首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myoclonic epilepsy with ragged-red fibers (MERRF) has been associated with an A--G transition at mtDNA nt 8344, within a conserved region of the tRNA(Lys) gene. Although the 8344 mutation is highly prevalent in patients with MERRF, it is not observed in 10%-20% of the cases, suggesting genetic heterogeneity. We have sequenced the tRNA(Lys) gene of five MERRF patients lacking the common 8344 mutation. One of these showed a novel T-->C transition at nucleotide position 8356, disrupting a highly conserved base pair in the T psi C stem. The mutant mtDNA population was essentially homoplasmic in muscle but was heteroplasmic in blood (47%). Neither 20 patients with other mitochondrial diseases nor 25 controls carried this mutation. These findings suggest that tRNA(Lys) alterations may play a specific role in the pathogenesis of MERRF syndrome.  相似文献   

2.
An A to G transition mutation at nucleotide pair 8344 in human mitochondrial DNA (mtDNA) has been identified as the cause of MERRF. The mutation alters the T psi C loop of the tRNA(Lys) gene and creates a CviJI restriction site, providing a simple molecular diagnostic test for the disease. This mutation was present in three independent MERRF pedigrees and absent in 75 controls, altered a conserved nucleotide, and was heteroplasmic. All MERRF patients and their less-affected maternal relatives had between 2% and 27% wild-type mtDNAs and showed an age-related association between genotype and phenotype. This suggests that a small percentage of normal mtDNAs has a large protective effect on phenotype. This mutation provides molecular confirmation that some forms of epilepsy are the result of deficiencies in mitochondrial energy production.  相似文献   

3.
We report a patient with myoclonic epilepsy who underwent muscle biopsy for suspected mitochondrial disease (myoclonic epilepsy with ragged-red fibers, MERRF). In spite of normal histochemical studies and of the absence of a severe COX deficiency, the molecular analysis showed the common MERRF mutation (A8344G) in the tRNA(Lys) gene on mitochondrial DNA. The case serves to illustrate the importance of pursuing the proposed mitochondrial genetic abnormality, even in patients with normal biopsy findings.  相似文献   

4.
Skeletal muscle mtDNA of three patients with mitochondrial encephalomyopathy, characterized clinically by myoclonic epilepsy and ragged-red fiber (MERRF) syndrome, has been sequenced to determine the underlying molecular defect(s). An A-to-G substitution of nt 8344 in the tRNA(Lys) gene, a substitution suggested to be associated with MERRF encephalomyopathy, was detected in these patients. Abnormal patterns of mitochondrial translation products were observed in the skeletal muscle of patients, consistent with the expected consequential defect in protein synthesis. The genealogical studies of the three patients, as well as mtDNA from one published MERRF patient and from nine other normal and disease controls, revealed that the tRNA(Lys) mutations in the MERRF patients have arisen independently. These observations provided evidence that the base substitution is a causal mutation for MERRF.  相似文献   

5.
6.
We analyzed the mitochondrial DNA of blood cells of 5 patients from a Chinese family with myoclonic epilepsy and ragged-red fiber disease. The results showed that in all the affected individuals there was a point mutation from A to G at the 8344th nucleotide pair, which was located in the tRNA(Lys) gene. No such a mutation was found in mtDNA of either unaffected members of that family or other healthy Chinese subjects. These findings are consistent with the recent report of Shoffner et al. (Cell 1990, 61: 931-937), and confirm that the point mutation is indeed the cause of this disease.  相似文献   

7.
Mutations in the mitochondrial DNA can lead to the development of mitochondrial diseases such as Myoclonic Epilepsy with Ragged Red Fibers (MERRF) or Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-like episodes (MELAS). We first show that human 143B-derived cybrid cells harboring either the A8344G (MERRF) or the A3243G (MELAS) mutation, are more prone to undergo apoptosis then their wild-type counterpart, when challenged with various apoptotic inducers such as staurosporine, etoposide and TRAIL. In addition, investigating the mechanisms underlying A8344G cybrid cells hypersensitivity to staurosporine-induced cell death, we found that staurosporine treatment activates caspases independently of cytochrome c release in both wild-type and mutated cells. Caspases are activated, at least partly, through the activation of calcium-dependent calpain proteases, a pathway that is more strongly activated in mutated cybrid cells than in wild-type cells exposed to staurosporine. These results suggest that calcium homeostasis perturbation induced by mitochondrial dysfunction could predispose cells to apoptosis, a process that could take part into the progressive cell degeneration observed in MERRF syndrome, and more generally in mitochondrial diseases.  相似文献   

8.
9.
Chen HF  Chen CY  Lin TH  Huang ZW  Chi TH  Ma YS  Wu SB  Wei YH  Hsieh M 《The FEBS journal》2012,279(16):2987-3001
Mitochondrial DNA (mtDNA) mutations are associated with a large number of neuromuscular diseases. Myoclonus epilepsy with ragged-red fibers (MERRF) syndrome is a mitochondrial disease inherited through the maternal lineage. The most common mutation in MERRF syndrome, the A8344G mutation of mtDNA, is associated with severe defects in mitochondrial protein synthesis, which impair the assembly and function of the respiratory chain. We have previously shown that there is a decreased level of heat shock protein 27 (HSP27) in lymphoblastoid cells derived from a MERRF patient and in cytoplasmic hybrids (cybrids) harboring the A8344G mutation of mtDNA. In the present study, we found a dramatic decrease in the level of phosphorylated HSP27 (p-HSP27) in the mutant cybrids. Even though the steady-state level of p-HSP27 was reduced in the mutant cybrids, normal phosphorylation and dephosphorylation were observed upon exposure to stress, indicating normal kinase and phosphatase activities. To explore the roles that p-HSP27 may play, transfection experiments with HSP27 mutants, in which three specific serines were replaced with alanine or aspartic acid, showed that the phosphomimicking HSP27 desensitized mutant cybrids to apoptotic stress induced by staurosporine (STS). After heat shock stress, p-HSP27 was found to enter the nucleus immediately, and with a prolonged interval of recovery, p-HSP27 returned to the cytoplasm in wild-type cybrids but not in mutant cybrids. The translocation of p-HSP27 was correlated with cell viability, as shown by the increased number of apoptotic cells after p-HSP27 returned to the cytoplasm. In summary, our results demonstrate that p-HSP27 provides significant protection when cells are exposed to different stresses in the cell model of MERRF syndrome. Therapeutic agents targeting anomalous HSP27 phosphorylation might represent a potential treatment for mitochondrial diseases.  相似文献   

10.
Myoclonic epilepsy and ragged-red fibers (MERRF) syndrome is a rare disorder characterized by myoclonus, muscle weakness, cerebellar ataxia, heart conduction block, and dementia. It has been documented that 80–90% of the patients with MERRF syndrome are caused by the A8344G mutation in the tRNALys gene of mitochondrial DNA (mtDNA). We and other investigators have reported that the mtDNA mutation results in not only inefficient generation of adenosine triphosphate but also increased production of reactive oxygen species (ROS) in cultured cells harboring A8344G mutation of mtDNA. In addition, we found an imbalance in the gene expression of antioxidant enzymes in the skin fibroblasts of MERRF patients. The mRNA, protein, and enzyme activity levels of manganese-superoxide dismutase were increased, but those of Cu,Zn-SOD, catalase, and glutathione peroxidase did not show significant changes. Recently, we showed that the excess ROS could damage voltage-dependent anion channel, prohibitin, Lon protease, and aconitase in the MERRF cells. Moreover, there was a dramatic increase in the gene expression and activity of matrix metalloproteinase 1, which may contribute to the cytoskeleton remodeling involved in the weakness and atrophy of muscle commonly seen in MERRF patients. Taken together, we suggest that mtDNA mutation-elicited oxidative stress, oxidative damage, and altered gene expression are involved in the pathogenesis and progression of MERRF syndrome.  相似文献   

11.
Nucleotide sequence analyses of muscle mitochondrial DNA (mtDNA) from a patient with myoclonus epilepsy associated with ragged-red fibers (MERRF) revealed 33 single base substitutions, including 23 in coding regions for mitochondrial polypeptides and 10 in non-coding regions, as compared with the normal human mtDNA sequence. Three substitutions, in COI, ND4, and Cytb, would result in amino acid substitutions, which are conserved among species. Of three patients with MERRF, all had an identical A to G base substitution only at nucleotide position 8344 in the t-RNA(Lys) region. The substitution was not found in 15 controls. Various degrees of the combined enzymic defects in the oxidative phosphorylation system of mitochondria were found in the MERRF patients. The defects could be explained by altered function or processing of the mutant t-RNA(Lys). This mutation in the t-RNA(Lys) is the most probable cause of MERRF.  相似文献   

12.
Point mutations in mitochondrial (mt) tRNA genes are associated with a variety of human mitochondrial diseases. We have shown previously that mt tRNA(Leu(UUR)) with a MELAS A3243G mutation and mt tRNA(Lys) with a MERRF A8344G mutation derived from HeLa background cybrid cells are deficient in normal taurine-containing modifications [taum(5)(s(2))U; 5-taurinomethyl-(2-thio)uridine] at the anticodon wobble position in both cases. The wobble modification deficiency results in defective translation. We report here wobble modification deficiencies of mutant mt tRNAs from cybrid cells with different nuclear backgrounds, as well as from patient tissues. These findings demonstrate the generality of the wobble modification deficiency in mutant tRNAs in MELAS and MERRF.  相似文献   

13.
We previously showed that in mitochondrial tRNA(Lys) with an A8344G mutation responsible for myoclonus epilepsy associated with ragged-red fibers (MERRF), a subgroup of mitochondrial encephalomyopathic diseases, the normally modified wobble base (a 2-thiouridine derivative) remains unmodified. Since wobble base modifications are essential for translational efficiency and accuracy, we used mitochondrial components to estimate the translational activity in vitro of purified tRNA(Lys) carrying the mutation and found no mistranslation of non-cognate codons by the mutant tRNA, but almost complete loss of translational activity for cognate codons. This defective translation was not explained by a decline in aminoacylation or lowered affinity toward elongation factor Tu. However, when direct interaction of the codon with the mutant tRNA(Lys) defective anticodon was examined by ribosomal binding analysis, the wild-type but not the mutant tRNA(Lys) bound to an mRNA- ribosome complex. We therefore concluded that the anticodon base modification defect, which is forced by the pathogenic point mutation, disturbs codon- anticodon pairing in the mutant tRNA(Lys), leading to a severe reduction in mitochondrial translation that eventually could result in the onset of MERRF.  相似文献   

14.
摘要: 文中建立了一种新型的寡核苷酸芯片, 用于线粒体脑肌病伴高乳酸血症和卒中样发作(Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes, MELAS)和肌阵挛性癫痫伴发不规整红纤维(Myoclonic epilepsy with ragged red fibers, MERRF)线粒体DNA所有已知突变位点的集成检测。将31对allele位点特异性的寡核苷酸探针包被在醛基修饰的载玻片表面, 以多重不对称PCR方法制备Cy5荧光标记靶基因。利用此芯片对5例MELAS患者、5例MERRF患者及20例健康对照进行筛查, 结果发现, MELAS患者均为MT-T1基因A3243G突变; 在MERRF患者组, MT-TK基因A8344G突变4例, T8356C突变1例; 健康对照组均未发现31种相关mtDNA突变。芯片检测与DNA测序结果完全一致。结果表明, 这种寡核苷酸芯片可以对MELAS和MERRF综合征已知突变位点进行同步快速检测, 具有较高的灵敏度和特异性。这一模式的基因芯片经过适当改装后也可用于其他人类线粒体疾病的基因诊断。  相似文献   

15.
MERRF (myoclonic epilepsy with ragged-red fibers) is a severe, multisystem disorder characterized by myoclonus, seizures, progressive cerebellar syndrome, muscle weakness, and the presence of ragged-red fibers in the muscle biopsy. MERRF is associated with heteroplasmic point mutations, either A8344G or T8356C, in the gene encoding the mitochondrial tRNALys. The human ro cell system was utilized to examine the phenotypic consequences of these mutations, and to investigate their molecular genetic causes. Wild-type and mutant transmitochondrial cell lines harboring a pathogenic point mutation at either A8344G or T8356C in the human mitochondrial tRNALys gene were isolated and examined. Mitochondrial transformants containing 100% mutated mitochondrial DNAs (mtDNAs) exhibited severe defects in respiratory chain activity, in the rates of protein synthesis, and in the steady-state levels of mitochondrial translation products as compared with mitochondrial transformants containing 100% wild-type mtDNAs. In addition, both mutant cell lines exhibited the presence of aberrant mitochondrial translation products. These results demonstrate that two different mtDNA point mutations in tRNALys result in fundamentally identical defects at the cellular level, and that these specific protein synthesis abnormalities contribute to the pathogenesis of MERRF. (Mol Cell Biochem 174: 215–219, 1997)  相似文献   

16.
Mitochondrial diseases are a group of rare heterogeneous genetic disorders caused by total or partial mitochondrial dysfunction. They can be caused by mutations in nuclear or mitochondrial DNA (mtDNA). MERRF (Myoclonic Epilepsy with Ragged-Red Fibers) syndrome is one of the most common mitochondrial disorders caused by point mutations in mtDNA. It is mainly caused by the m.8344A > G mutation in the tRNALys (UUR) gene of mtDNA (MT-TK gene). This mutation affects the translation of mtDNA encoded proteins; therefore, the assembly of the electron transport chain (ETC) complexes is disrupted, leading to a reduced mitochondrial respiratory function.However, the molecular pathogenesis of MERRF syndrome remains poorly understood due to the lack of appropriate cell models, particularly in those cell types most affected in the disease such as neurons. Patient-specific induced neurons (iNs) are originated from dermal fibroblasts derived from different individuals carrying the particular mutation causing the disease. Therefore, patient-specific iNs can be used as an excellent cell model to elucidate the mechanisms underlying MERRF syndrome. Here we present for the first time the generation of iNs from MERRF dermal fibroblasts by direct reprograming, as well as a series of pathophysiological characterizations which can be used for testing the impact of a specific mtDNA mutation on neurons and screening for drugs that can correct the phenotype.  相似文献   

17.
Qi Y  Zhang Y  Wang Z  Yang Y  Yuan Y  Niu S  Pei P  Wang S  Ma Y  Bu D  Zou L  Fang F  Xiao J  Sun F  Zhang Y  Wu Y  Wang S  Xiong H  Wu X 《Mitochondrion》2007,7(1-2):147-150
To investigate the spectrum of common mitochondrial mutations in Northern China during the years of 2000-2005, 552 patients of mitochondrial encephalomyopathies clinically diagnosed as MELAS, MERRF or Leigh's syndrome, 14 cases of LHON and 46 cases of aminoglycoside induced deafness along with their family members, accepted routine point mutation tests at nucleotide positions 3243, 8344, 8993, 11778 or 1555 in mitochondrial genome. PCR-RFLP analysis, site-specific PCR and PCR-sequencing methods were used to identify the mutations. Fifty-seven cases with A3243G mutation, 4 cases with A8344G, 2 cases with T8993C and 1 case with T8993G were identified from the 552 encephalomyopathy patients. In addition, one case with G11778A was found from the 14 cases of LHON, and 5 cases with A1555G from the 46 cases of aminoglycoside ototoxicity patients. Additional screening for T8356G and T3271C merely had limited significance for the diagnosis of MERRF and MELAS. Differential diagnosis among mitochondrial encephalomyopathies was often complicated due to many similar clinical manifestations. For A3243G mutation, the proportion of mutant mtDNA was not related to severity of the disease but to the age of onset.  相似文献   

18.
We studied 42 individuals, including 8 patients with either complete or partial syndrome of mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS), 8 patients with either complete or partial syndrome of myoclonic epilepsy with ragged-red fibers (MERRF) and 26 maternal family members who carried either the A3243G or A8344G mutation of mitochondrial DNA (mtDNA). Clinical manifestations and prognosis were followed up in the patients harboring the A3243G or A8344G mutation. The relationship between clinical features and proportions of mutant mtDNAs in muscle biopsies, blood cells and/or hair follicles was studied. In the 8 regularly followed patients with the A3243G mutation, 4 died within 1 month to 7 years due to status epilepticus and/or recurrent stroke-like episodes. Two patients developed marked mental deterioration and 2 remained stationary. All of the patients harboring the A8344G mutation were stable or deteriorated slightly, except for 1 patient who died due to brain herniation after putaminal hemorrhage. The A3243G and A8344G mtDNA mutations were heteroplasmic in the muscle biopsies, blood cells and hair follicles of both the probands and their maternal family members. The mean proportion of A3243G mutant mtDNA in the muscle biopsies of the patients with MELAS syndrome (68.5 ± 21.3%, range 33–92%) was significantly higher than that of the asymptomatic family members (37.1 ± 12.6%, range 0–51%). The average proportions of A8344G mutant mtDNA in the muscle biopsies (90.1 ± 3.9%, range 89–95%) and hair follicles (93.9 ± 6.4%, range 84–99%) of the patients with MERRF syndrome were also significantly higher than those of the asymptomatic family members (muscle: 40.3 ± 39.5%, range 1–80%; hair follicles: 51.0 ± 44.5%, range 0.1–82%). We concluded that measurement of the proportion of mutant mtDNA in muscle biopsies may provide useful information in the identification of symptomatic patients with mitochondrial encephalomyopathies. For patients with the A3243G mutation, the prognosis was related to status epilepticus and the number of recurrent stroke-like episodes and was much worse than for patients with the A8344G mutation of mtDNA, who had stable or slowly deteriorating clinical courses.  相似文献   

19.
20.
The distributrion of the causal 8344AG mtDNA mutation has been examined in six tissues of a patient with myoclonic epilepsy with ragged red fibers (MERRF), to study the developmental genetics of this type of mitochondrial disorder, and to determine the pathophysiological importance of the mtDNA heteroplasmy generally observed in such patients. Heteroplasmy of the mtDNA was observed in all six tissues (cerebellum, cerebrum, pancreas, liver, muscle, and heart) suggesting that, whereas the mtDNA mutation is relatively new, the mutated population must have existed before the formation of the three primary embryonic layers. The tissue distribution reveals significant variations in the ratio between the mutated and the normal mtDNA species, indicating the randomness of mtDNA segregation during developmental cell division and differentiation events. The result suggests the existence of tissue-specific nuclear factor(s) that determines the expression of the 8344AG mutation in various tissues; in MERRF syndrome, expression is mainly in the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号