首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phytoalexins are antimicrobial secondary metabolites which accumulate in plants against fungal invasion. Their production is triggered not only by fungal invasion, but also by a variety of elicitors. In rice plants, we have shown that CuCl2 is a potent abiotic elicitor. Jasmonic acid has recently become known to play an important role in secondary metabolite production in plants at the cellular level. This led us to speculate, in CuCl2-elicited rice leaves, that JA might also play an important role as a signal transducer for phytoalexin production. The endogenous level of JA increased rapidly in CuCl2-elicited rice leaves, and exogenously applied JA caused a large amount of phytoalexin production in rice leaves. This phytoalexin production by CuCl2 decreased when rice leaves were treated with JA biosynthesis inhibitors, but that by JA did not. JA is thus suggested to play an important role in the elicitation process leading to phytoalexin production in rice leaves.  相似文献   

2.
3.
4.
It has been suggested that jasmonic acid (JA) could be an integral part of a general signal transduction system regulating inducible defense genes in plants. It was reported that treatment with an elicitor (N-acetylchitoheptaose) induced production of phytoalexin in suspension-cultured rice (Oryza sativa L.) cells. In this study, the role of JA in the induction of phytoalexin production by N-acetylchitoheptaose was investigated. Exogenously applied ([plus or minus])-JA (10-4 M) clearly induced the production of momilactone A, a major phytoalexin, in suspension-cultured rice cells. On the other hand, in rice cells treated with N-acetylchitoheptaose, endogenous JA was rapidly and transiently accumulated prior to accumulation of momilactone A. Treatment with ibuprofen, an inhibitor of JA biosynthesis, reduced production of momilactone A in the cells treated with N-acetylchitoheptaose, but the addition of ([plus or minus])-JA increased production of momilactone A to levels higher than those in the elicited rice cells. These results strongly suggest that JA functions as a signal transducer in the induction of biosynthesis of momilactone A by N-acetylchitoheptaose in suspension-cultured rice cells.  相似文献   

5.
Jasmonate plays key roles in plant growth and stress responses, as in defense against pathogen attack. Jasmonoyl-isoleucine (JA-Ile), a major active form of jasmonates, is thought to play a pivotal role in plant defense responses, but the involvement of JA-Ile in rice defense responses, including phytoalexin production, remains largely unknown. Here we found that OsJAR1 contributes mainly to stress-induced JA-Ile production by the use of an osjar1 Tos17 mutant. The osjar1 mutant was impaired in JA-induced expression of JA-responsive genes and phytoalexin production, and these defects were restored genetically. Endogenous JA-Ile was indispensable to the production of a flavonoid phytoalexin, sakuranetin, but not to that of diterpenoid phytoalexins in response to heavy metal stress and the rice blast fungus. The osjar1 mutant was also found to be more susceptible to the blast fungus than the parental wild type. These results suggest that JA-Ile production makes a contribution to rice defense responses with a great impact on stress-induced sakuranetin production.  相似文献   

6.
Partial acid/enzymatic hydrolysis of the beta-(1-->3, 1-->6)-glucan from the cell walls of the rice blast disease fungus Pyricularia oryzae (Magnaporthe grisea) released elicitor-active fragments that induced phytoalexin biosynthesis in suspension-cultured rice cells. From the digestion of the glucan by an endo-beta-(1-->3)-glucanase, one highly elicitor-active glucopentaose was purified as a reduced compound, tetraglucosyl glucitol. The structure of this tetraglucosyl glucitol as well as two other related tetraglucosyl glucitols was elucidated as follows: (1) Glcbeta(1-->3)Glcbeta(1-->3)(Glcbeta(1-->6)) Glcbeta(1-->3)Glucitol (most active fragment); (2) Glcbeta(1-->3)(Glcbeta(1-->6))Glcbeta(1-->3)Glcbeta (1-->3)Glucitol; and (3) Glcbeta(1-->6) Glcbeta(1-->3)Glcbeta(1-->3)Glcbeta(1-->3)Glucitol. However, a synthetic hexa-beta-glucoside, known as a minimal structural element for the phytoalexin elicitor for soybean cotyledon cells, did not induce phytoalexin biosynthesis in the rice cells. Conversely, the beta-glucan fragment from P. oryzae did not induce phytoalexin biosynthesis in the soybean cotyledon cells, indicating differences in the recognition of glucooligosaccharide elicitor signals in these two plants. Because rice cells have been shown to recognize chitin fragments larger than pentamers as potent elicitors, these results also indicate that the rice cells can recognize at least two types of oligosaccharides from fungal cell walls as signal molecules to initiate defense response.  相似文献   

7.
Rice produces low-molecular-weight antimicrobial compounds known as phytoalexins, in response to not only pathogen attack but also abiotic stresses including ultraviolet (UV) irradiation. Rice phytoalexins are composed of diterpenoids and a flavonoid. Recent studies have indicated that endogenous jasmonyl-l-isoleucine (JA-Ile) is not necessarily required for the production of diterpenoid phytoalexins in blast-infected or CuCl2-treated rice leaves. However, JA-Ile is required for the accumulation of the flavonoid phytoalexin, sakuranetin. Here, we investigated the roles of JA-Ile in UV-induced phytoalexin production. We showed that UV-irradiation induces the biosynthesis of JA-Ile and its precursor jasmonic acid. We also showed that rice jasmonate biosynthesis mutants produced diterpenoid phytoalexins but not sakuranetin in response to UV, indicating that JA-Ile is required for the production of sakuranetin but not diterpenoid phytoalexins in UV-irradiated rice leaves.  相似文献   

8.
Methionine-induced phytoalexin production in rice leaves   总被引:4,自引:0,他引:4  
The application of methionine on wounded rice leaves induced the production of rice phytoalexins, sakuranetin and momilactone A. This induction resulted from stimulation of phenylalanine ammonia-lyase and naringenin 7-O-methyltransferase activity. Jasmonic acid, ethylene, and active oxygen species are important as signal transducers in disease resistance mechanisms. However, although the endogenous level of jasmonic acid rapidly increased in reaction to wound, methionine treatment could not induced endogenous JA production. Ethylene induced the production of the flavonoid phytoalexin, sakuranetin, but did not induce the production of a terpenoid phytoalexin, momilactone A. On the other hand, a free radical scavenger, Tiron, counteracted the induction of both sakuranetin and momilactone A production in methionine-treated leaves. Active oxygen species may be important in methionine-induced production of phytoalexins.  相似文献   

9.
10.
Young leaves of rice bean produced relatively more fungitoxic compound(s) than the older leaves. Epicotyls, roots, mature leaves and pods, but not cotyledon and cotyledonary leaves, synthesized the antifungal compound(s) following inoculation with anon-pathogen of this plant. Epicotyl segments when chopped or pinpricked produced the phytoalexin. Treatment of epicotyls with a dilute concentration of various chemicals caused induction of the fungitoxic compound(s). Induction by inoculation, injury and chemicals suggest a phytoalexin nature of the compound. Presence of phaseollin in the extracts of inoculated, injured or chemical-treated epicotyls has been demonstrated.  相似文献   

11.
The extensively studied Arabidopsis phytoalexin deficient 4 (AtPAD4) gene plays an important role in Arabidopsis disease resistance; however, the function of its sequence ortholog in rice is unknown. Here, we show that rice OsPAD4 appears not to be the functional ortholog of AtPAD4 in host‐pathogen interactions, and that the OsPAD4 encodes a plasma membrane protein but that AtPAD4 encodes a cytoplasmic and nuclear protein. Suppression of OsPAD4 by RNA interference (RNAi) increased rice susceptibility to the biotrophic pathogen Xanthomonas oryzae pv. oryzae (Xoo), which causes bacteria blight disease in local tissue. OsPAD4‐RNAi plants also show compromised wound‐induced systemic resistance to Xoo. The increased susceptibility to Xoo was associated with reduced accumulation of jasmonic acid (JA) and phytoalexin momilactone A (MOA). Exogenous application of JA complemented the phenotype of OsPAD4‐RNAi plants in response to Xoo. The following results suggest that OsPAD4 functions differently than AtPAD4 in response to pathogen infection. First, OsPAD4 plays an important role in wound‐induced systemic resistance, whereas AtPAD4 mediates systemic acquired resistance. Second, OsPAD4‐involved defense signaling against Xoo is JA‐dependent, but AtPAD4‐involved defense signaling against biotrophic pathogens is salicylic acid‐dependent. Finally, OsPAD4 is required for the accumulation of terpenoid‐type phytoalexin MOA in rice‐bacterium interactions, but AtPAD4‐mediated resistance is associated with the accumulation of indole‐type phytoalexin camalexin.  相似文献   

12.
13.
Pathogen/microbe- or plant-derived signaling molecules (PAMPs/MAMPs/DAMPs) or elicitors induce increases in the cytosolic concentration of free Ca(2+) followed by a series of defense responses including biosynthesis of antimicrobial secondary metabolites called phytoalexins; however, the molecular links and regulatory mechanisms of the phytoalexin biosynthesis remains largely unknown. A putative voltage-gated cation channel, OsTPC1 has been shown to play a critical role in hypersensitive cell death induced by a fungal xylanase protein (TvX) in suspension-cultured rice cells. Here we show that TvX induced a prolonged increase in cytosolic Ca(2+), mainly due to a Ca(2+) influx through the plasma membrane. Membrane fractionation by two-phase partitioning and immunoblot analyses revealed that OsTPC1 is localized predominantly at the plasma membrane. In retrotransposon-insertional Ostpc1 knock-out cell lines harboring a Ca(2+)-sensitive photoprotein, aequorin, TvX-induced Ca(2+) elevation was significantly impaired, which was restored by expression of OsTPC1. TvX-induced production of major diterpenoid phytoalexins and the expression of a series of diterpene cyclase genes involved in phytoalexin biosynthesis were also impaired in the Ostpc1 cells. Whole cell patch clamp analyses of OsTPC1 heterologously expressed in HEK293T cells showed its voltage-dependent Ca(2+)-permeability. These results suggest that OsTPC1 plays a crucial role in TvX-induced Ca(2+) influx as a plasma membrane Ca(2+)-permeable channel consequently required for the regulation of phytoalexin biosynthesis in cultured rice cells.  相似文献   

14.
Two purified oligosaccharide elicitors generatable from fungal cell walls, N-acetylchitoheptaose and a tetraglucosyl glucitol from rice blast fungus (Magnaporthe grisea), synergistically activated phytoalexin biosynthesis in cultured rice cells. Inhibition experiments for the binding of radiolabeled N-acetylchitooligosaccharide elicitor to the plasma membrane from rice cells indicate that the two elicitors are recognized by different receptors. These results also indicate the presence of a positive interaction between the signal transduction cascade downstream of each elicitor/receptor, which enhances resistance against pathogens.  相似文献   

15.
We have previously isolated and characterized the rice (Oryza sativa) cDNAs, OsCyc1/OsCPS4, OsCyc2/OsCPS2, OsKS4, OsDTC1/OsKS7, OsDTC2/OsKS8 and OsKS10, which encode cyclases that are responsible for diterpene phytoalexin biosynthesis. Among the other members of this gene family, OsCPS1 and OsKS1 have been suggested as being responsible for gibberellin biosynthesis, OsKSL11 has recently been shown to encode stemodene synthase, and the functions of the three other diterpene cyclase genes in the rice genome, OsKS3, OsKS5 and OsKS6, have not yet been determined. In this study, we show that recombinant OsKS5 and OsKS6 expressed in E. coli converted ent-copalyl diphosphate into ent-pimara-8(14),15-diene and ent-kaur-15-ene, respectively. Neither product is a hydrocarbon precursor required in the biosynthesis of either gibberellins or phytoalexins. OsKS3 may be a pseudogene from which the translated product is a truncated enzyme. These results suggest that the diterpene cyclase genes responsible for gibberellin and phytoalexin biosynthesis are not functionally redundant.  相似文献   

16.
Biphasic generation of reactive oxygen species (ROS) induced by N-acetylchitooligosaccharide elicitor in rice cells was associated with the activation of phopholipase C (PLC) and phospholipase D (PLD). The activation of both enzymes was observed for the first phase of ROS generation, but only the activation of PLD was evident for the second response. Activation of PLD was associated with its recruitment to the membrane. Enzymatic products of these phospholipases, diacylglycerol (DG) and phosphatidic acid (PA), could induce ROS generation by themselves. Moreover, the addition of these lipids compensated the inhibition of the second phase of ROS generation by cycloheximide, indicating the involvement of the synthesis of PLD or related proteins in the second phase of ROS generation. DG and PA also induced the expression of elicitor-responsive genes in the absence of the elicitor. They could not induce phytoalexin biosynthesis by themselves but greatly enhanced the elicitor-induced phytoalexin accumulation. Further, the inhibition of PLD by 1-butanol inhibited the elicitor-induced phytoalexin accumulation, indicating the involvement of PLD and its reaction product, PA, in the induction of phytoalexin biosynthesis. These results indicated the importance of phospholipid signaling, especially by PLD and its product PA, in plant defense responses.  相似文献   

17.
In order to clarify the mechanism of induced resistance to blast disease in rice, Oryza sativa, that had been previously infested by the white-backed planthopper, Sogatella furcifera Horváth, we first investigated the accumulation of salicylic acid (SA) and jasmonic acid (JA) in rice plants infested by the planthopper. The results confirmed that infestation of S. furcifera strongly stimulates the production of SA and JA in rice. These results indicate that both salicylate- and jasmonate-mediated pathways (SA and JA pathways), which are involved in the general defense system in plants, were activated in rice infested by S. furcifera. Further results confirmed that S. furcifera infestation induces accumulation of a major rice diterpenoid phytoalexin, momilactone A, and a flavonoid phytoalexin, sakuranetin, which are well known as antimicrobial chemicals, particularly in blast disease caused by the blast fungus, Magnaporthe oryzae B. Couch. All these results strongly suggest the following hypothetical mechanism of induced-resistance to M. oryzae in rice infested by S. furcifera. First, S. furcifera releases some elicitor-active compounds, which might be produced in the salivary glands, into the rice plant during feeding. Next, the defense signal systems, SA- and JA-mediated pathways, are activated by the elicitor. Finally, phytoalexins are induced in rice as antimicrobial compounds mainly through activation of the JA-mediated pathway.  相似文献   

18.
How phenology influences physiology in deciduous forest spring ephemerals   总被引:9,自引:0,他引:9  
The protein phosphatase inhibitor cantharidin activates defense responses in rice leaves when applied exogenously at concentrations ranging from 100 to 500 μ M . Responses include the accumulation of the major rice phenolic phytoalexin sakuranetin and the lactone phytoalexin momilactone A. Accumulation of sakuranetin was preceded by an induction of phenylalanine ammonia lyase (PAL) activity and an increase in the activity of naringenin 7- O -methyltransferase (NOMT), the key enzyme in sakuranetin biosynthesis. Cantharidin also strongly induced accumulation of the probenazole (PBZ)-inducible protein (PBZ1) and two novel, related proteins named PBZ2 and PBZ3. Endothall, a herbicide and potent protein phosphatase inhibitor, but not its inactive analog (1,4-dimethylendothall) also induced sakuranetin accumulation, increased activity of NOMT and accumulation of the 3 PBZ proteins. In contrast, two other protein phosphatase inhibitors, calyculin A and microcystin LR, did not activate these defense responses. Induction of NOMT and PAL activity, and sakuranetin accumulation, was completely blocked by cycloheximide. Leaf segments treated with cantharidin and endothall showed brownish and orange colored lesions, respectively, similar to the lesion mimic mutants of rice. These results indicate a direct role for protein phosphorylation/dephosphorylation events in the activation of defense responses in rice, in particular on the accumulation of antifungal phytoalexins and the PBZ proteins.  相似文献   

19.
Although germin-like proteins (GLPs) have been demonstrated to participate in plant biotic stress responses, their specific functions in rice disease resistance are still largely unknown. Here, we report the identification and characterization of OsGLP3-7, a member of the GLP family in rice. Expression of OsGLP3-7 was significantly induced by pathogen infection, jasmonic acid (JA) treatment, and hydrogen peroxide (H2O2) treatment. OsGLP3-7 was highly expressed in leaves and sublocalized in the cytoplasm. Overexpression of OsGLP3-7 increased plant resistance to leaf blast, panicle blast, and bacterial blight, whereas disease resistance in OsGLP3-7 RNAi silenced plants was remarkably compromised, suggesting this gene is a positive regulator of disease resistance in rice. Further analysis showed that OsGLP3-7 has superoxide dismutase (SOD) activity and can influence the accumulation of H2O2 in transgenic plants. Many genes involved in JA and phytoalexin biosynthesis were strongly induced, accompanied with elevated levels of JA and phytoalexins in OsGLP3-7-overexpressing plants, while expression of these genes was significantly suppressed and the levels of JA and phytoalexins were reduced in OsGLP3-7 RNAi plants compared with control plants, both before and after pathogen inoculation. Moreover, we showed that OsGLP3-7-dependent phytoalexin accumulation may, at least partially, be attributed to the elevated JA levels observed after pathogen infection. Taken together, our results indicate that OsGLP3-7 positively regulates rice disease resistance by activating JA and phytoalexin metabolic pathways, thus providing novel insights into the disease resistance mechanisms conferred by GLPs in rice.  相似文献   

20.
In suspension-cultured rice cells, diterpenoid phytoalexins are produced in response to exogenously applied elicitors. We isolated a cDNA encoding a diterpene cyclase, OsDTC2, from suspension-cultured rice cells treated with a chitin elicitor. The OsDTC2 cDNA was overexpressed in Escherichia coli as a fusion protein with glutathione S-transferase, and the recombinant OsDTC2 was indicated to function as stemar-13-ene synthase that converted syn-copalyl diphosphate to stemar-13-ene, a putative diterpene hydrocarbon precursor of the phytoalexin oryzalexin S. The level of OsDTC2 mRNA in suspension-cultured rice cells began to increase 3 h after addition of the elicitor and reached the maximum after 8 h. The expression of OsDTC2 was also induced in UV-irradiated rice leaves. In addition, we indicated that stemar-13-ene accumulated in the chitin-elicited suspension-cultured rice cells and the UV-irradiated rice leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号