between nutrient sources and foliage is known. We compared these tracers in the foliage of sugar maple (Acer saccharum) to the exchange fraction and acid leaches of soil horizons at six study sites in the White Mountains of New Hampshire, USA. In a previous study, sugar maple was shown to discriminate for Ca compared to Sr in foliage formation by a factor of 1.14 ± 0.12. After accounting for the predicted 14% shift in Ca/Sr, foliar Ca/Sr and 87Sr/86Sr ratios closely match the values in the Oie horizon at each study site across a 3.6-fold variation in foliar Ca/Sr ratios. Newly weathered cations, for which the Ca/Sr and 87Sr/86Sr ratios are estimated from acid leaches of soils, can be ruled out as a major Ca source to current foliage. Within sites, the 87Sr/86Sr ratio of the soil exchange pool in the Oa horizon and in the 0–10 cm and 10–20 cm increments of the mineral soil are similar to the Oie horizon and sugar maple foliar values, suggesting a common source of Sr in all of the actively cycling pools, but providing no help in distinguishing among them as sources to foliage. The Ca/Sr ratio in the soil exchange pool, however, decreases significantly with depth, and based on this variation, the exchange pool below the forest floor can be excluded as a major Ca source to the current sugar maple foliage. This study confirms that internal recycling of Ca between litter, organic soil horizons and vegetation dominate annual uptake of Ca in northern hardwood ecosystems. Refinement of our understanding of Ca and Sr uptake and allocation in trees allows improvement in the use of Ca/Sr and 87Sr/86Sr ratios to trace Ca sources to plants.  相似文献   

3.
测定了松嫩平原草甸3种主要植物羊草(Leymus chinensis)、芦苇(Phragmites communis)和尖叶胡枝子(Lespedeza hedysaroides)叶片全氮、全磷浓度,并分析了它们与土壤全氮、全磷浓度的关系.结果表明:3种植物叶片全氮浓度种间差异显著(P<0.05),而全磷浓度种间差异不显...  相似文献   

4.
Lulli  Luciano  Bragato  Gilberto  Gardin  Lorenzo 《Plant and Soil》1999,214(1-2):85-92
An intensive survey was carried out on a 12-year-old experimental truffle bed of Tuber melanosporum Vitt. located in the central Apennines. The aim of the investigation was to relate the presence and carpophore production of T. melanosporum to changes in soil structure, aeration and fertility — expressed in terms of 0.25–2.00 mm aggregate fraction, total organic carbon, DTPA-extractable Mn and host plant height — and to determine if these modifications, whenever present, could be ascribed to soil differentiation within the truffle bed. The occurrence of pianelli — i.e. areas with little herbaceous ground cover created by T. melanosporum — showed a close relationship with host plant height and aeration of soil surface layers. Where pianelli occurred, the height of symbiont trees increased and the content of reduced Mn, indicating the presence of a well-aerated soil environment, decreased. The variation of host plant height was attributable not only to the increased absorption of nutrients related to the ectomycorrhizal partnership, but also to soil differentiation. The soils of the investigated area were characterized by a relatively low slope gradient, a rigid framework of gravel and a homogeneous physico-chemical behaviour, due to the predominance of Ca among exchangeable bases. In these environmental conditions, T. melanosporum was present in the rather thick soil belonging to Typic Rendolls, whereas it was absent in the area characterized by thin Lithic Rendolls. In the latter case, the plant cover was probably too scarce to protect T. melanosporum from summer dryness, and consequently the more resistant T. aestivum species prevailed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Warren  G. P.  Whitehead  D. C. 《Plant and Soil》1988,112(2):155-165
The available N of 27 soils from England and Wales was assessed from the amounts of N taken up over a 6-month period by perennial ryegrass grown in pots under uniform environmental conditions. Relationships between availability and the distribution of soil N amongst various fractions were then examined using multiple regression. The relationship: available soil N (mg kg–1 dry soil)=(Nmin×0.672)+(Ninc×0.840)+(Nmom×0.227)–5.12 was found to account for 91% of the variance in available soil N, where Nmin=mineral N, Ninc=N mineralized on incubation and Nmom=N in macro-organic matter. The N mineralized on incubation appeared to be derived largely from sources other than the macro-organic matter because these two fractions were poorly correlated. When availability was expressed in terms of available organic N as % of soil organic N (Nao) the closest relationship with other soil characteristics was: Nao=[Ninc×(1.395–0.0347×CNmom]+[Nmom×0.1416], where CNmom=CN ratio of the macro-organic matter. This relationship accounted for 81% of the variance in the availability of the soil organic N.The conclusion that the macro-organic matter may contribute substantially to the available N was confirmed by a subsidiary experiment in which the macro-organic fraction was separated from about 20 kg of a grassland soil. The uptake of N by ryegrass was then assessed on two subsamples of this soil, one without the macro-organic matter and the other with this fraction returned: uptake was appreciably increased by the macro-organic matter.  相似文献   

6.
7.
This paper discusses the results of a pot experiment conducted to study the effect of irrigation waters having varying Mg/Ca ratio (2, 4, 8 and 16) and electrolyte concentration (20 and 80 meq/l) on the soil properties and growth of wheat crop in two different soils. The development of salinity in the soils generally increased at higher electrolyte concentration of the irrigation water, but it was of a greater magnitude in the heavy-textured black soil dominated by montmorillonite clay mineral than in the light-textured alluvial soil having illite type of clay mineral. The accumulation of soluble salts as a result of saline water irrigation was higher in the surface layer than in the subsurface layer in both soils. The adsorption of Na and Mg in the soils increased with an increase in the Mg/Ca ratio and electrolyte concentration of the irrigation water. These changes in soil properties were adequately reflected by the grain and dry matter yields of wheat crop, which showed a significant reduction with an increase in the Mg/Ca ratio and electrolyte concentration of the irrigation water. However, the effects of these treatments were more pronounced in the heavy black clay soil than in the alluvial soil. Thus, the role of Mg is different from that of Ca under the conditions used in the experiment.  相似文献   

8.
The present study examined the effect of elevated Ca(2+) concentration in fusion/activation medium on the fusion and development of fetal fibroblast nuclear transfer (NT) porcine embryos. Frozen-thawed and serum starved fetal fibroblasts were transferred into the perivitelline space of enucleated oocytes. Cell fusion and activation were induced simultaneously with electric pulses in 0.3 M mannitol-based medium containing 0.1 or 1.0 mM CaCl(2). Some fused embryos were further activated 1 hr after the fusion treatment by exposure to an electric pulse. The NT embryos were cultured in vitro for 6 days. Fusion and blastocyst formation rates were significantly (P<0.05) increased by increasing the Ca(2+) concentration from 0.1 mM (67.1 and 6.3%) to 1.0 mM (84.7 and 15.8%). However, no difference in the number of cells in blastocysts was observed between the two groups. A higher percentage of blastocyst was also observed when control oocytes were parthenogenetically activated in the presence of elevated Ca(2+) (19.3% vs. 32.4%, P<0.05). When the reconstituted oocytes were fused in the medium containing 1.0 mM CaCl(2), increasing the number of pulses from 2 to 3 or an additional activation treatment did not enhance the blastocyst formation rate or cell number in blastocysts. These results demonstrate that increasing the Ca(2+) concentration in the fusion/activation medium can enhance the fusion and blastocyst formation rates of fetal fibroblast NT porcine embryos without an additional activation treatment.  相似文献   

9.
调查和分析测定同一产区不同土壤类型的黄花蒿土壤和植株不同部位的养分含量及青蒿素含量,并对其进行相关分析和因子分析,结果表明,青蒿素含量与土壤Ca的含量有显著的正相关关系,与根N、茎N素含量以及植株地下部和地上部的N素含量比有显著的负相关关系,与茎部和叶部的N素含量比有极显著负相关关系;黄花蒿植株叶片的N含量与土壤P含量有显著的正相关关系;影响青蒿素含量的主要因子是黄花蒿植株体内的养分含量,其次是土壤的养分含量以及土壤和植株等综合因子。通过施肥、适当补充土壤中的Ca和P素营养,改善土壤养分状况等各种途径来调节植株体内的养分,降低地下部和地上部的N素含量比值,茎叶部N素含量比值,提高青蒿素的含量,增施K肥,有利于黄花蒿的生长。  相似文献   

10.
Goh  K.M.  Pamidi  J. 《Plant and Soil》2003,250(1):1-13
Although considerable progress has been made in relating extractable soil S to plant S availability, most of these studies determined the extractable soil S at the beginning of the experiment to use as an index of soil S status. This bears little or no relationship to the S taken up by plants during the entire growing season. The present study investigates the changes in extractable soil S with time and relates these to changes in plant S uptake. Six soils with different long-term fertiliser histories (0, 21, 42 kg of S as superphosphate ha–1 applied since 1952) and animal camping treatments (camp and non-camp) were used in two pot systems (with and without plants). Carrier-free 35SO4–S was added to the soils, to provide the information on the transformations of recently added S between the different extractable S forms in soils and whether these transformations could predict plant-available S. The soils were pre-conditioned and then transferred to the glasshouse, where one set of pots were planted with perennial ryegrass (Lolium perenne L.) while the other set was left uncropped. Periodic plant harvests and soil samplings at four weekly intervals were conducted over a period of 20 weeks to determine plant S uptake and amounts of extractable soil S and 35S forms using five extractants. Same extractions of soil S and 35S were conducted for the initial soils. Results showed that HI-reducible and total soil S extracted by CaCl2, KH2PO4 and by KCl at 40°C were utilised significantly by plants but not those extracted by NaHCO3 and NaOH extractants. However, after the 8th week, plants continued to take up S even though levels of S extracted from the soil by CaCl2, KH2PO4 and by KCl at 40°C remained low and unchanged. These results suggest that soil S taken up by plants after the 8th week period originated directly from the mineralisation of soil organic S from S pools other than those present in the extractable soil S forms. Similar results were shown by 35S data, thereby confirming the complexity of determining plant S availability based on soil S extraction methods.  相似文献   

11.
Soil organic carbon (SOC) displaced by soil erosion is the subject of much current research and the fundamental question, whether accelerated soil erosion is a source or sink of atmospheric CO2, remains unresolved. A toposequence of terraced fields as well as a long slope was selected from hilly areas of the Sichuan Basin, China to determine effects of soil redistribution rates and processes on SOC stocks and dynamics. Soil samples for the determination of caesium‐137 (137Cs), SOC, total N and soil particle size fractions were collected at 5 m intervals along a transect down the two toposequences. 137Cs data showed that along the long slope transect soil erosion occurred in upper and middle slope positions and soil deposition appeared in the lower part of the slope. Along the terraced transect, soil was lost over the upper parts of the slopes and deposition occurred towards the downslope boundary on each terrace, resulting in very abrupt changes in soil redistribution over short distances either side of terrace boundaries that run parallel with the contour on the steep slopes. These data reflect a difference in erosion process; along the long slope transect, water erosion is the dominant process, while in the terraced landscape soil distribution is mainly the result of tillage erosion. SOC inventories (mass per unit area) show a similar pattern to the 137Cs inventory, with relatively low SOC content in the erosional sites and high SOC content in depositional areas. However, in the terraced field landscape C/N ratios were highest in the depositional areas, while along the long slope transect, C/N ratios were highest in the erosional areas. When the samples are subdivided based on 137Cs‐derived erosion and deposition data, it is found that the erosional areas have similar C/N ratios for both toposequences, while the C/N ratios in depositional areas are significantly different from each other. These differences are attributed to the difference in soil erosion processes; tillage erosion is mainly responsible for high‐SOC inventories at depositional positions on terraced fields, whereas water erosion plays a primary role in SOC storage at depositional positions on the long slope. These data support the theory that water erosion may cause a loss of SOC due to selective removal of the most labile fraction of SOC, while on the other hand tillage erosion only transports the soil over short distances with less effect on the total SOC stock.  相似文献   

12.
Shand  C.A.  Williams  B.L.  Smith  S.  Young  M.E. 《Plant and Soil》2000,222(1-2):1-13
We have determined the temporal changes in the concentration of dissolved organic carbon (DOC) and P and N components in soil solution following application of synthetic sheep urine (500 kg N ha-1) to a brown forest soil in boxes sown with Agrostis capillaris. Three contrasting defoliation treatments (no cutting, single cut before urine application and regular cutting twice per week) plus a fallow soil were studied. The synthetic urine contained 15N labelled urea and was P-free. Intact soil cores were taken after 2, 7, 14, 21 and 56 d and centrifuged to obtain soil solution. The urea in the synthetic urine was rapidly hydrolysed in the soil, increasing soil solution pH, DOC and total dissolved phosphorus (TDP) concentrations. For the regularly defoliated sward, DOC and P reached maximum concentrations (4000 mg DOC L-1 and 59 mg TDP L-1) on day 7. From their peak values, pH and DOC and P concentrations generally decreased with time and at day 56 were near those of the control. Concentrations of NH4 + and NO3 - in the no-urine treatments fluctuated and the greatest treatment differences were between the fallow soil and the soil sown with grass. Adding synthetic urine increased NH4 + concentrations during the first week, but NO3 - concentrations decreased. This was consistent with the 15N labelling of the NO3 - pool which required 3 weeks to reach that of 15NH4 +. Dissolved organic nitrogen (DON) reached a maximum value at day 7 with a concentration of 409 mg N L-1. The DON in soil solution contained no detectable amounts of 15N label indicating that it was derived from sources in the soil. Differences in soil solution composition related to the effect of the other cutting treatments and the fallow treatment were small compared to the effect of synthetic urine addition. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
我国东北土壤有机碳、无机碳含量与土壤理化性质的相关性   总被引:18,自引:0,他引:18  
祖元刚  李冉  王文杰  苏冬雪  王莹  邱岭 《生态学报》2011,31(18):5207-5216
根据黑龙江、吉林、辽宁省和内蒙古地区相关历史资料数据,分析了我国东北表层土壤(0-50 cm)土壤相关理化性质与有机碳、无机碳的相关性,得到如下结论:土壤全氮、碱解氮、全磷、速效磷、速效钾、K+离子交换量、Fe2O3、P2O5、总孔隙度均与土壤有机碳含量呈显著正相关(R2=0.10-0.94, n=38-345, P<0.0001),但与土壤无机碳含量则大多呈显著负相关(R2=0.11-0.30, n=37-122, P<0.01);与此相反,土壤pH值、容重与土壤有机碳呈负相关(R2=0.36-0.42,n=41-304, P<0.0001),而与无机碳呈显著正相关(R2=0.29-0.31,n=39-125, P <0.01)。表层土壤有机碳、无机碳与土壤理化性质呈相反变化趋势的结果说明,由于土壤利用方式变化所导致的土壤理化性质改变对土壤无机碳和有机碳可能具有相反影响。在研究土壤碳平衡过程中,应该充分考虑这种关系所导致的相互补偿作用,即有机碳的增加,可能意味着无机碳的减少,或者反之。目前研究中普遍忽略无机碳的变化,可能导致生态系统碳收支计算显著偏差,所获得的经验拟合方程有利于对我国东北地区土壤碳平衡研究产生的这种偏差进行粗略估计。  相似文献   

14.
Plant responses to increasing atmospheric CO2 concentrations have been studied intensively. However, the effects of elevated CO2 on root dynamics, which is important for global carbon budgets as well as for nutrient cycling in ecosystems, has received much less attention. We used minirhizotrons inside open-top chambers to study the effects of elevated atmospheric carbon dioxide concentration on root dynamics in a nutrient-poor semi-natural grassland in central Sweden. We conducted our investigation over three consecutive growing seasons during which three treatments were applied at the site: Elevated (≈ 700 μmol mol-1) and ambient (≈ 360 μmol mol-1) chamber levels of CO2 and a control, without a chamber. During 1997, a summer with two dry periods, the elevated treatment compared with ambient had 25% greater mean root counts, 65% greater above-ground biomass and 15% greater soil moisture. The chambers seemed responsible for changes in root dynamics, whereas the elevated CO2 treatment in general increased the absolute sum of root counts compared with the ambient chamber. In 1998, a wet growing season, there were no significant differences in shoot biomass or root dynamics and both chamber treatments had lower soil moisture than the control. We found that as seasonal dryness increased, the ratio of elevated – ambient shoot biomass production increased while the root to shoot ratio decreased. We conclude that this grasslands response to elevated CO2 is dependent on seasonal weather conditions and that CO2 enrichment will most significantly increase production in such a grassland when under water stress. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
川西亚高山林线过渡带及邻近植被土壤性质   总被引:6,自引:1,他引:6  
齐泽民  王开运  张远彬  谢玉华 《生态学报》2009,29(12):6325-6332
研究了川西亚高山林线过渡带及邻近植被上缘流石滩草甸与下缘冷杉林残积母质土壤物理、化学和生物学特性.结果表明:从流石滩草甸→林线过渡带→冷杉林,土层逐渐增厚,表层土壤(0~30 cm)粉粒、粘粒、物理性粘粒含量、团聚度、结构系数和自然含水量逐渐增高,砂粒含量逐渐降低,阳离子交换量(CEC)、交换性盐基含量、盐基饱和度以及水解性酸含量逐渐增高,pH值逐渐降低,有机质及养分库全P、全K、有效N、有效P和速效K含量逐渐增高,土壤物理结构和化学性质逐步有所改善,但亚高山林线过渡带区域残积母质土壤成土过程缓慢.林线过渡带表层土壤细菌、真菌、放线菌及微生物总量,土壤脲酶、蔗糖酶、酸性磷酸酶、中性磷酸酶、多酚氧化酶及过氧化氢酶活性高于邻近植被上缘流石滩草甸与下缘冷杉林,体现了作为生态交错带,林线过渡带比邻近植被土壤具有相对较强的生物学活性.  相似文献   

16.
Two adjacent catchments in the Otway Ranges of Victoria, Australia (Redwater and Clearwater) produce water with markedly different concentrations of dissolved organic carbon (DOC) during summer. Water from Redwater Creek had a DOC concentration of 32 mg L–1, while water from Clearwater Creek had a DOC concentration of 3.8 mg L–1. Examination of the catchments revealed that while climate, topography, vegetation and land use were similar, the soils were different. The objective of this study was to examine the relationship between the concentration and chemical composition of DOC in stream waters and the nature of soils in the two catchments. Soil mapping determined that clayey soils formed on Cretaceous sediments (Cretaceous soils) occurred throughout both catchments, but that Redwater Catchment also contained a large area (39%) of sandy soils formed on Tertiary sediments (Tertiary soils). The concentration of DOC in forest floor leachate was high in both the Tertiary and Cretaceous areas; however, the concentration of DOC in water draining areas dominated by Tertiary soils was greater than that in water draining areas dominated by Cretaceous soils. Laboratory experiments showed that the Cretaceous soils had higher adsorption capacities for forest floor leachate DOC than the Tertiary soils. The difference in DOC concentrations of the streams was therefore attributed to the difference in adsorption capacity of catchment soils for DOC. Adsorption capacities of the soils were found to be a function of their clay contents and specific surface areas.Solid-state3C nuclear magnetic resonance spectroscopy and pyrolysis-mass spectrometry were used to determine the chemical structure of DOC found in streams and forest floor leachate samples and that remaining in solution after interaction with soil. Chemistry of DOC in forest floor leachate was similar before and after interaction with soil, indicating no preferential adsorption of a particular type of carbon. Thus, differences between the chemical structure of stream DOC and forest floor leachate DOC could be attributed to microbial modifications during its movement through soils and into the streams, rather than losses by adsorption.  相似文献   

17.
In this study we investigate the impact of nitrogen (N) deposition on the diversity of three different vegetation functional groups – forbs, grasses and mosses – using a field survey of acid grasslands across Great Britain. Our aim is to identify the vegetation types that are most vulnerable to enhanced N deposition, and to shed light on the mechanisms that may be driving N‐initiated species changes in the UK. Sixty‐eight randomly selected grasslands belonging to the UK National Vegetation Classification group U4 (Festuca ovina–Agrostis capillaris–Galium saxatile grassland) were studied along a gradient of atmospheric N deposition ranging from 6 to 36 kg N ha?1 yr?1. At each site, vegetation was surveyed and samples were taken from the topsoil and subsoil. Aboveground plant material was collected from three species: a forb, grass and moss. Both the species richness and cover of forbs declined strongly with increasing N deposition, from greater than eight species/20% cover per m2 quadrat at low levels of N to fewer than two species/5% cover at the highest N deposition levels. Grasses showed a weak but significant decline in species richness, and a trend toward increasing cover with increasing N input. Mosses showed no trends in either species richness or cover. Most of the decline in plant species richness could be accounted for by the level of ammonium deposition. Soil KCl‐extractable ammonium concentration showed a significant positive correlation with N input, but there was no relationship between N deposition and extractable nitrate. In the soil O/A horizon, there was no relationship between N deposition and %N, and only a very weak positive relationship between the level of N deposition and the C : N ratio. Finally, in the vegetation, there was no relationship between N deposition and either shoot tissue N concentration or N : P ratio for any of the three reference species. Combining our regional survey with the results of published N‐addition experiments provides compelling evidence that there has been a significant decline in the species richness and cover of forbs across Great Britain, and that the primary cause is competition due to an increase in the cover of grasses in response to enhanced deposition of reactive N, primarily NH4+.  相似文献   

18.
19.
The novel cultivation of paddy rice in aerobic soil reveals the great potential not only for water-saving agriculture, but also for rice intercropping with legumes and both are important for the development of sustainable agriculture. A two-year field experiment was carried out to investigate the yield advantage of intercropping peanut (Arachis hypogaea L., Zhenyuanza 9102) and rice (Oryza sativa L., Wuyujing 99-15) in aerobic soil, and its effect on soil nitrogen (N) fertility. A pot experiment was also conducted to examine the N2-fixation by peanut and N transfer from peanut to rice at three N fertilizer application rates, i.e., 15, 75 and 150 kg N ha–1 using a 15N isotope dilution method. The results showed that the relative advantage of intercropping, expressed as land equivalent ratio (LER), was 1.41 in 2001 and 1.36 in 2002. Both area-adjusted yield and N content of rice were significantly increased in the intercropping system while those of peanut were not significantly different between intercropping and monocropping systems. The yields of rice grain and peanut, for example, were increased by 29–37% and 4–7% in the intercropping system when compared to the crop grown in the monocropping system. The intercropping advantage was mainly due to the sparing effect of soil inorganic N contributed by the peanut. This result was proved by the higher soil mineral N concentration under peanut monocropping and intercropping than under the rice monocropping system.%Ndfa (nitrogen derived from atmosphere) by peanut was 72.8, 56.5 and 35.4% under monocropping and 76.1, 53.3 and 50.7% under the intercropping system at N fertilizer application rates of 15, 75 and 150 kg ha–1, respectively. The 15N-based estimates of N transfer from peanut (%NTFL) was 12.2, 9.2 and 6.2% at the three N fertilizer application rates. N transferred from peanut accounted for 11.9, 6.4 and 5.5% of the total N accumulated in the rice plants in intercropping at the same three N fertilizer application rates, suggesting that the transferred N from peanut in the intercropping system made a contribution to the N nutrition of rice, especially in low-N soil.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号