首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Functionally active antibodies (Abs) against central G-protein-coupled receptors have not yet been reported. We selected the hypothalamic melanocortin-4 receptor (MC4-R) as a target because of its crucial role in the regulation of energy homeostasis. A 15 amino acid sequence of the N-terminal (NT) domain was used as an antigen. This peptide showed functional activity in surface plasmon resonance experiments and in studies on HEK-293 cells overexpressing the human MC4-R (hMC4-R). Rats immunized against the NT peptide produced specific antibodies, which were purified and characterized in vitro. In HEK-293 cells, rat anti-NT Abs showed specific immunofluorescence labeling of hMC4-R. They reduced the production of cAMP under basal conditions and after stimulation with a synthetic MC4-R agonist. Rats immunized against the NT peptide developed a phenotype consistent with MC4-R blockade, that is, increased food intake and body weight, increased liver and fat pad weight, and elevated plasma triglycerides. In a separate experiment in rats, an increase in food intake could be produced after injection of purified Abs into the third ventricle. Similar results were obtained in rats injected with anti-NT Abs raised in rabbits. Our data show for the first time that active immunization of rats against the NT sequence of the MC4-R results in specific Abs, which appear to stimulate food intake by acting as inverse agonists in the hypothalamus.  相似文献   

2.
GPR119 is increasingly seen as an attractive target for the treatment of type II diabetes and other elements of the metabolic syndrome. During a programme aimed at developing agonists of the GPR119 receptor, we identified compounds that were potent with reduced hERG liabilities, that had good pharmacokinetic properties and that displayed excellent glucose-lowering effects in vivo. However, further profiling in a GPR119 knock-out (KO) mouse model revealed that the biological effects were not exclusively due to GPR119 agonism, highlighting the value of transgenic animals in drug discovery programs.  相似文献   

3.
Membrane proteins, especially G-protein coupled receptors (GPCRs), are interesting and important theragnostic targets since many of them serve in intracellular signaling critical for all aspects of health and disease. The potential utility of designed bivalent ligands as targeting agents for cancer diagnosis and/or therapy can be evaluated by determining their binding to the corresponding receptors. As proof of concept, GPCR cell surface proteins are shown to be targeted specifically using multivalent ligands. We designed, synthesized, and tested a series of bivalent ligands targeting the over-expressed human melanocortin 4 receptor (hMC4R) in human embryonic kidney (HEK) 293 cells. Based on our data suggesting an optimal linker length of 25 ± 10 Å inferred from the bivalent melanocyte stimulating hormone (MSH) agonist, the truncated heptapeptide, referred to as MSH(7): Ac-Ser-Nle-Glu-His-D-Phe-Arg-Trp-NH2 was used to construct a set of bivalent ligands incorporating a hMC4R antagonist, SHU9119: Ac-Nle-c[Asp-His-2′-D-Nal-Arg-Trp-Lys]-NH2 and another set of bivalent ligands containing the SHU9119 antagonist pharmacophore on both side of the optimized linkers. These two binding motifs within the bivalent constructs were conjoined by semi-rigid (Pro-Gly)3 units with or without the flexible poly(ethylene glycol) (PEGO) moieties. Lanthanide-based competitive binding assays showed bivalent ligands binds to the hMC4R with up to 240-fold higher affinity than the corresponding linked monovalent ligands.  相似文献   

4.
Discovery of alpha-glucosidase inhibitors has been actively pursued with the aim to develop therapeutics for the treatment of diabetes and the other carbohydrate-mediated diseases. We have identified four novel alpha-glucosidase inhibitors by means of a drug design protocol involving the structure-based virtual screening under consideration of the effects of ligand solvation in the scoring function and in vitro enzyme assay. Because the newly identified inhibitors reveal in vivo antidiabetic activity as well as a significant potency with more than 70% inhibition of the catalytic activity of alpha-glucosidase at 50 microM, all of them seem to deserve further development to discover new drugs for diabetes. Structural features relevant to the interactions of the newly identified inhibitors with the active site residues of alpha-glucosidase are discussed in detail.  相似文献   

5.
Fleck BA  Ling N  Chen C 《Biochemistry》2007,46(37):10473-10483
The melanocortin-4 receptor (MC4R) is involved in regulating energy homeostasis and is a potential therapeutic target for obesity and cachexia. Molecular interactions between peptide ligands and MC4R have been studied in detail. Less is known regarding the role of these interactions in the mechanism of MC4R activation. The aim of this study was to investigate the molecular mechanism of human MC4R activation by [Nle4, d-Phe7]alpha-melanocyte-stimulating hormone (NDP-MSH), by first defining the role of the His6-d-Phe7-Arg8-Trp9 residues in receptor activation (Emax for stimulation of cAMP accumulation) using modified peptides, then understanding how their interaction with the receptor modulates activation using site-directed mutagenesis and a molecular model of NDP-MSH bound to the active state of the receptor. Alanine substitution indicated that the d-Phe7, Arg8, and Trp9 side chains contribute binding energy but are not essential for the receptor activation event. Conversely, His6 to Ala6 substitution reduced receptor activation but did not affect affinity. Chlorine substitutions on the d-Phe7 side chain also inhibited receptor activation. F261(6.51)A and F284(7.35)A receptor mutations acted as gain-of-function mutations, restoring efficacy to the His6 and d-Phe7 substituted peptides that had lost efficacy at the wild-type receptor. Based on a model of NDP-MSH and MC4R interaction, the antagonist behavior of these peptides is consistent with the prevention of transmembrane 6 (TM6) rotation. This data supports the hypothesis that increasing the size of d-Phe7 directly interferes with TM6 rotation, preventing receptor activation. We further propose that removing the interaction with the His6 side chain reorients the peptide within the binding pocket, indirectly impeding TM6 rotation by strengthening peptide interaction with F261(6.51) and F284(7.35). These findings refine the molecular basis for the mechanism of ligand-stimulated hMC4R activation and will be useful for the development of hMC4R agonists and antagonists.  相似文献   

6.
The molecular and functional diversity of G protein-coupled receptors is essential to many physiological processes. However, this diversity presents a significant challenge to understanding the G protein-mediated signaling events that underlie a specific physiological response. To increase our understanding of these processes, we sought to gain control of the timing and specificity of G(s) signaling in vivo. We used naturally occurring human mutations to develop two G(s)-coupled engineered receptors that respond solely to a synthetic ligand (RASSLs). Our G(s)-coupled RASSLs are based on the melanocortin-4 receptor, a centrally expressed receptor that plays an important role in the regulation of body weight. These RASSLs are not activated by the endogenous hormone alpha-melanocyte-stimulating hormone but respond potently to a selective synthetic ligand, tetrahydroisoquinoline. The RASSL variants reported here differ in their intrinsic basal activities, allowing the separation of the effects of basal signaling from ligand-mediated activation of the G(s) pathway in vivo. These RASSLs can be used to activate G(s) signaling in any tissue, but would be particularly useful for analyzing downstream events that mediate body weight regulation in mice. Our study also demonstrates the use of human genetic variation for protein engineering.  相似文献   

7.
Chaki S  Okuyama S 《Peptides》2005,26(10):1952-1964
The melanocortins, which are derived from proopiomelanocortin, have a variety of physiological functions mediated membrane surface receptors. To date, five subtypes have been cloned. With the cloning of melanocortin receptors, studies with genetic models, and development of selective compounds, the physiological roles of the five melanocortin receptors have begun to be understood. The melanocortin-4 receptor (MC4R), which is predominantly expressed in the central nervous system, has in particular become the focus of much attention in recent years because of the critical roles it plays in a wide range of functions, including feeding, sexual behavior, and stress. Recent development of selective antagonists for the MC4R has provided pharmacological evidence that blockade of MC4R could be a useful way of alleviating numerous conditions such as anxiety/depression, pain, and addiction to drugs of abuse.  相似文献   

8.
Using nuclear magnetic resonance (NMR) spectroscopy, we have determined the solution structures for a series of potent agonists for the human melanocortin-4 receptor (hMC4R), based on the cyclic peptide MT-II [Ac-Nle-cyclo-(Asp-Lys) (Asp-His-(D)Phe-Arg-Trp-Lys)-NH2]. Members of this series were designed to improve selectivity for MC4R versus the other melanocortin receptors, and to reduce the flexibility of the side chains. The most selective and rigid analog [penta-cyclo(D-K)-Asp-Apc-(D)Phe-Arg-(2S,3S)-beta-methylTrp-Lys-NH2] was found to be a full agonist of hMC4R with an EC50 of 11nM against hMC4R, and to exhibit 65-fold selectivity against hMC1R. This compound represents the most constrained hMC4R peptide agonist described to date. A beta-turn structure was conserved among all of the cyclic peptides studied. The rigidity of the analogs allowed an exceptionally well-defined pharmacophore model to be derived. This model was used to perform a virtual screen using a library of 1000 drug-like compounds, to which a small set of known potent ligands had been intentionally added. The utility of the model was validated by its ability to identify the known ligands from among this large library.  相似文献   

9.
Linear pentapeptides (Penta-cis-Apc-DPhe-Arg-Trp-Gly-NH2) containing 1-amino-4-phenylcyclohexane-1-carboxylic acid (cis-Apc) and substituted Apc are potent hMC4R agonists and they are inactive or weakly active in hMC1R, hMC3R, and hMC5R agonist assays. This study, together with our earlier report on 5-BrAtc, demonstrated the importance of replacing His6 with phenyl-containing rigid templates in achieving good hMC4R agonist potency and selectivity against hMC1R in linear pentapeptides.  相似文献   

10.
Apoptosis is a key pathogenic mechanism in sepsis that induces extensive death of lymphocytes and dendritic cells, thereby contributing to the immunosuppression that characterizes the septic disorder. Numerous animal studies indicate that prevention of apoptosis in sepsis improves survival and may represent a potential therapy for this highly lethal disorder. Recently, novel cell-penetrating peptide constructs such as HIV-1 TAT basic domain and related peptides have been developed to deliver bioactive cargoes and peptides into cells. In the present study, we investigated the effects of sepsis-induced apoptosis in Bcl-x(L) transgenic mice and in wild-type mice treated with an antiapoptotic TAT-Bcl-x(L) fusion protein and TAT-BH4 peptide. Lymphocytes from Bcl-x(L) transgenic mice were resistant to sepsis-induced apoptosis, and these mice had a approximately 3-fold improvement in survival. TAT-Bcl-x(L) and TAT-BH4 prevented Escherichia coli-induced human lymphocyte apoptosis ex vivo and markedly decreased lymphocyte apoptosis in an in vivo mouse model of sepsis. In conclusion, TAT-conjugated antiapoptotic Bcl-2-like peptides may offer a novel therapy to prevent apoptosis in sepsis and improve survival.  相似文献   

11.
A series of dual-targeting, alcohol-containing benzothiazoles has been identified with superior antibacterial activity and drug-like properties. Early lead benzothiazoles containing carboxylic acid moieties showed efficacy in a well-established in vivo model, but inferior drug-like properties demanded modifications of functionality capable of demonstrating superior efficacy. Eliminating the acid group in favor of hydrophilic alcohol moieties at C5, as well as incorporating solubilizing groups at the C7 position of the core ring provided potent, broad-spectrum Gram-positive antibacterial activity, lower protein binding, and markedly improved efficacy in vivo.  相似文献   

12.
MacKenzie RG 《Peptides》2006,27(2):395-403
Mutations in the human melanocortin-4 receptor (MC4R) gene have been associated with severe obesity. Many of the mutations result in partial or complete loss-of-function based on the nature of the mutation or the function of mutated receptors when tested in heterologous expression systems. This review discusses the role of MC4R in the central regulation of body weight, the pathogenic mechanisms of the mutations, and the validity of MC4R as an anti-obesity drug target.  相似文献   

13.
Five new laxaphycins were isolated and fully characterised from the bloom forming cyanobacteria Anabaena torulosa sampled from Moorea, French Polynesia: three acyclic laxaphycin A-type peptides, acyclolaxaphycin A (1), [des-Gly11]acyclolaxaphycin A (2) and [des-(Leu10-Gly11)]acyclolaxaphycin A (3), as well as two cyclic ones, [l-Val8]laxaphycin A (4) and [d-Val9]laxaphycin A (5). The absolute configuration of the amino acids, established using advanced Marfey’s analysis for compounds 25, highlights a conserved stereochemistry at the Cα carbons of the peptide ring that is characteristic of this family. To the best of our knowledge, this is the first report of acyclic analogues within the laxaphycin A-type peptides. Whether these linear laxaphycins with the aliphatic β-amino acid on the N-terminal are biosynthetic precursors or compounds obtained after enzymatic hydrolysis of the macrocycle is discussed. Biological evaluation of the new compounds together with the already known laxaphycin A shows that [l-Val8]laxaphycin A, [d-Val9]laxaphycin A and [des-Gly11]acyclolaxaphycin induce cellular toxicity whereas laxaphycin A and des-[(Leu10-Gly11)]acyclolaxaphycin A do not affect the cellular viability. An analysis of cellular death shows that the active peptides do not induce apoptosis or necrosis but instead, involve the autophagy pathway.  相似文献   

14.
Peng  Haoran  Ding  Cuiling  Jiang  Liangliang  Tang  Wanda  Liu  Yan  Zhao  Lanjuan  Yi  Zhigang  Ren  Hao  Li  Chong  He  Yanhua  Zheng  Xu  Tang  Hailin  Chen  Zhihui  Qi  Zhongtian  Zhao  Ping 《中国科学:生命科学英文版》2022,65(6):1181-1197

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global crisis. Clinical candidates with high efficacy, ready availability, and that do not develop resistance are in urgent need. Despite that screening to repurpose clinically approved drugs has provided a variety of hits shown to be effective against SARS-CoV-2 infection in cell culture, there are few confirmed antiviral candidates in vivo. In this study, 94 compounds showing high antiviral activity against SARS-CoV-2 in Vero E6 cells were identified from 2,580 FDA-approved small-molecule drugs. Among them, 24 compounds with low cytotoxicity were selected, and of these, 17 compounds also effectively suppressed SARS-CoV-2 infection in HeLa cells transduced with human ACE2. Six compounds disturb multiple processes of the SARS-CoV-2 life cycle. Their prophylactic efficacies were determined in vivo using Syrian hamsters challenged with SARS-CoV-2 infection. Seven compounds reduced weight loss and promoted weight regain of hamsters infected not only with the original strain but also the D614G variant. Except for cisatracurium, six compounds reduced hamster pulmonary viral load, and IL-6 and TNF-α mRNA when assayed at 4 d postinfection. In particular, sertraline, salinomycin, and gilteritinib showed similar protective effects as remdesivir in vivo and did not induce antiviral drug resistance after 10 serial passages of SARS-CoV-2 in vitro, suggesting promising application for COVID-19 treatment.

  相似文献   

15.
A series of 3-arylpropionylpiperazines were synthesized as antagonists of the melanocortin-4 receptor. Their potency was found to be increased by replacing the alpha-methyl substituent of the initial lead 11 with a larger s-Bu or i-Bu group. Further potency enhancement was observed when a glycine or beta-alanine was incorporated onto the benzylamine. Some compounds demonstrated good potency, moderate selectivity, and oral bioavailability.  相似文献   

16.
The synthesis and pharmacological data of some new and potent hydrophilic 5-HT4 receptor antagonists are described. Propanediol derivative 25 was identified as a potent antagonist with low affinity for the hERG potassium channel and promising pharmacokinetics.  相似文献   

17.
Using disulphide cysteine-based inhibitors as lead structures, this communication describes our strategy for identifying more stable, potent antagonists of the alpha4beta1 integrin. These studies ultimately discovered potent, low molecular weight inhibitors based on D-thioproline-L-tyrosine.  相似文献   

18.
Probing with tool molecules, and by modeling and X-ray crystallography the binding modes of two structurally distinct series of DPP-4 inhibitors led to the discovery of a rare aromatic fluorine H-bond and the spatial requirement for better biaryl binding in the DPP-4 enzyme active site. These newly found binding elements were successfully incorporated into novel DPP-4 inhibitors.  相似文献   

19.
Acyclic, disulphide derivatives of cysteine have been identified as moderately potent antagonists of alpha4beta1-mediated leukocyte cell adhesion to VCAM. This communication describes how they were discovered from a simple L-cystine derivative and using the structure-activity data of C*DThioPC* related cyclic peptides.  相似文献   

20.
Obese melanocortin-4-receptor-deficient (MC4R-/-) male mice are reported to have erectile dysfunction, while homozygous MC4R-/- female mice are apparently fertile. A recently established obese mouse strain, carrying an inactivating mutation in the MC4R gene, revealed difficulties in breeding for the homozygous female mice. This prompted us to determine the presence of follicles and corpora lutea (CL) in ovaries of MC4R-/- mice aged 3–6 months in comparison to wild type (MC4R+/+) littermates. Serial sections of formaldehyde-fixed ovaries of mice with vaginal signs of estrus and metestrus were assessed for the number of healthy and regressing follicles and CL. The number of CL, as an estimate for the ovulation rate, decreased to zero during aging in MC4R-/- mice. The number of small- (diameter 100–200 micrometer) and large-sized follicles namely antral follicles (diameter >200 micrometer) were slightly increased in MC4R-/- compared to MC4R+/+ mice. Greater differences were found in very large to cystic follicles, which were more numerous in MC4R-/- mice. The number of regressing antral follicles was higher in the MC4R-/- group compared to the MC4R+/+ group. This was associated with a wide range in the number of collapsed zonae pellucidae as the last remnants of regressed follicles. A conspicuous hypertrophy of the interstitial cells was noted in 6-month-old MC4R-/- mice. In conclusion, cystic follicles and the reduction in CL number point to a decreased ovulation rate in obese MC4R-/- mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号