首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major surfactant-associated protein is a potent inhibitor of surfactant phospholipid secretion from isolated type II cells. Since the major surfactant-associated protein contains a carboxy terminal polypeptide domain which is homologous to the lectin-like liver mannose-binding protein, we tested whether lectins inhibit surfactant phospholipid secretion from rat alveolar type II cells. Concanavalin A, wheat germ agglutinin and Maclura pomifera agglutinin were potent inhibitors of surfactant phospholipid secretion. When adenosine 5'-triphosphate (ATP) was utilized as a secretagogue, the IC50 values for inhibition of surfactant phospholipid secretion were 5.10(-7) (wheat germ agglutinin), 1.10(-6) (concanavalin A) and 2.5.10(-5) M (M. pomifera agglutinin). Similar results were obtained when 12-O-tetradecanoylphorbol 13-acetate was utilized as a secretagogue: IC50 values of 1.10(-6) M for concanavalin A and wheat germ agglutinin and 2.5.10(-5) M for M. pomifera agglutinin. Hapten sugars were utilized to antagonize the inhibitory effect of the lectins. N-Acetyl-D-glucosamine significantly reversed inhibition of phospholipid secretion by wheat germ agglutinin in a dose-dependent fashion and methyl alpha-D-mannoside significantly reversed inhibition of phospholipid secretion by concanavalin A. N-Acetyl-D-galactosamine had no significant effect on inhibition of secretion produced by any of the lectins. The inhibitory effect of the lectins did not appear to be due to cytotoxicity since lactate dehydrogenase was not released above control levels and the inhibition of the surfactant phospholipid secretion by wheat germ agglutinin could be reversed after treatment of cells with wheat germ agglutinin by washing the lectin from the cells followed by treatment of the cells with ATP. These studies demonstrate a direct inhibitory effect of plant lectins on phospholipid secretion from type II cells in vitro.  相似文献   

2.
Fluorescent lectins were used to study the chemical nature of carbohydrate moieties present on the surface of female and male germ cells isolated from mouse gonads during fetal and early posnatal development. Concanavalin A (ConA), lens culinaris agglutinin (LCA), ricinus communis agglutinin (RCAI) and wheat germ agglutinin (WGA) bound intensely to the germ cell plasma membrane at all stages studied. Other lectins such as ulex europaeus agglutinin (UEAI) and agglutinin (SBA) did not bind or bound moderately (SBA to female germ cells only). Distinct developmental-related changes were observed when female germ cells were labeled with fluorescein-conjugated peanut agglutinin (PNA) or dolichos biflorus agglutinin (DBA). DBA and PNA binding was absent or weak in fetal female and male germ cells, but became intensely positive in oocytes in the immediate postnatal period. The percentage of oocytes stained with DBA increased during the first three days after birth, and from day 3–4 onwards all oocytes were strongly labeled. I suggest that these changes in lectin binding reflect changes in biochemical structure of the oocyte surface related to differentiative events occurring in the mouse ovary immediately after birth.  相似文献   

3.
The effect of the plant lectins concanavalin A and wheat germ agglutinin on the membrane-bound Mg+2-dependent ATPase of an adrenergic clone of mouse neuroblastoma was examines. When cell membranes were treated with concanavalin A or wheat germ agglutinin, a dose-related increase in ATPase-specific activity was observed. Maximal stimulation was greater with wheat germ agglutinin than with concanavalin A; half-maximal and maximal stimulation occurred at similar lectin concentrations. Concanavalin A-dependent stimulation was blocked by α-methylmannoside but not by N-acetylglucosammine. Conversely, stimulation with wheat germ agglutinin was prevented by N-acetylglucosamine but not by α-methylmannoside. The combined effects of concanavalin A and wheat germ agglutinin were greater than the individual effects of either, but were not additive. The results suggest that these lectins interact specifically with membrane glycoproteins or glycolipids, resulting in enhancement of Mg+2-dependent ATPase activity.  相似文献   

4.
Interaction of sulfated glycosaminoglycans with lectins   总被引:1,自引:0,他引:1  
The sulfated glycosaminoglycans, such as keratan sulfate and chitin sulfate having 3-hydroxy free N-acetyl-beta-D-glucosaminyl residues as constituents, reacted with wheat germ agglutinin and Solanum tuberosum agglutinin by sugar-specific interaction. The glycosaminoglycans showed different inhibitory activities to the hemagglutination reaction of these lectins and keratan sulfate and its modified products formed insoluble complexes with both of the lectins at pH 7.0 in physiological saline solutions (0.15 M NaCl). S. tuberosum agglutinin was precipitated within a particularly narrow concentration range of keratan sulfate, and the formation of a soluble complex was observed by gel chromatography. These interactions were specifically inhibited by N,N'-diacetylchitobiose but not by 2 M NaCl. The specific interactions of the glycosaminoglycans with S. tuberosum agglutinin were confirmed by their ultraviolet difference spectra with two peaks at 285 and 298 nm attributable to the tryptophan residues in the binding site of the agglutinin. It was also found that S. tuberosum agglutinin and wheat germ agglutinin have different binding specificities. The presence of sulfate groups in either keratan sulfate or chitin sulfate did not interfere with their specific interactions with S. tuberosum agglutinin as strongly as with wheat germ agglutinin. The N-acetylneuraminic acid residues in keratan sulfate were found to be receptor sites for wheat germ agglutinin but not for S. tuberosum agglutinin.  相似文献   

5.
Plasma membranes from the human colon adenocarcinoma cell line HT-29 have been isolated and examined for the presence of angiogenic activity. Membrane-associated macromolecules extracted with Triton X-100 were fractionated on immobilized wheat germ agglutinin. The fraction which bound specifically (about 200 ng of protein/mL packed cells) was highly angiogenic when assayed on the chick embryo chorioallantoic membrane. As little as 0.2 ng of this human tumor derived material consistently induced neovascularization. Similarly, 1-2 ng of this material implanted into the rabbit cornea induced new vessel growth (5-8 mm) within 10 days. The plasma membranes of eight other human tumor lines were examined for angiogenic activity. For each, the wheat germ agglutinin bound material induced neovascularization at the low nanogram level. In contrast, the wheat germ agglutinin bound material derived from purified plasma membranes of two normal human diploid fibroblast cell lines failed to induce an angiogenic response on the chick chorioallantoic membrane, even at microgram levels.  相似文献   

6.
The sugar and cell specificities of wheat germ agglutinin have been studied extensively. In particular, it is well established that wheat germ agglutinin will interact with highly sialylated glycoconjugates of the type carried by the erythrocyte glycoprotein, glycophorin (Adair, W.L. and Kornfeld, S. (1974) J. Biol. Chem. 249, 4696-4704). We have found that polylactosamines isolated from adult and fetal erythrocytes can have a high-affinity interaction with immobilized wheat germ agglutinin. In fact, this interaction is much stronger than the sialic acid-dependent interaction. Using flow microfluorimetry in conjunction with various serological and enzymatic pretreatments, we have measured the extent to which polylactosamines contribute to wheat germ agglutinin binding. We have found that most of the neuraminidase-resistant receptors on erythrocytes are polylactosamine in nature. However, this residual binding of wheat germ agglutinin to neuraminidase-treated erythrocytes is of much lower apparent affinity than the sialic acid-dependent interaction. The lower reactivity of polylactosamines at the erythrocyte surface suggests that these large glycans are actually poorly accessible.  相似文献   

7.
We have developed a novel method for quantitation of lectin binding sites in mucins derived from colon tissues. Binding of peanut agglutinin and wheat germ agglutinin was measured in extracts from normal and malignant human colon epithelium. Binding of wheat germ agglutinin was used as an estimate of the total mucin present in the tissue extract. Peanut agglutinin was found to bind to mucin from normal colon, but at levels that may be difficult to appreciate by fluorescence microscopy. The yield of mucin extracted from colon cancer was more variable than that from normal colon, and the binding ratio of peanut agglutinin to wheat germ agglutinin was greater in extracts from tumors than in normal tissues. Our findings confirm the histological observation that peanut agglutinin binds more avidly to mucins from colon cancer than to those from normal colon. The finding of peanut agglutinin binding sites in mucins front normal colon was not expected. The quantitative technique may have detected small numbers of binding sites not readily appreciable by fluorescence microscopy. Alternatively, the chromatographic method for measuring lectin binding may be sufficiently sensitive to detect nonspecific binding of the lectin to terminal galactose residues other than the Thomsen-Friedenreich antigen.  相似文献   

8.
The effects of two lectins, wheat germ agglutinin and concanavalin A, were studied on a variety of parameters of two highly purified (Na+ + K+)-ATPases (ATP phosphohydrolase, EC 3.6.1.3), from the rectal salt gland of Squalus acanthias and from the electroplax of Electrophorus electricus. Both lectins agglutinated the rectal gland enzyme equally, but wheat germ agglutinin inhibited (Na+ + K+)-ATPase activity much more. The electroplax enzyme was only marginally agglutinated and inhibited by the lectins. Neuraminidase treatment of the rectal gland (Na+ + K+)-ATPase had no effect on germ agglutinin inhibition. The inhibition of the rectal gland (Na+ + K+)-ATPase by wheat germ agglutinin could be reversed by N,N'-diacetylchitobiose, which has a high affinity for wheat germ agglutinin. Neither ouabain inhibition nor ouabain binding to the rectal gland enzyme was affected by wheat germ agglutinin. The p-nitrophenylphosphatase activity of the rectal gland enzyme was not inhibited by wheat germ agglutinin. Na+-ATPase activity, which reflects ATP binding and phosphorylation at the substrate site was inhibited by wheat germ agglutinin and this inhibition was reversed by potassium. Evidence is cited (Pennington, J. and Hokin, L.E., in preparation) that the inhibition of the (Na+ + K+)-ATPase by wheat germ agglutinin is due to binding to the glycoprotein subunit.  相似文献   

9.
The binding by lectins of the Schistosoma mansoni major egg glycoprotein and of a carbohydrate-rich fragment which is serologically cross-reactive with it was studied. The major egg glycoprotein was purified from a crude soluble egg antigen by a succession of affinity chromatography procedures on concanavalin A-sepharose and by ion-exchange chromatography. The carbohydrate-rich fragment was isolated by ultrafiltration of the crude glycoprotein fraction initially obtained from the crude soluble egg antigens. The major egg glycoprotein and the carbohydrate-rich fragment contain 77 and 92.5% carbohydrate, respectively. When radioiodinated and run on SDS-polyacrylamide gel electrophoresis, each of them exhibited a single peak with respective Rf values of 0.33 and 1.0, and their respective molecular weights were 70K and 10-13K. The binding of the radioiodinated major egg glycoprotein and the carbohydrate-rich fragment by peanut agglutinin, Ricinus communis agglutinin-60, wheat germ agglutinin, and lotus agglutinin was studied by double diffusion in agar, and by a radiometric solid-phase assay in which the lectins were used to coat microtiter plates. The latter assay was employed to determine the specificity of the binding by inhibition with the specific sugars. Both the major egg glycoprotein and the carbohydrate-rich fragment bound specifically to concanavalin A columns as indicated by their isolation procedure. They also bound specifically to peanut agglutinin, R. communis agglutinin 60, and lotus agglutinin, while binding by wheat germ agglutinin appeared not to be specific.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Affinity chromatography of wheat germ extracts on a chitin column increased the rate and extent of protein synthesis, programmed by rabbit globin mRNA. Addition of purified wheat germ agglutinin to the chitin-treated extract reduced the rate of protein synthesis to about the levels seen in the untreated extracts. Experiments where the ratio of messenger to extract and the ratio of supernatant to ribosomes were varied, indicated that addition of wheat germ agglutinin reduced the amount of available ribosomes. Reduced and carboxymethylated wheat germ agglutinin failed to inhibit protein synthesis and was unable to bind to the ribosomes. However, labelled intact agglutinin was found to be bound to ribosomes. The bound agglutinin was not released by acid treatment. The inhibiting effect of wheat germ, agglutinin on protein synthesis could not be counteracted by addition of N-acetyl-D-glucosamine or sialic acid, whereas thiols partially diminished the inhibition. The data indicate that wheat germ agglutinin binds reversibly to ribosomes, probably through mixed disulfide formation, and that chitin treatment increases the ability of wheat germ extracts to support protein synthesis, at least in part, by removing the wheat germ agglutinin. The possibility that chitin treatment also removed other inhibitors of protein synthesis cannot be excluded.  相似文献   

11.
The glycosylation of H+K(+)-ATPase vesicles isolated from hog gastric mucosa was investigated by various methods. Following protein separation on sodium dodecyl sulfate reducing gels and transfer to poly(vinyl difluoride) membranes, binding of concanavalin A was confined to the 94-kDa band which corresponds to the catalytic subunit. In contrast, wheat germ agglutinin binding occurred in a region below the 94-kDa subunit, corresponding to the 60-85-kDa region, and also to protein just above the catalytic subunit. Treatment with glycopeptidase F removed most of the concanavalin A staining and also the wheat germ agglutinin staining found below the 94-kDa region, but spared the higher molecular weight wheat germ agglutinin reactive material. During the deglycosylation experiments a protein of 35-kDa was produced. Sequencing analysis of V8 protease generated peptide fragments of the 35-kDa protein show at least 30% homology with the Na+K(+)-ATPase beta-subunits. Labeling of the carbohydrates by galactosyltransferase and [3H]uridine diphosphate-galactose showed that the sites of labeling were extracellular and were confined to the wheat germ agglutinin staining regions. Two molecular weight regions, below the 94-kDa region, of 60 and 85 kDa were identified. Electron microscopy using postembedding staining techniques showed that both concanavalin A and wheat germ agglutinin staining occurred on the extracellular face of the gastric vesicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Wheat germ agglutinin induced aggregation and secretion of fresh platelets. Aggregation, but not secretion of serotonin by platelets in plasma, by the lectin was inhibited by 5 mM EDTA. Further, the lectin-induced stimulation of fresh platelets was blocked by prostaglandin E1. Thus, this lectin stimulates platelets by a mechanism which closely mimics thrombin activation and is independent of intercellular crosslinking. Lentil lectin did not stimulate platelets. Each platelet contained about 6 . 10(-5) binding sites for the lectins with an apparent dissociation constant of 3.0 . 10(-7) M. Wheat germ agglutinin, which binds mainly to glycoprotein I (Mr 150 000), increased the subsequent binding of thrombin to fixed platelets while lentil lectin was without effect. It appears that thrombin and wheat germ agglutinin bind to independent but interacting sites. Wheat germ agglutinin, but neither thrombin nor lentil lectin, inhibited the agglutination of platelets by ristocetin. Further, rat platelets were not aggregated by either ristocetin or wheat germ agglutinin. It appears that the interaction sites of ristocetin and wheat germ agglutinin on platelets are overlapping.  相似文献   

13.
A nonagglutinating derivative of wheat germ agglutinin has been prepared and used as a probe to explore the initial events in platelet activation. The lectin derivative had no effect on platelet aggregation by adenosine diphosphate, collagen, ristocetin, wheat germ agglutinin or trypsin but aggregation induced by epinephrine or thrombin was inhibited. Unlike thrombin, the inhibition of aggregation by the derivative could not be overcome by increasing the concentration of epinephrine. The derivative did not affect the binding of [3H]dihydroergocryptine to platelets. A 74,000 dalton protein isolated from platelet membranes by lectin affinity chromatography strongly inhibited platelet activation by thrombin but not by epinephrine. The receptors for thrombin and for epinephrine on platelets are different but they are closely linked.  相似文献   

14.
Two glycoproteins of 99 kDa and 77 kDa which exhibit intense binding to wheat germ agglutinin have been purified from the whorls of membrane produced by oligodendroglia in culture. The whorls of membrane were isolated by gradient centrifugation from purified bovine oligodendroglia maintained in culture. The two glycoproteins were solubilized from the membranes using a non-ionic detergent and purified by Sephadex LH-60 chromatography, wheat germ agglutinin affinity chromatography, and SDS-polyacrylamide pore gradient gel electrophoresis. HPLC peptide mapping of the 99-kDa and 77-kDa glycoproteins revealed structural differences between the two proteins. Peptide mapping suggested that the 99-kDa glycoprotein from the whorls of membrane may be homologous to that from the plasma membranes. The 77-kDa glycoproteins from both sets of membrane may also be structurally related. Lectin binding studies showed that both glycoproteins from the whorls of membrane bound to wheat germ agglutinin, succinylated wheat germ agglutinin, concanavalin A, and lentil lectin, indicating the presence of high mannose and hybrid type oligosaccharide side-chains.  相似文献   

15.
16.
Treatment of transformed Py3T3, SV101-3T3, and L1210 cells, as well as mitotic and Pronase-treated untransformed 3T3 cells, with the polyene antibiotics filipin, nystatin, and amphotericin B inhibited agglutination by wheat germ agglutinin. The effect of polyene antibiotic treatment was lectin and cell specific. Concanavalin A induced agglutination was not inhibited, wheat germ agglutination induced agglutination of untransformed 3T3 interphase cells was not influenced, and other aggregation phenomena, including those of erythrocytes with blood group specific antibodies or divalent cations, were unaffected by polyene treatments. This suggests that the formation of polyene-cholesterol complexes in transformed and erythrocyte cell membranes may specifically affect wheat germ agglutinin receptors and/or secondary events necessary for wheat germ agglutinin induced agglutination. Fluorescence studies of membrane filipin-cholesterol complexes showed that pretreating the cells with wheat germ agglutinin, but not concanavalin A, perturbed the fluorescence properties of filipin. Electron spin resonance studies with spin-labeled fatty acids revealed at best only a slight decrease in fatty acyl chain flexibility following filipin treatment. These studies indicate that there are not only quantitative differences between the agglutinability of transformed and untransformed cells with wheat germ agglutinin but that qualitative differences exist as well.  相似文献   

17.
Insulin-induced tyrosine-phosphorylation in intact rat adipocytes   总被引:4,自引:0,他引:4  
Insulin-induced tyrosine-phosphorylation in intact isolated rat adipocytes was studied using immunoblotting method with antiphosphotyrosine antibodies. Insulin-stimulated adipocytes were solubilized with Triton X-100. The lysate was incubated with wheat germ agglutinin, then with hydroxylapatite. Insulin stimulated tyrosine-phosphorylation of a 95 KDa protein which adsorbs to wheat germ agglutinin and appears to be the beta-subunit of the insulin receptor. Among the proteins adsorbed to hydroxylapatite, tyrosine-phosphorylation of 170 KDa and 60 KDa proteins was stimulated. 170 KDa was also stimulated by polyclonal anti-insulin receptor antibodies B-10 Ig G, IGF-I and H2O2. The detection of these proteins in rat adipocytes may lead to the elucidation of a common signal transduction pathway in insulin-responsive cells.  相似文献   

18.
M. Hahn  K. Mendgen 《Protoplasma》1992,170(3-4):95-103
Summary Rust haustoria isolated from infected leaf tissue strongly bind to ConA. This property was exploited to purify them by affinity chromatography on a ConA-Sepharose macrobead column. Haustoria were obtained with more than 90% purity and yields of up to 50%. Binding of haustoria to the column was partially inhibited by a ConA-specific sugar, methyl -D-mannopyranoside. Compared to ConA,Lens culinaris agglutinin and wheat germ agglutinin were less efficient affinity ligands. Using ConA-Sepharose, rust haustoria from a variety of sources could be isolated with equal efficiency, indicating that they have similar carbohydrate surface properties. The haustoria maintained their typical shape after the isolation procedure, which suggests a rather rigid wall structure. The morphology of haustoria was characteristic both for a given species and the nuclear condition of the rust mycelium. Electron microscopy of isolated haustoria revealed an intact haustorial wall surrounded by a fibrillar layer presumably derived from the extrahaustorial matrix. The matrix thus appears to represent a layer with gel-like properties which is rich in ConA-binding carbohydrates and connected to the haustorial wall but not to the host-derived extrahaustorial membrane.Abbreviations ConA Concanavalin A - LCA Lens culinaris agglutinin - WGA wheat germ agglutinin - FITC fluorescein isothiocyanate - DAPI 4,6-diamidinophenylindol×2 HCl  相似文献   

19.
Abstract Staphylococcus saprophyticus was shown to be agglutinated by wheat germ agglutinin, wheat germ agglutinin-biotin and bovine serum albumin- p -aninophenyl- N -acetyl-β-d-glucosaminide (GlcNAc-BSA), and sheep red blood cells. In these agglutinations, filamentous or amorphous structures radiating from the surface of S. saprophyticus were demonstrated by electron microscope observation. Cytochemical analyses of the agglutination revealed the binding sites of wheat germ agglutinin in S. saprophyticus and the binding sites of GlcNAc in the sheep red blood cells and S. saprophyticus . Since GlcNAc-BSA contains N -acetylglucosamine to which wheat germ agglutinin can bind, it is most likely that an interaction between a wheat germ agglutinin-bindable substance in S. saprophyticus and an N -acetylglucosamine-bindable substance in sheep red blood cells is involved in the agglutination.  相似文献   

20.
We examined the interaction between immobilized wheat germ agglutinin and the large, polylactosamine-containing glycans from human erythrocytes and human K-562 erythroleukemic cells. Three classes of interaction were identified. One class of glycan was merely retarded during chromatography. The other two classes were retained and could be distinguished by their ease of displacement with N-acetylglucosamine (GlcNAc); one was a moderate-affinity fraction displaced by 0.1 M GlcNAc and the other was a high-affinity fraction subsequently displaced by 1.0 M GlcNAc. A relatively small fraction of the K-562 polylactosamines were in the high-affinity class. We explored the role that fucose and sialic acid substitutions play in the strength of the lectin-glycan interaction. Although sialic acid is recognized by wheat germ agglutinin, sialylation was not required for the high-affinity interaction, and the presence of sialic acids actually prevented some glycans from binding with high affinity. In contrast, fucose is not part of the binding determinant, yet the removal of fucose resulted in decreased affinity. The possibility that some of these changes in affinity were the result of conformational changes was explored using matrices that had wheat germ agglutinin immobilized at different densities. At low wheat germ agglutinin densities, adult and fetal erythroglycans and K-562 glycophorin-like glycans were not retained by the matrix. As the density increased, the proportion of glycans that were retarded, and ultimately retained, increased. While these increases in the proportions retained occurred in parallel for the three different glycans, the apparent affinities of the glycan-lectin interactions differed. The glycophorin-like glycans were always readily displaced by 0.1 M GlcNAc, even at higher wheat germ agglutinin densities. In contrast, as the wheat germ agglutinin density increased, the proportion of erythroglycans that could be displaced by 0.1 M GlcNAc decreased; at 10 mg/ml immobilized wheat germ agglutinin, greater than 80% of the erythroglycans exhibited this tighter interaction. We suggest that this higher affinity interaction is the result of the large glycans spanning adjacent wheat germ agglutinin molecules, and is determined by the proximity of these molecules and the conformation of the glycans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号