共查询到20条相似文献,搜索用时 15 毫秒
1.
A clone coding for Schizophyllum commune beta-glucosidase: homology with a yeast beta-glucosidase 总被引:3,自引:0,他引:3
F Moranelli J R Barbier M J Dove R M MacKay V L Seligy M Yaguchi G E Willick 《Biochemistry international》1986,12(6):905-912
Three identical clones coding for a partial sequence of the Schizophyllum commune beta-glucosidase were isolated from a cDNA library in lambda gt11, using polyclonal antibody to the enzyme. The identity was confirmed by comparison of the amino-terminus of a peptide from a protease lys-C digest with the sequence inferred from the cDNA sequence. A comparison of the sequence with that reported for a beta-glucosidase from Candida pelliculosa revealed a region in the latter with 43% identity in amino acid sequence. There was also a similarity in the S. commune beta-glucosidase to an active site sequence proposed for a S. commune endoglucanase, suggesting the possibility of a common catalytic mechanism for these two glucolytic enzymes. 相似文献
2.
《Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology》1994,1204(2):164-168
The role of carboxyl group in the catalytic action of xylanase (Mr 35 000) from an alkalothermophilic Bacillus sp. was delineated through iinetic and chemical modification studies using Woodward's Reagent K. The kinetics of inactivation indicated that one carboxyl residue was essential for the xylanase activity with a second order rate constant of 3300 M−1 min−1. The spectrophotometric analysis at 340 nm revealed that the inhibition was correlated with modification of 24 carboxyl residues. In the presence of protecting ligand, modification of one carboxyl group was prevented. The pH profile showed apparent pK values of 5.2 and 6.4 for the free enzyme and 4.9 and 6.9 for enzyme-substrate complex. The pH dependence of inactivation was consistent with the modification of carboxyl group. The kinetic analysis of the modified enzyme showed similar Km and lower kcat values than the native enzyme indicating that catalytic hydrolysis and not the substrate binding was affected by chemical modification. The chemical modification of xylanase from alkalothermophilic Bacillus revealed the presence of tryptophans in the active site (Dehspande, V, Hinge, J. and Rao, M. (1990) Biochim. Biophys. Acta 1041, 172–177). This finding and present studies demonstrated the experimental evidence for the participation of carboxyl as well as tryptophan groups as essential residues of xylanase from alkalothermophilic Bacillus sp. 相似文献
3.
4.
Bellomio A Rintoul MR Morero RD 《Biochemical and biophysical research communications》2003,303(2):458-462
In this paper we compared the antibacterial activity of native microcin J25, a peptide antibiotic, with the activities of two analogues obtained by chemical modifications. In the first analogue, the negative charge of glutamic carboxyl group was specifically blocked with an L-glycine methyl ester and in the second the histidine imidazole ring was carbethoxylated. Both analogues decreased notably its antibiotic activity against Escherichia coli and Salmonella newport, strains sensible to the native microcin J25. The biological activity of the carbethoxylated analogue was completely recovered after treatment with hydroxylamine. The extreme importance of both polar residues could be interpreted as specific structural features indispensable for the peptide transportation into the cell, extrusion outside the cell or alternatively to inhibit the RNA-polymerase. 相似文献
5.
The hydrophobin Sc3 from the fungus Schizophyllum commune assembles from the aqueous phase into ordered structures with substantially different characteristics depending upon experimental conditions. Under the first condition, a vortexing procedure widely reported in the literature, interfacial assembly yields highly ordered, stacked beta-sheets. We have also observed a previously unreported assembly of Sc3 under a second condition, which occurs in a time-dependent manner from quiescent solution. The resulting types of assembled states have been compared utilizing fluorescence techniques, sodium dodecyl sulfate polyacrylamide gel electrophoresis, immunoblotting, density gradient centrifugation, and phase contrast and atomic force microscopy. A model based on this study and previous literature is proposed that suggests three distinct states of Sc3: (1) soluble Sc3 consisting of unimers or multimers in micelle-like association, (2) interfacially assembled I-Sc3 with highly ordered, stacked beta-sheets, presumably formed in a templated manner at the air/water interface of microscopic bubbles generated by vortexing, and (3) solution-assembled S-Sc3, a less-ordered structure formed in a time-dependent manner in the absence of an interface. 相似文献
6.
The endo--1,4-xylanase (EC 3.2.1.8) from Trichosporon cutaneum was chemically modified using amino acid-specific reagents. The enzyme does not bear arginines essential for activity, since 1,2-cyclohexanedione and 2,3-butanedione, although they modify the enzyme (after chromatographic analysis), have no effect on its activity. Reaction of the enzyme with tetranitromethane and N-acetylimidazole did not result in a significant activity loss as a result of modification of tyrosine residues. The water-soluble carbodiimide 1-[3-(dimethylamino) propyl]-3-ethylcarbodiimide inactivated the xylanase rapidly and completely in a pseudo-first-order process, and kinetic analysis indicated that at least one molecule of carbodiimide binds to the enzyme for inactivation. A mixture of neutral xylooligomers provided significant protection of the enzyme against this carbodiimide inactivation. Reaction of the xylanase with 2,4,6-trinitrobenzene sulfonic acid did not result in a significant activity loss as a result of modification of lysine residues. Titration of the enzyme with 5,5-dithiobis-(2-nitrobenzoic acid) and treatment with iodoacetamide and p-chloromercuribenzoate indicated the presence of a free/active thiol group. Xylan completely protected the enzyme from inactivation by p-hydroxymercuribenzoate, suggesting the presence of cysteine at the substrate-binding site. Inactivation of xylanase by p-hydroxymercuribenzoate could be restored by cysteine. 相似文献
7.
G G Chang T M Huang J A Wuu 《Proceedings of the National Science Council, Republic of China. Part B, Life sciences》1985,9(1):56-66
The maximum velocity of the reaction catalyzed by the pigeon liver malic enzyme depends on the ionization of a functional group of pKa 6.7. This pKa value is independent of temperature within the range 30 degrees-49 degrees C, suggesting the ionization of a carboxyl group. The enzyme activity is inactivated by N-ethyl-5-phenylisoxazolium-3'-sulfonate (Woodward reagent K) at pH 6.0 and 25 degrees C. N-Methylhydroxamine regenerates the enzymatic activity whereas glycine ethyl ester does not. The addition of Mn2+, NADP+, and L-malate to the incubation mixture decreases the inactivation rate, suggesting that the reaction takes place in the active center. The binding capacities of the modified enzyme with NADP+, L-malate, pyruvate, and Mn2+ are not impaired. The kinetic and chemical evidence indicates that the inactivation is due to the modification of a carboxyl group which may be from glutamyl or aspartyl residues of the enzyme. This carboxyl group might function as a general acid-base catalyst. A detailed mechanism in terms of the exact amino acid residues involved is proposed. 相似文献
8.
9.
1. Purified hyphal wall fragments of Schizophyllum commune are analysed and shown to consist of glucose (67.6%), mannose (3.4%), xylose (0.2%), (N-acetyl)glucosamine (12.5%), amino acids (6.4%) and some lipid material (3.0%). 2. The previously proposed structures of two glucans located at the hyphal wall surface (Wessels et al. (1972) Biochim. Biophys. Acta 273, 346-358) were essentially confirmed using methylation analysis. The mucilaginous glucan consists of 1,3-linked beta-glucan chains with branches of single glucose units attached by beta-1,6 linkages on every third unit, on average, along the chain. The alkali soluble S-glucan is an exclusively 1,3-linked alpha-glucan. 3. The alkali-insoluble R-glucan, occurring in close association with chitin, in the inner wall layer, has been characterised by methylation analysis, X-ray diffraction, enzymatic hydrolysis with purified exo-beta-1,3-glucanase and Smith degradation. It appears to be a highly branched beta-1,3,beta-1,6-glucan and a model of this glucan is proposed. Certain parts of this highly insoluble R-glucan bear a close structural similarity to the mucilaginous glucan present at the outer wall surface and in the medium. 相似文献
10.
In the presence of MgSO4 as osmotic stabilizer, nucleated protoplasts of Schizophyllum commune developed a large vacuole and could be isolated on the basis of their low buoyant density. All these protoplasts were capable of wall regeneration and about 50 percent reverted to the hyphal mode of growth in liquid medium. The kinetics of the formation of three main cell-wall components, S-glucan (α-1,3-glucan), R-glucan (β-1,3, β-1,6-glucan) and chitin were studied from the onset of regeneration. S-glucan and chitin accumulation as well as RNA and protein synthesis started simultaneously after a short lag, but R-glucan formation was delayed. The reversion to hyphal tubes only began after several hours of rapid R-glucan synthesis. Cycloheximide (0.5 μg/ml), inhibiting protein synthesis by 98% inhibited the formation of R-glucan and the reversion to hyphal growth but the formation of chitin and S-glucan did start and continued seemingly unimpaired for several hours. This indicates that the enzymes responsible for the synthesis of S-glucan and chitin remained intact during protoplast preparation. Polyoxin D inhibited both the synthesis of chitin and R-glucan and also the reversion to hyphal growth. However, the synthesis of S-glucan was not suppressed. These inhibitor studies as well as the kinetics of R-glucan formation during normal regeneration suggest that the synthesis of R-glucan is required for the initiation of hyphal morphogenesis. 相似文献
11.
Kondaveeti Sanath Patel Sanjay K. S. Woo Janghun Wee Ji Hyang Kim Sang-Yong Al-Raoush Riyadh I. Kim In-Won Kalia Vipin Chandra Lee Jung-Kul 《Indian journal of microbiology》2020,60(2):160-166
Indian Journal of Microbiology - A novel cellobiohydrolase (CBH)-generating fungi have been isolated and categorized as Schizophyllum commune KMJ820 based on morphology and rDNA gene sequence.... 相似文献
12.
Chemical analysis of cell wall regeneration and reversion of protoplasts from Schizophyllum commune.
In the presence of MgSo4 as osmotic stabilizer, nucleated protoplasts of Schizophyllum commune developed a large vacuole and could be isolated on the basis of their low buoyant density. All these protoplasts were capable of wall regeneration and about 50 percent reverted to the hyphal mode of growth in liquid medium. The kinetics of the formation of three main cell-wall components, S-glucan (alpha-1,3-glucan), R-glucan (beta-1,3, beta-1,6-glucan) and chitin were studied from the onset of regeneration. S-glucan and chitin accumulation as well as RNA and protein synthesis started simultaneously after a short lag, but R-glucan formation was delayed. The reversion of hyphal tubes only began after several hours of rapid R-glucan synthesis. Cycloheximide (0.5 mug/ml), inhibiting protein synthesis by 98% inhibited the formation of R-glucan and the reversion to hyphal growth but the formation of chitin and S-glucan did start and continued seemingly unimpaired for several hours. This indicates that the enzymes responsible for the synthesis of S-glucan and chitin remained intact during protoplast preparation. Polyoxin D inhibited both the synthesis of chitin and R-glucan and also the reversion to hyphal growth. However, the synthesis of S-glucan was not suppressed. These inhibitor studies as well as the kinetics of R-glucan formation during normal regeneration suggest that the synthesis of R-glucan is required for the initiation of hyphal morphogenesis. 相似文献
13.
M N Schwalb 《Biochemical and biophysical research communications》1975,67(1):478-482
The basidiomycete produces a modifier of its own phosphoglucomutase. The enzyme-like modifier is found in mature fruit bodies but not in the vegetative mycelium. The modifier causes an increase in phosphoglucomutase cold lability. 相似文献
14.
NADP-isocitrate dehydrogenase from Cephalosporium acremonium CW-19 has been inactivated by diethyl pyrocarbonate following a first-order process giving a second-order rate constant of 3.0 m-1. s-1 at pH 6.5 and 25 degrees C. The pH-inactivation rate data indicated the participation of a group with a pK value of 6.9. Quantifying the increase in absorbance at 240 nm showed that six histidine residues per subunit were modified during total inactivation, only one of which was essential for catalysis, and substrate protection analysis would seem to indicate its location at the substrate binding site. The enzyme was not inactivated by 5, 5'-dithiobis(2-nitrobenzoate), N-ethylmaleimide or iodoacetate, which would point to the absence of an essential reactive cysteine residue at the active site. Pyridoxal 5'-phosphate reversibly inactivated the enzyme at pH 7.7 and 5 degrees C, with enzyme activity declining to an equilibrium value within 15 min. The remaining activity depended on the modifier concentration up to about 2 mm. The kinetic analysis of inactivation and reactivation rate data is consistent with a reversible two-step inactivation mechanism with formation of a noncovalent enzyme-pyridoxal 5'-phosphate complex prior to Schiff base formation with a probable lysyl residue of the enzyme. The analysis of substrate protection shows the essential residue(s) to be at the active site of the enzyme and probably to be involved in catalysis. 相似文献
15.
Chemical-modification studies on submitochondrial particle pyridine dinucleotide transhydrogenase (EC 1.6.1.1) demonstrate the presence of one class of sulfhydryl group in the nicotinamide adenine dinucleotide phosphate (NADP) site and another peripheral to the active site. Reaction of the peripheral sulfhydryl group with N-ethylmaleimide, or both classes with 5,5'-dithiobis(2-nitrobenzoic acid), completely inactivated transhydrogenase. NADP+ or NADPH nearly completely protected against 5,5'-dithiobis(2-nitrobenzoic acid) inactivation and modification of both classes of sulfhydryl groups, while NADP+ only partially protected against and NADPH substantially stimulated N-ethylmaleimide inactivation. Methyl methanethiolsulfonate treatment resulted in methanethiolation at both classes of sulfhydryl groups, and either NADP+ or NADPH protected only the NADP site group. S-Methanethio and S-cyano transhydrogenases were active derivatives with pH optima shifted about 1 unit lower than that of the native enzyme. These experiments indicate that neither class of sulfhydryl group is essential for transhydrogenation. Lack of involvement of either sulfhydryl group in energy coupling to transhydrogenation is suggested by the observations that S-methanethio transhydrogenase is functional in (a) energy-linked transhydrogenation promoted by phenazine methosulfate mediated ascorbate oxidation and (b) the generation of a membrane potential during the reduction of NAD+ by reduced nicotinamide adenine dinucleotide phosphate (NADPH). 相似文献
16.
Chemical modification of essential carboxyl group and histidine residue in the plasma-membrane 5'-nucleotidase 总被引:1,自引:0,他引:1
J Harb K Meflah A di Pietro S Bernard D C Gautheron 《Biochimica et biophysica acta》1986,870(2):320-326
An investigation, using specific chemical reagents, of the amino acids involved in the catalytic activity of the purified 5'-nucleotidase (5'-ribonucleotide phosphohydrolase, EC 3.1.3.5) from bovine liver plasma membranes, was carried out. The enzyme was irreversibly inactivated by N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ). The inhibition kinetics were of the first-order type and decreased partially in the presence of nucleotides and divalent cations. These results indicate for the first time that a carboxyl group is essential for the catalytic process of 5'-nucleotidase. Moreover, chemical modification by diethylpyrocarbonate also produced inactivation of the enzyme and showed a differential spectrum with a peak at 240 nm characteristic of N-carbethoxyhistidine residues. This inactivation was efficiently released upon decarbethoxylation by hydroxylamine only when the extent of inactivation, due to low concentration of diethylpyrocarbonate, was limited. The time-dependent inactivation followed first-order kinetics and nucleotides afforded significant protection against diethylpyrocarbonate modification. The results indicate the involvement of the histidine residue in catalysis. 相似文献
17.
18.
We cloned and analyzed the nucleotide sequence of a cDNA that encodes polyphenol oxidase (laccase) from the white-rot basidiomycete Schizophyllum commune. The nucleotide sequence of the full-length cDNA contained a 1554-base open reading frame that encoded a polypeptide of 518 amino acid residues, including a putative signal peptide of 16 residues. It contained four highly similar regions that are conserved in the deduced amino acid sequences of other laccases, including the region thought to be involved in copper binding. Aspergillus sojae strain 1860 (which has low protease levels) was transformed with the plasmid lacAL/pTPT, which contained the laccase gene under the control of the tannase promoter from Aspergillus oryzae. Laccase was secreted into the medium when transformants A1 and A2 were cultured in tannic acid-containing medium. 相似文献
19.
Summary The growth kinetics of wild-type mycelium and a puff morphological mutant of Schizophyllum commune revealed greater acid production and slower growth by this mutant. The compact mycelium growth habit of puff in defined liquid medium facilitated manometric studies of cellular respiration during culture aging. Basal oxygen consumption was highest in young, 2-day cultures as was exogenous glucose stimulation while both responses declined rapidly as the mycelial pellets aged. Respiratory stimulation by certain l-amino acids including histidine, arginine and serine was only demonstrated in aged cultures of puff mycelium. A qualitative shift in terminal respiration was considered unlikely because the metabolic poison sodium azide was a potent inhibitor of mycelial oxygen consumption regardless of either the culture age or the respective exogenous substrates employed. 相似文献
20.