首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The characteristics of [3H]hemicholinium-3 ([3H]HC-3) interactions with rat striatal membranes were investigated. Under the described assay conditions, [3H]-HC-3 binds with a saturable population of membrane binding sites having the following regional distribution: striatum much greater than hippocampus greater than or equal to cerebral cortex greater than cerebellum. The specific binding of [3H]HC-3 showed an obligatory requirement for NaCl; other halide salts of sodium or KCl failed to substitute for NaCl. The Scatchard transformation of saturation isotherm data generated a curvilinear plot with high- and low-affinity components of binding. The dissociation of [3H]HC-3 at infinite dilution was also multiexponential. The dissociation could, however, be accelerated if unlabeled HC-3 was included in the diluting buffer, and this increase in dissociation appeared to be dependent on the concentrations of unlabeled HC-3 used, with the maximal increase demonstrable at 100 nM. The dissociation was also dependent on the fractional saturation of binding sites with labeled HC-3, such that, at higher fractional saturation of binding sites, the overall dissociation was faster and the difference in the dissociation observed between "dilution only" and "dilution + unlabeled HC-3" was reduced. This occupancy-dependent change in dissociation could also be influenced by temperature and pH. Based on the results of these kinetic studies, the steady-state [3H]HC-3 binding data were analyzed for a homogeneous population of binding sites undergoing site-site interactions of the negative cooperative type. Such an analysis yielded a KD of 9.3 nM for the high-affinity state and a KD of 22.8 nM for the low-affinity state of binding sites, with a Bmax of 434 fmol/mg of protein. Competitive binding studies showed that unlabeled HC-3 was most potent in displacing [3H]HC-3, followed by choline. Other drugs known to have little influence on the synaptosomal sodium-dependent high-affinity choline uptake system (SDHACU) had no significant effect on [3H]HC-3 binding sites. Similarities in ionic dependencies, regional distributions, and pharmacological selectivities of [3H]HC-3 binding with synaptosomal SDHACU suggest that [3H]HC-3 selectively labels SDHACU sites located on presynaptic cholinergic neurons in rat CNS. We suggest that the two affinity states of [3H]HC-3 binding sites represent the different "functional" states of the SDHACU system. The binding of HC-3 (or choline) with the high-affinity state of the binding sites induces negative cooperative site-site interactions among the binding sites, resulting in the formation of a low-affinity binding state.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
[3H]Hemicholinium-3 (HC-3) was used to label sodium-dependent, high-affinity choline uptake sites in regions of rat brain. Autoradiography revealed a high density of [3H]HC-3 binding sites in brain regions with a high density of cholinergic terminals, such as the interpeduncular nucleus, caudate-putamen, and olfactory tubercle. This distribution of [3H]HC-3 binding sites was in close agreement with the amounts of choline acetyltransferase in specific nuclei and subregions of rat brain. Destruction of presynaptic cholinergic projections in the cerebral cortex and the basal ganglia by injection of excitotoxins reduced [3H]HC-3 binding by 40-50%. These data indicate that sodium-dependent [3H]HC-3 binding sites are related to the choline transport system present in cholinergic neurons.  相似文献   

3.
High-Affinity [3H]Choline Accumulation in Cultured Human Skin Fibroblasts   总被引:1,自引:0,他引:1  
[3H]Choline can be transported across cell membranes by high-affinity (KT less than 5 microM) and low-affinity (KT much greater than 5 microM) systems. High-affinity choline accumulation (HACA) has been demonstrated in synaptosomes made from cholinergic brain regions such as the hippocampus and caudate-putamen. In cell culture, HACA has been demonstrated in glia and avian telencephalon, dissociated spinal cord, and muscle fibroblasts. We examined [3H]choline accumulation in a single normal human fibroblast line cultured from skin biopsy. [3H]Choline accumulation was temperature-dependent and linear with incubation time up to 6 min at 0.125 microM-choline. The apparent KT for [3H]choline was 5 microM, which is similar to that observed in avian fibroblasts. Isoosmotic replacement of Na+ with either Li+ (144 mM) or sucrose (288 mM) severely reduced [3H]choline accumulation (by 70-90%). Pre-incubation with ouabain (100 microM), sodium orthovanadate (100 microM), or 2,4-dinitrophenol (100 microM), or replacement of Ca2+ by Mg2+ had little or no effect on subsequent [3H]choline accumulation. [3H]Choline accumulation was inhibited by hemicholinium-3 (HC-3); after pre-incubation in HC-3 at 37 degrees C for 10 min, the IC50 (at 0.125 microM-choline) was 5.6 microM. The HC-3 sensitivity, Na+ dependence, and low KT suggest that human skin fibroblasts have a high-affinity transport system for choline.  相似文献   

4.
We report here on the binding properties of [3H]hemicholinium-3, a selective inhibitor of the high-affinity choline uptake process, to human brain membranes. Under the assay conditions described, the binding of [3H]hemicholinium-3 exhibited a dependency of physiological conditions on pH, temperature, and NaCl concentrations. Striatal binding proved to be specific, to a single site, saturable, and reversible, with an apparent KD of 10 nM and a Bmax of 82 fmol/mg of protein. [3H]Hemicholinium-3 specific binding exhibited a pharmacological profile and an ionic dependency suggestive of physiologically relevant interactions and comparable with those reported for the high-affinity choline uptake. Moreover, specific [3H]hemicholinium-3 binding exhibited an uneven regional distribution: striatum much greater than nucleus basalis greater than spinal cord much greater than midbrain = cerebellum greater than or equal to hippocampus greater than neocortex = anterior thalamus greater than posterior thalamus much much greater than white matter. This distribution closely corresponds to the reported activity of both enzymatic cholinergic presynaptic markers and high-affinity choline uptake in mammalian brain. There are no significant differences between these results and those previously found in the rat brain using this radioligand. Our results demonstrate, for the first time, the presence of [3H]hemicholinium-3 binding sites in human brain and strongly support the proposal that this radioligand binds to the carrier site mediating the high-affinity choline uptake process on cholinergic neurons. Thus, [3H]hemicholinium-3 binding may be used in postmortem human brain as a selective and quantifiable marker of the presynaptic cholinergic terminals.  相似文献   

5.
Sodium-dependent binding of [3H]hemicholinium-3 was observed to be 10-fold higher with presynaptic membranes from the electric organ than with electroplaque membranes and this binding site copurified with synaptosomal membranes. The KD for specific [3H]hemicholinium-3 binding was found to be 31 +/- 4 nM and the Bmax, 5.0 +/- 0.2 pmol/mg protein; a Ki of 16 nM was estimated for hemicholinium-3 as a competitive inhibitor of high-affinity choline transport in electric organ synaptosomes. Choline and choline analogues were equally potent as inhibitors of [3H]choline uptake and [3H]hemicholinium-3 binding. Tubocurarine and oxotremorine also inhibited uptake and binding, but carbachol was without effect in both tests. These findings suggest that [3H]hemicholinium binds to the high-affinity choline transporter present at the cholinergic nerve terminal membrane. A comparison of maximal velocities for choline transport and the maximal number of hemicholinium-3 binding sites indicated that the high-affinity choline transporter has an apparent turnover number of about 3s-1 at 20 degrees C under resting conditions. The high transport rates observed in electric organ synaptosomes are likely due to the high density of high-affinity choline transporters in this tissue, estimated on the basis of [3H]hemicholinium-3 binding to be of the order of 100/micron2 of synaptosomal membrane.  相似文献   

6.
Tritium-labeled hemicholinium-3 ([3H]HC-3) was used to characterize the sodium-dependent high-affinity choline carrier sites in rat striatal preparations. In an earlier study, we had shown that [3H]HC-3 labels choline carrier sites with high and low affinities and had suggested that the low-affinity sites represent "functional" carrier sites. The objective of the present study was to examine the mechanisms involved in the regulation of the two affinity states of [3H]HC-3 binding. Here, we demonstrate that these two affinity states are totally interconvertible; addition of 0.1 mM ATP in the binding assay medium quantitatively converted all the binding sites to the low-affinity state, whereas addition of 1 mM beta,gamma-methylene 5'-ATP quantitatively converted all the binding sites to the high-affinity state. Preincubation of the tissue (for 15 min at 37 degrees C) before the binding assay also converted the binding sites to the high-affinity state, whereas supplementation of the assay medium with ATP (0.5 mM) again induced expression of the low-affinity state of the binding sites. This effect of ATP was found to be selective for this nucleotide. Neither ADP (1 mM) nor cyclic AMP could mimic such an effect. Other nucleotide triphosphates--CTP (0.5 mM) and GTP (0.5 mM)--also could not substitute for ATP. GTP, however, caused nearly a 35% reduction in the number of binding sites, accompanying a loss of the low-affinity component of binding. This effect of GTP was also shared by 5'-guanylylimidodiphosphate but not by GDP or cyclic GMP. This ATP-dependent low-affinity conversion of [3H]HC-3 binding sites requires divalent metal ions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The physiological mechanisms regulating activity of the sodium-dependent, high-affinity choline transporter and the molecular events in the translocation process remain unclear; the protein has not been purified or characterized biochemically. In the present study, [3H]choline mustard aziridinium ion [( 3H]ChM Az), a nitrogen mustard analogue of choline, bound irreversibly to presynaptic plasma membranes from Torpedo electric organ in a hemicholinium-sensitive, and sodium-, time-, and temperature-dependent manner. Specific binding of this ligand was greatest when it was incubated with membranes in the presence of sodium at 30 degrees C. Separation of the 3H-labelled membrane proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that most of the radiolabel was associated with a polypeptide of apparent molecular mass of approximately 42,000 daltons; labelling of this species was abolished in membranes incubated with ligand in the presence of HC-3. Two other 3H-labelled polypeptides were detected, with apparent molecular masses of approximately 58,000 and 90,000 daltons; radiolabelling of the former was also HC-3 sensitive. [3H]ChM Az may be a useful affinity ligand in the purification of the choline carrier from cholinergic neurons.  相似文献   

8.
The binding characteristics and distribution of M1 and M2 muscarinic cholinergic receptors and high-affinity choline uptake sites were studied in the striatum of the rat at 3-4 and 9-12 weeks of age after exposure to unilateral perinatal hypoxic-ischemic brain injury. High-affinity choline uptake sites were labeled with [3H]hemicholinium-3, M1 receptors with [3H]pirenzepine, and M2 receptors with [3H]AF-DX 116. Saturation experiments revealed a significant decrease in the maximal binding capacity (Bmax) for [3H]pirenzepine-labeled M1 receptors in the lesioned caudate/putamen complex in immature rats with moderate brain injury, in comparison with controls. In contrast, the Bmax value for [3H]hemicholinium-3-labeled high-affinity choline uptake sites was significantly increased. No changes in dissociation constants (KD) were observed. These changes were most pronounced in the dorsolateral region of striatum. Striatal regional distribution of [3H]AF-DX 116 was not affected. In mature rats, binding of [3H]pirenzepine returned to control values, whereas [3H]hemicholinium binding showed a persistent increase (23%). The increase in [3H]hemicholinium-3 binding, as a specific marker of cholinergic nerve terminals, is consistent with our prior morphologic studies demonstrating relative preservation of cholinergic neurons and neuropil, and supports the concept that striatal cholinergic systems are resistant to hypoxic-ischemic injury.  相似文献   

9.
10.
11.
The relationship between the nucleoside transport system and the nitrobenzylthioinosine-sensitive and -resistant [3H]dipyridamole binding sites was examined by comparing the characteristics of [3H]dipyridamole binding with those of [3H]nitrobenzylthioinosine binding and [3H]-uridine influx in rabbit and guinea pig cerebral cortical synaptosomes. Two distinct high-affinity synaptosomal membrane-associated [3H]dipyridamole binding sites, with different sensitivities to inhibition by nitrobenzylthioinosine, were characterized in the presence of 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS, 0.01%) to prevent [3H]dipyridamole binding to glass tubes and filters. The nitrobenzylthioinosine-resistant [3H]-dipyridamole binding sites represented a greater proportion of the total membrane sites in guinea pig than in rabbit (40 vs. 10% based on inhibition studies). In rabbit, nitrobenzylthioinosine-sensitive [3H]dipyridamole binding (KD = 1.4 +/- 0.2 nM) and [3H]nitrobenzylthioinosine binding (KD = 0.30 +/- 0.01 nM) appeared to involve the same membrane site associated with the nitrobenzylthioinosine-sensitive nucleoside transporter. By mass law analysis, [3H]-dipyridamole binding in guinea pig could be resolved into two components based on sensitivity to inhibition by 1 microM nitrobenzylthioinosine. The nitrobenzylthioinosine-resistant [3H]dipyridamole binding sites were relatively insensitive to inhibition by all of the nucleoside transport substrates and inhibitors tested, with the exception of dipyridamole itself. In guinea pig synaptosomes, 100 microM dilazep blocked nitrobenzylthioinosine-resistant [3H]uridine transport completely but inhibited the nitrobenzylthioinosine-resistant [3H]dipyridamole binding component by only 20%. Furthermore, a greater percentage of the [3H]dipyridamole binding was nitrobenzylthioinosine resistant in guinea pig compared with rabbit, yet both species had a similar percentage of nitrobenzylthioinosine-resistant [3H]uridine transport.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Vulnerability of hippocampal hemicholinium-3 (HC-3)-sensitive carriers to ethanol was evaluated in vitro during rat postnatal development. The high-affinity uptake of [3H]choline (HACU) and the specific binding of [3H]HC-3 were measured on synaptosomes from 7-, 14-, and 60-day- and 3-month-old male and female Wistar rats. Marked increases of basal (between 7 and 60 days of age) and of stimulated HACU levels via K+-depolarization (between 14 days and 3 months) but only a mild elevation in [3H]HC-3 binding (between 7 days and 3 months) associated with alterations in the binding site number were found. On the mature tissue, ethanol at high concentrations (5%) moderately inhibited the choline transport under basal conditions but totally eliminated depolarization effects. However, both age- and sex-dependent alterations in basal HACU mediated by high or low pharmacologically relevant alcohol concentrations (50–100 mM) were observed in the immature tissue. Namely, the dose- and incubation time–dependent inhibition of HACU associated with changes in the transport velocity was found in postnatal male but not female tissue. [3H]HC-3 binding site was not markedly sensitive to ethanol actions. Anisotropy measurements in the region of the hydrophilic heads of phospholipid bilayers and in the membrane hydrocarbon core indicated penetration of 100 mM ethanol to immature female but not male tissue. Our results suggest the noncompetitive binding of alcohol to choline carriers from immature male tissue and correspond with data reporting significant sexual dimorphism of postnatal hippocampal neurons. The direct effects of ethanol on male choline carriers can contribute to the inhibition of acetylcholine synthesis and to sex-dependent neurotoxic effects of alcohol applied in vivo during early and late postnatal period.  相似文献   

13.
The effects of arachidonic acid on [3H]choline uptake, on [3H]acetylcholine accumulation, and on endogenous acetylcholine content and release in rat cerebral cortical synaptosomes were investigated. Arachidonic acid (10-150 microM) produced a dose-dependent inhibition of high-affinity [3H]choline uptake. Low-affinity [3H]choline uptake was also inhibited by arachidonic acid. Fatty acids inhibited high-affinity [3H]choline uptake with the following order of potency: arachidonic greater than palmitoleic greater than oleic greater than lauric; stearic acid (up to 150 microM) had no effect. Inhibition of [3H]choline uptake by arachidonic acid was reversed by bovine serum albumin. In the presence of arachidonic acid, there was an increased accumulation of choline in the medium, but this did not account for the inhibition of [3H]choline uptake produced by the fatty acid. Arachidonic acid inhibited the synthesis of [3H]acetylcholine from [3H]choline, and this inhibition was equal in magnitude to the inhibition of high-affinity [3H]choline uptake produced by the fatty acid. A K+-stimulated increase in [3H]acetylcholine synthesis was inhibited completely by arachidonic acid. Arachidonic acid also depleted endogenous acetylcholine stores. Concentrations of arachidonic acid and hemicholinium-3 that produced equivalent inhibition of [3H]choline uptake also produced equivalent depletion of acetylcholine content. In the presence of eserine, arachidonic acid had no effect on acetylcholine release. The results suggest that arachidonic acid may deplete acetylcholine content by inhibiting high-affinity choline uptake and subsequent acetylcholine synthesis. This raises the possibility that arachidonic acid may play a role in the impairment of cholinergic transmission seen in cerebral ischemia and other conditions in which large amounts of the free fatty acid are released in brain.  相似文献   

14.
The involvement of protein kinase C (PKC) in the regulation of [3H]choline cotransport was studied in Limulus brain hemi-slice preparations. The PKC activators, phorbol 12-myristate 13-acetate (PMA) or phorbol 12,13-dibutyrate (PDBu), significantly decreased [3H]choline cotransport. Conversely, the PKC inhibitors, staurosporine (STAURO) and polymyxin B (PMB), each increased [3H]choline cotransport. These PKC inhibitors prevented the phorbol ester-induced reduction of transport. Both the PMA induced decrease and the STAURO induced increase in [3H]choline cotransport were paralleled by respective and comparable changes in [3H]hemicholinium-3 (HC-3) specific binding. Pre-exposure of brain hemi-slices to elevated potassium chloride (120 mM KCl) resulted in a doubling of [3H]choline cotransport and [3H]HC-3 binding. The enhancement of [3H]choline cotransport by STAURO and antecedent 120 mM KCl treatment were additive. PMA did not significantly alter elevated potassium stimulated transport. Moreover, arachidonyltrifluoromethyl ketone (AACOCF3) and quinacrine (QUIN), both phospholipase A2 (PLA2) inhibitors, markedly decreased enhanced [3H]choline transport and [3H]HC-3 binding induced by antecedent exposure to depolarizing concentrations of potassium. These results suggest that PKC and PLA2 are involved in the regulation of [3H]choline cotransport but at different regulatory sites.  相似文献   

15.
The pharmacological specificity and the regional distribution of the N-methyl-D-aspartate receptor-associated 5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801) binding sites in human postmortem brain tissue were determined by binding studies using (+)-[3H]MK-801. Scatchard analysis revealed a high-affinity (KD = 0.9 +/- 0.2 nM, Bmax = 499 +/- 33 fmol/mg of protein) and a low-affinity (KD = 3.6 +/- 0.9 nM, Bmax = 194 +/- 44 fmol/mg of protein) binding site. The high-affinity site showed a different regional distribution of receptor density (cortex greater than hippocampus greater than striatum) compared to the low-affinity binding site (cerebellum greater than brainstem). The rank order pharmacological specificity and stereoselectivity of the high-(cortex) and low-(cerebellar) affinity binding sites were identical. However, all compounds tested showed greater potency at the high-affinity site in cortex. The results indicate that (+)-[3H]MK-801 binding in human postmortem brain tissue shows pharmacological and regional specificity.  相似文献   

16.
Abnormalities of choline processing in cancer cells have been used as a basis for imaging of cancer with positron emission tomography and magnetic resonance spectroscopy. In this study, the transport mechanism for choline was investigated in cultured PC-3 prostate cancer cells. Furthermore, tritiated hemicholinium 3 (HC-3), a well-known inhibitor of choline transport, was studied as a prototypic molecular imaging probe in PC-3 cells and 9L glioma-bearing rats. [(3)H]Choline uptake by PC-3 cells was found to have both facilitative and nonfacilitative components. Facilitative transport was characterized by partial sodium dependence and intermediate affinity (K(M) = 9.7 +/- 0.8 microM). HC-3 inhibited choline with a K(I) of 10.5+/- 2.2 microM. Ouabain (1 mM) caused a 94% reduction in choline uptake. At physiologic choline concentration, phosphocholine was the rapid and predominant metabolic fate. The binding of [(3)H]HC-3 to PC-3 cells was rapid and specific (competitively blocked with unlabeled HC-3). Biodistribution of [(3)H]HC-3 in 9L glioma-bearing rats showed the ranking of uptake to be kidney > lung > tumor > liver > skeletal muscle congruent with blood > brain. In comparison with [(14)C]choline, [(3)H]HC-3 showed over twofold higher tumor uptake and favorable uptake ratios of tumor to blood, tumor to muscle, tumor to lung, and tumor to liver. The data demonstrate the quantitative importance of an intermediate-affinity, partially sodium-dependent choline transport system on choline processing in PC-3 cancer cells. The biodistribution properties of [(3)H]HC-3 in tumor-bearing rats encourage the development of molecular imaging probes based on choline transporter binding ligands.  相似文献   

17.
A [3H]glycine recognition site in rat brain synaptic plasma membranes (SPM) has been identified, having characteristics expected of a modulatory component of the N-methyl-D-aspartate receptor complex. Incubation of SPM with [3H]glycine for 10 min at 2 degrees C results in saturable, reversible binding with a KD of 0.234 microM and a Bmax of 9.18 pmol/mg. A pharmacological analysis of this binding site indicates that D-serine (Ki = 0.27 microM), D-alanine (Ki = 1.02 microM), and D-cycloserine (Ki = 2.33 microM) are potent inhibitors of binding, whereas the corresponding L isomers have significantly less activity (Ki = 25.4 microM, 15.9 microM, and greater than 100 microM, respectively). Inactive at concentrations of up to 100 microM were strychnine, L-valine, N,N-dimethylglycine, aminomethylphosphonate, and aminomethylsulfonate. The active compounds were analyzed further for their ability to stimulate [3H]1-[1-(2-thienyl)cyclohexyl]piperidine [( 3H]TCP) binding to Triton X-100-washed SPM. Results indicate that the affinity of the compounds for the [3H]glycine recognition site correlates with the ability of these analogues to stimulate [3H]TCP binding.  相似文献   

18.
Abstract: High-affinity choline transport (HAChT), the rate-limiting and regulatory step in acetylcholine (ACh) synthesis, is selectively localized to cholinergic neurons. Hemicholinium-3 (HC3), a potent and selective inhibitor of HAChT, has been used as a specific radioligand to quantify HAChT sites in membrane binding and autoradiographic studies. Because both HAChT velocity and [3H]HC3 binding change as in vivo activity of cholinergic neurons is altered, these markers are also useful measures of cholinergic neuronal activity. Evidence that [3H]HC3 is a specific ligand for HAChT sites on cholinergic terminals is reviewed. The ion requirements of HAChT and [3H]HC3 binding indicate that sodium and chloride are required for recognition of both choline and [3H]HC3. A common recognition site is also indicated by the close correspondence of the potency of HC3 and choline analogues for inhibiting both HAChT and [3H]HC3 binding. The parallel regional distributions of both markers in adult brain, during development and after specific lesions, all indicate specific cholinergic localization. The close association of HAChT and [3H]HC3 binding sites is also supported by parallel regulatory changes occurring after in vivo drug treatments and in vitro depolarization. Overall, the data indicate a close association between HAChT and [3H]HC3 binding and are consistent with the sites being identical. Methodologic considerations in using [3H]HC3 as a ligand and considerations in interpretation of results are also discussed.  相似文献   

19.
Phencyclidine (PCP) receptors were successfully solubilized from rat forebrain membranes with 1% sodium cholate. Approximately 58% of the initial protein and 20-30% of the high-affinity PCP binding sites were solubilized. The high affinity toward PCP-like drugs, the stereo-selectivity of the sites, and the sensitivity to N-methyl-D-aspartate (NMDA) receptor ligands were preserved. Binding of the potent PCP receptor ligand N-[3H][1-(2-thienyl)cyclohexyl] piperidine ([3H]TCP) to the soluble receptors was saturable (KD = 35 nM), and PCP-like drugs inhibited [3H]TCP binding in a rank order of potency close to that observed for the membrane-bound receptors; the most potent inhibitors were TCP (Ki = 31 nM) and the anticonvulsant MK-801 (Ki = 50 nM). The NMDA receptor antagonist 2-amino-5-phosphonovaleric acid inhibited binding of [3H]TCP to the soluble receptors; glutamate or NMDA diminished this inhibition in a dose-dependent manner. Taken together, the results indicate that the soluble PCP receptor preparation contains the glutamate recognition sites and may represent a single receptor complex for PCP and NMDA, as suggested by electrophysiological data. The successful solubilization of the PCP receptors in an active binding form should now facilitate their purification.  相似文献   

20.
We have identified in the DDT1 smooth muscle cell line a [3H]dihydroergocryptine-binding site having the characteristics of an alpha 1-adrenergic receptor. Specific binding of [3H]dihydroergocryptine to DDT1 cells grown either in monolayer or suspension culture was reversible, saturable, and of high affinity, and the binding site demonstrated stereoselectivity. [3H]Dihydroergocryptine dissociation constants of 1.4 +/- 0.2 nM and 1.4 +/- 0.3 nM were observed for suspension and monolayer cells, respectively. However, the concentration of binding sites in suspension-cultured cells (65,100 +/- 8,300 sites/cell) was significantly greater (p less than 0.001) than that found in monolayer cells (27,900 +/- 4,300 sites/cell). The order of agonist competition for the binding site was epinephrine (Ki = 0.92 +/- 0.32 microM) greater than or equal to norepinephrine (Ki = 2.2 +/- 1.0 microM) greater than isoproterenol (Ki = 137 +/- 17 microM), consistent with an alpha-adrenergic interaction. Results of competition experiments with specific antagonists prazosin (alpha 1-selective) or yohimbine (alpha 2-selective) and a computer modeling technique indicated that the alpha-adrenergic receptor of the DDT1 cell was predominantly (greater than 95%) the alpha 1-subtype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号