首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The temperature-sensitive defects of virus mutants isolated from L cells persistently infected with Newcastle disease virus (NDV) were analyzed. Genetic grouping of the mutants by complementation tests was attempted by using several different methods, including yield analysis, RNA synthesis, and heterozygote formation at 42 to 43 C, the nonpermissive temperature. In each case, specific interference prevented detection of complementation. This interference was shown to occur prior to or at the level of virus RNA synthesis. Temperature-shift experiments with five different NDV(pi) clones showed that virus replication begun at 37 C could not be completed at the nonpermissive temperature. The activity of the NDV-specific RNA-dependent RNA polymerase in the cytoplasm of infected chicken embryo cells was not stable and could not be demonstrated directly. However, indirect measurement of RNA polymerase activity at the nonpermissive temperature was accomplished by studying the kinetics of virus-specific RNA synthesis in infected cells after temperature shift. Two types of response were obtained: with three NDV(pi) clones, virus-specific RNA synthesis ceased immediately upon transfer of infected cells to 42 to 43 C, whereas in cells infected with two other NDV(pi) clones, RNA synthesis continued for several hours at this temperature. These results suggested that there may be two types of ts defects in NDV(pi), both associated with virus-specific RNA polymerase activity.  相似文献   

2.
Three types of virus-specific particles of double-stranded RNA bacteriophage φ6 were isolated and characterized by pulse-label and pulse-chase experiments on φ6-infected Pseudomonas phaseolicola. The first particle was “previrion I”, which consisted of early proteins P1, P2, P4 and P7, and had no RNA. It was detected immediately after labeling of proteins and the radioactivity was chased into the second structure, designated previrion II, after ten minutes. Previrion II contained three segments of double-stranded RNA in addition to the component of previrion I, and had RNA polymerase activity that produced messenger RNA species coding for late proteins. The RNA polymerase activity in the cell extract emerged nearly in parallel with the synthesis of late proteins, and this activity of previrion II was supposed to be responsible for late protein synthesis in infected cells. Via previrions I and II, the third radioactive particle was observed in infected cells after late protein synthesis started. This particle was identified as the intact virion, because it had infectivity as well as all of the viral components, including lipids. This intact virion was accumulated in the infected cell before bursting the cell.  相似文献   

3.
Y N Kim  S Makino 《Journal of virology》1995,69(8):4963-4971
The mouse hepatitis virus (MHV) sequences required for replication of the JHM strain of MHV defective interfering (DI) RNA consist of three discontinuous genomic regions: about 0.47 kb from both terminal sequences and a 0.13-kb internal region present at about 0.9 kb from the 5' end of the DI genome. In this study, we investigated the role of the internal 0.13-kb region in MHV RNA replication. Overall sequences of the 0.13-kb regions from various MHV strains were similar to each other, with nucleotide substitutions in some strains; MHV-A59 was exceptional, with three nucleotide deletions. Computer-based secondary-structure analysis of the 0.13-kb region in the positive strand revealed that most of the MHV strains formed the same or a similar main stem-loop structure, whereas only MHV-A59 formed a smaller main stem-loop structure. The RNA secondary structures in the negative strands were much less uniform among the MHV strains. A series of DI RNAs that contained MHV-JHM-derived 5'- and 3'-terminal sequences plus internal 0.13-kb regions derived from various MHV strains were constructed. Most of these DI RNAs replicated in MHV-infected cells, except that MRP-A59, with a 0.13-kb region derived from MHV-A59, failed to replicate. Interestingly, replication of MRP-A59 was temperature dependent; it occurred at 39.5 degrees C but not at 37 or 35 degrees C, whereas a DI RNA with an MHV-JHM-derived 0.13-kb region replicated at all three temperatures. At 37 degrees C, synthesis of MRP-A59 negative-strand RNA was detected in MHV-infected and MRP-A59 RNA-transfected cells. Another DI RNA with the internal 0.13-kb region deleted also synthesized negative-strand RNA in MHV-infected cells. MRP-A59-transfected cells were shifted from 39.5 to 37 degrees C at 5.5 h postinfection, a time when most MHV negative-strand RNAs have already accumulated; after the shift, MRP-A59 positive-strand RNA synthesis ceased. The minimum sequence required for maintenance of the positive-strand major stem-loop structure and biological function of the MHV-JHM 0.13-kb region was about 57 nucleotides. Function was lost in the 50-nucleotide sequence that formed a positive-strand stem-loop structure identical to that of MHV-A59. These studies suggested that the RNA structure made by the internal sequence was important for positive-strand MHV RNA synthesis.  相似文献   

4.
5.
6.
The techniques of deoxyribonucleic acid-ribonucleic acid (DNA-RNA) hybridization and immunological precipitation were used to compare the synthesis of adenovirus-specific macromolecules in African green monkey kidney (AGMK) cells infected with adenovirus, an abortive infection, and coinfected with both adenovirus and simian virus 40 (SV40), which renders the cells permissive for adenovirus replication. When viral protein synthesis was proceeding at its maximum rate, the incorporation of (14)C-amino acids into adenovirus structural proteins was about 90 times greater in the doubly infected cells than in cells infected only with adenovirus. However, the rates of synthesis of virus-specific ribonucleic acid appeared to be comparable in the two infections at all times measured. A time-dependent increase in the rate of RNA synthesis observed late in the abortive infection was dependent upon the prior replication of viral DNA. Moreover, all virus-specific RNA species that are normally made late in a productive adenovirus infection (i.e., the true late and class II early RNA species) were also detected in the abortive infection. Adenovirus-specific RNA was detected by molecular hybridization in both the cytoplasm and nuclei of abortively infected cells. Comparable amounts of viral RNA were found in the cytoplasmic fractions of AGMK cells infected either with adenovirus or with both adenovirus and SV40. The results of hybridization-inhibition experiments clearly showed that there was a class of virus-specific RNA molecules, representing about 30% of the total, in the nucleus that was not transported to the cytoplasm. This class of RNA was also identified in similar amounts in productively infected human KB cells. The difference in the abilities of cytoplasmic and nuclear RNA to inhibit the hybridization of virus-specific RNA from whole cells was shown not to be due to a difference in the molecular size of the RNA species from the two cell fractions or to the specific loss of a cytoplasmic species during RNA extraction procedures.  相似文献   

7.
Latency of Human Measles Virus in Hamster Cells   总被引:14,自引:9,他引:5  
A latent system employing measles virus (Schwarz strain) was developed in hamster embryo fibroblasts (HEF). Measles virus-specific antigen was detected by immunofluorescence in 30 to 50% of HEF cells, and these cells released infectious virus when co-cultivated with a susceptible monkey cell line, BSC-1 cells. No infectious virus could be detected in the cells when measures were taken to exclude passage of viable latent cells onto the indicator BSC-1 cells. Infectious center assays demonstrated that about 1 in 10 of the latently infected cells in the population could release infectious virus. Infectious virus appeared within 6 hr after co-cultivation of the HEF cells with BSC-1 cells, as compared to 24 hr required for normal replication of measles virus in the BSC-1 cells. Furthermore, labeling of progeny virus ribonucleic acid (RNA) by using tritiated uridine, and inhibition of RNA or protein synthesis by 5-azacytidine or cycloheximide suggested that neither additional RNA nor protein synthesis is required after co-cultivation of the cells to effect early virus release. It can therefore be postulated that there is a block at a late step in virus replication in the latently infected hamster cells. The most obvious site would concern maturation of infectious virions at the cell membrane.  相似文献   

8.
The first event after infection with mouse hepatitis virus strain A59 (MHV-A59) is presumed to be the synthesis of an RNA-dependent RNA polymerase from the input genomic RNA. The synthesis and processing of this putative polymerase protein was studied in a cell-free translation system utilizing 60S RNA from MHV-A59 virions. The polypeptide products of this reaction included two major species of 220 and 28 kilodaltons. Kinetics experiments indicated that both p220 and p28 appeared after 60 min of incubation and that protein p28 was synthesized initially as the N-terminal portion of a larger precursor protein. When the cell-free translation products were labeled with N-formyl[35S]methionyl-tRNAi, p28 was the predominant radioactive product, confirming its N-terminal location within a precursor protein. Translation in the presence of the protease inhibitors leupeptin and ZnCl2 resulted in the disappearance of p28 and p220 and the appearance of a new protein, p250. This product, which approached the maximal size predicted for a protein synthesized from genomic RNA, was not routinely detected in the absence of inhibitors even under conditions which optimized the translation reaction for elongation of proteins. Subsequent chelation of ZnCl2 resulted in the partial cleavage of the precursor protein and the reappearance of p28. One-dimensional peptide mapping with Staphylococcus aureus V-8 protease confirmed the precursor-product relationship of p250 and p28. The results show that MHV virion RNA, like many other viral RNAs, is translated into a large polyprotein, which is cleaved soon after synthesis into smaller, presumably functional proteins. This is in marked contrast to the synthesis of other MHV proteins, in which minimal proteolytic processing occurs.  相似文献   

9.
10.
The time course of vaccinia deoxyribonucleic acid (DNA)-dependent ribonucleic acid (RNA) polymerase synthesis and its intracellular localization were studied with virus-infected HeLa cells. Viral RNA polymerase activity could be meassured shortly after viral infection in the cytoplasmic fraction of infected cells in vitro. However, unless the cells were broken in the presence of the nonionic detergent Triton-X-100, no significant synthesis of new RNA polymerase was detected during the viral growth cycle. When cells were broken in the presence of this detergent, extensive increases in viral RNA polymerase activity were observed late in the infection cycle. The onset of new RNA polymerase synthesis was dependent on prior viral DNA replication. Fluorodeoxyuridine (5 x 10(-5)m) prevented the onset of viral polymerase synthesis. Streptovitacin A, a specific and complete inhibitor of protein synthesis in HeLa cells, prevented the synthesis of RNA polymerase. Thus, the synthesis of RNA polymerase is a "late" function of the virus. The newly synthesized RNA polymerase activity was primarily bound to particles which sedimented during high-speed centrifugation. These particles have been characterized by sucrose gradient centrifugation. A major class of active RNA polymerase particles were considerably "lighter" than whole virus in sucrose gradients. These particles were entirely resistant to the action of added pancreatic deoxyribonuclease, and they were not stimulated by added calf thymus primer DNA. It is concluded that these particles are not active in RNA synthesis in vivo, and that activation occurs as a result of detergent treatment in vitro.  相似文献   

11.
12.
In murine 17 Cl 1 cells persistently infected with murine coronavirus mouse hepatitis virus strain A59 (MHV-A59), expression of the virus receptor glycoprotein MHVR was markedly reduced (S. G. Sawicki, J. H. Lu, and K. V. Holmes, J. Virol. 69:5535-5543, 1995). Virus isolated from passage 600 of the persistently infected cells made smaller plaques on 17 Cl 1 cells than did MHV-A59. Unlike the parental MHV-A59, this variant virus also infected the BHK-21 (BHK) line of hamster cells. Virus plaque purified on BHK cells (MHV/BHK) grew more slowly in murine cells than did MHV-A59, and the rate of viral RNA synthesis was lower and the development of the viral nucleocapsid (N) protein was slower than those of MHV-A59. MHV/BHK was 100-fold more resistant to neutralization with the purified soluble recombinant MHV receptor glycoprotein (sMHVR) than was MHV-A59. Pretreatment of 17 Cl 1 cells with anti-MHVR monoclonal antibody CC1 protected the cells from infection with MHV-A59 but only partially protected them from infection with MHV/BHK. Thus, although MHV/BHK could still utilize MHVR as a receptor, its interactions with the receptor were significantly different from those of MHV-A59. To determine whether a hemagglutinin esterase (HE) glycoprotein that could bind the virions to 9-O-acetylated neuraminic acid moieties on the cell surface was expressed by MHV/BHK, an in situ esterase assay was used. No expression of HE activity was detected in 17 Cl 1 cells infected with MHV/BHK, suggesting that this virus, like MHV-A59, bound to cell membranes via its S glycoprotein. MHV/BHK was able to infect cell lines from many mammalian species, including murine (17 Cl 1), hamster (BHK), feline (Fcwf), bovine (MDBK), rat (RIE), monkey (Vero), and human (L132 and HeLa) cell lines. MHV/BHK could not infect dog kidney (MDCK I) or swine testis (ST) cell lines. Thus, in persistently infected murine cell lines that express very low levels of virus receptor MHVR and which also have and may express alternative virus receptors of lesser efficiency, there is a strong selective advantage for virus with altered interactions with receptor (D. S. Chen, M. Asanaka, F. S. Chen, J. E. Shively, and M. M. C. Lai, J. Virol. 71:1688-1691, 1997; D. S. Chen, M. Asanaka, K. Yokomori, F.-I. Wang, S. B. Hwang, H.-P. Li, and M. M. C. Lai, Proc. Natl. Acad. Sci. USA 92:12095-12099, 1995; P. Nedellec, G. S. Dveksler, E. Daniels, C. Turbide, B. Chow, A. A. Basile, K. V. Holmes, and N. Beauchemin, J. Virol. 68:4525-4537, 1994). Possibly, in coronavirus-infected animals, replication of the virus in tissues that express low levels of receptor might also select viruses with altered receptor recognition and extended host range.  相似文献   

13.
14.
The size and quantity of virus-specific RNA in five non-virus-producing mouse cells transformed by the Moloney isolate of murine sarcoma virus (MSV) was determined. Hybridization of RNA from transformed cells with the [(3)H]DNA product of the RNA-directed DNA polymerase of the murine sarcoma-leukemia virus was used to detect and quantitate virus-specific RNA. The amount of virus-specific RNA in non-virus-producing cells was less than one-sixth of that found in virus-producing cells. A striking correlation was found between the amount of intracellular virus-specific RNA and the degree of agglutination by conconavalin A previously reported for the four non-virus-producing NIH/3T3 cell lines (Salzberg and Green, 1974). A major RNA subunit sedimenting at 26 to 28S was detected in all five MSV-transformed non-virus-producing cells. This could represent the RNA genome of defective MSV.  相似文献   

15.
16.
17.
Mouse embryo cells infected with the 3049 strain of polyoma virus contain several fold more virus-specific, polyadenylated RNA beginning between 4 and 8 hours after the onset of viral DNA synthesis than do cells infected with wild-type virus (lpS). Following infection with either virus strain, there is an identical small but significant enhancement of the level of total polyadenylated RNA measured by binding of 125I-labeled RNA to poly(dT)cellulose. The polyadenylation of “early” virus-specific RNA is inhibited 85–90% by cordycepin resulting in an “early” RNA preparation which competes fully with polyadenylated “early” virus-specific RNA in the ternary complex assay. Utilizing the nonpolyadenylated “early” RNA, competition hybridization demonstrated that approximately 78% of the enlarged pool of “late” 3049 polyadenylated RNA and 72% of the “late” lpS pool consisted of sequences unique to the “late” period. No significant difference in the rate of decay of 3049 and lpS-specific, “late” polyadenylated RNA following actinomycin D block was found. Infection by either strain of polyoma virus did not alter the rate of decay of total polyadenylated RNA.  相似文献   

18.
Two temperature-sensitive mutants of satellite phage P4 which do not synthesize P4 DNA at the nonpermissive temperature have been isolated. One of these phage is mutated in the P4 alpha gene. It complements a P4 delta mutant, but not a P4 alpha amber mutant; both mutants are phenotypically identical to alpha amber mutants in all properties studied. They synthesize P4 early proteins 1 and 2 as well as two additional P4-induced early proteins, 5 and 6, which are described here. P4 late proteins are not synthesized by these mutants and cannot be transactivated by helper phage P2. The mutants are unable to transactivate P2 late proteins from a P2 AB mutant. The P4 RNA polymerase activity which has been suggested to be involved in P4 DNA synthesis is not detected at the nonpermissive temperature. The P4 polymerase activity in partially purified extracts prepared from cells infected with the mutant at the permissive temperature is temperature sensitive. Reduced activity is found in vitro when these extracts are preincubated at 41 degrees C or assayed at temperatures higher than 37 degrees C. Thus, the P4 RNA polymerase is the product of the alpha gene. Temperature shift experiments show that the alpha gene product is required until late in the P4 cycle.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号