首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When the anthracycline daunomycin (DNM) is incorporated into isolated plasma membranes from P388 murine leukemia cells, the drug partitions between 'deep' and 'surface' membrane domains. Such domains have been characterized on the basis of: (1) fluorescence resonance energy transfer between 1,6-diphenylhexa-1,3,5-triene or 1-[4-(trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene as energy donors, which are well known in their positioning within the membrane, and daunomycin as the energy acceptor, and (2) quenching of the fluorescence of the membrane-associated drug by the water-soluble quencher iodide. The distribution of DNM between the two plasma membrane domains is different depending on the cellular phenotype. Thus, in membranes from drug-sensitive cells, DNM is preferentially confined to 'surface' domains, while in membranes from drug-resistant cells, the drug distributes more homogeneously between 'surface' and 'deep' domains. Experiments using artificial lipid vesicles suggest that differences in the relative levels of certain lipids in the plasma membranes from drug-sensitive and drug-resistant cells, namely phosphatidylserine and cholesterol, are partly responsible for the observed differences in the distribution of DNM. Since drug-membrane interactions are important in anthracycline cytotoxicity, it is possible that our observations on a different membrane distribution of daunomycin, may be related to the different sensitivity to the drug exhibited by these cells.  相似文献   

2.
Summary The detergent Brij 58 has been introduced to reverse plasma membrane (PM) vesicles from the right-side-out to the inside-out form. The aim of the present work was to investigate the effect of Brij 58 on the formation of an ATP-dependent proton gradient and on the fluidity of the lipid phase of PM vesicles. PMs of corn (Zea mays L.) roots were isolated by phase-partitioning. The fluidity of PMs was estimated by measurement of fluorescence polarization with 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) and 1,6-diphenyl-1,3,5-hexatriene (DPH). The PMs of corn roots were relatively rigid. The hydrophobic part of the lipid bilayer was more fluid than the hydrophilic part. After intercalation of Brij 58 into the lipid bilayer the membrane fluidity changed in a concentration-dependent manner. Treatment with the detergent Brij 58 increased the degree of fluorescence polarization for TMA-DPH, while it decreased it for DPH. This effect was saturated at a detergent-to-protein ratio of 1 4 for both fluorescence probes. Although the biophysical characteristics of the membrane were changed after Brij 58 treatment, the formation of ATP-dependent proton gradients could still be measured with those vesicles. The generation of an ATP-dependent proton gradient with Brij 58-treated PM vesicles suggests that the detergent treatment indeed turned the originally right-side-out vesicles to sealed inside-out vesicles. The limits of the effect caused by Brij 58 in the context of PM enzyme activities are discussed.Abbreviations Brij 58 polyoxyethylene 20 cetyl ether - DPH 1,6-diphenyl-1,3,5-hexatriene - HCF III hexacyanoferrate (III) - ISO inside-out - PM plasma membrane - RSO right-side-out - TMA-DPH 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene  相似文献   

3.
The lipid composition of bovine thyroid plasma membranes was modified using the nonspecific lipid transfer protein from bovine liver. Incubation of plasma membranes with transfer protein and phosphatidylinositol-containing liposomes caused a strong, concentration dependent, inhibition of TSH-stimulated adenylate cyclase activity. Other phospholipids such as phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and phosphatidic acid were two to four times less effective as inhibitors of TSH-stimulation. The phosphatidylinositol-induced inhibition was not reversed when more than 80% of phosphatidylinositol incorporated was removed using phosphatidylinositol-specific phospholipase C. Incorporation of phosphatidylinositol in plasma membranes provoked no significant change in the fluorescence anisotropies of the fluorophores 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-(14-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH), indicating that the inhibition was not due to changes in membrane fluidity. At phosphatidylinositol concentrations causing a 66% reduction in TSH-stimulated adenylate cyclase activity cholera toxin- and forskolin-stimulated activity as well as basal activity were decreased by maximally 10%. Since TSH binding to bovine thyroid plasma membranes was not affected it is suggested that phosphatidylinositol can act as a negative modulator of the TSH activation of adenylate cyclase and this probably by interfering with the coupling between the occupied TSH receptor and the stimulatory GTP-binding regulatory protein of the adenylate cyclase complex.  相似文献   

4.
The membrane transport protein lactose permease (LacY), a member of the Major Facilitator Superfamily (MFS) containing twelve membrane-spanning segments connected by hydrophilic loops, was reconstituted in liposomes of: (i) 1,2-dimyristoyl-sn-glycero-3-phosphocoline (DMPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) in equimolar proportions; and (ii) Escherichia coli total lipid extract. The structural order of the lipid membranes, in the presence and absence of LacY, was investigated using steady-state fluorescence anisotropy. The features of the anisotropy curves obtained with 1,6-phenyl-1,3,5-hexatriene (DPH) and 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene p-toluene sulfonate (TMA-DPH) evidenced: (i) the insertion of LacY into the bilayer; and (ii) a surface effect on the membranes. The most dramatic effects were observed when LacY was reconstituted in the E. coli lipid matrix. The effect of the protein on the electrostatic surface potential of each bilayer was also examined using a fluorescent pH indicator, 4-Heptadecyl-7-hydroxycoumarin (HHC). Changes in surface potential were enhanced in the presence of the substrate (i.e. lactose) only when the lipid matrices were charged. These results suggest a role for charged phospholipids (i.e. phosphatidylethanolamine or phosphatidylglycerol) in proton transfer to the amino acids involved in substrate translocation.  相似文献   

5.
Partition coefficients of fluorescent probes with phospholipid membranes   总被引:4,自引:0,他引:4  
A method for determination of membrane partition coefficients of five fluorescent membrane probes, 1,6-diphenyl-1,3,5-hexatriene (DPH), p-((6-phenyl)-1,3,5-hexatrienyl) benzoic acid (DPH carboxylic acid), 3-(p-(6-phenyl)-1,3,5-hexatrienyl)phenylpropionic acid (DPH propionic acid), 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) and N-4-(4-didecylaminostyryl)-N-methylpyridinium iodide (4-di-10-ASP), was developed utilizing the fluorescence enhancement of a constant probe concentration by titration with excess phospholipid liposomes. The partition coefficients of DPH, DPH carboxylic acid, DPH propionic acid, TMA-DPH and 4-di-10-ASP into dipalmitoylphosphatidylcholine membranes were determined to be 1.3.10(6), 1.0.10(6), 6.5.10(5), 2.4.10(5) and 2.8.10(6) respectively. Knowledge of the partition coefficients may help select a lipid concentration for membrane studies that necessitate a probe's dominant incorporation into membranes.  相似文献   

6.
Fluorescent probe techniques were used to evaluate the effect of propoxycaine.HCl on the physical properties (transbilayer asymmetric lateral and rotational mobilities, annular lipid fluidity and protein distribution) of synaptosomal plasma membrane vesicles (SPMVs) isolated from bovine cerebral cortex. An experimental procedure was used based on selective quenching of both 1,3-di(1-pyrenyl)propane (Py-3-Py) and 1,6-diphenyl-1,3,5-hexatriene (DPH) by trinitrophenyl groups, and radiationless energy transfer (RET) from the tryptophans of membrane proteins to Py-3-Py. Propoxycaine.HCl increased the bulk lateral and rotational mobilities, and annular lipid fluidity in SPMVs lipid bilayers, and had a greater fluidizing effect on the inner monolayer than that of the outer monolayer. The magnitude of increasing effect on annular lipid fluidity in SPMVs lipid bilayer induced by propoxycaine.HCl was significantly far greater than magnitude of increasing effect of the drug on the lateral and rotational mobilities of SPMVs lipid bilayer. It also caused membrane proteins to cluster. These effects of propoxycaine.HCl on neuronal membranes may be responsible for some, though not all, of the local anesthetic actions of propoxycaine.HCl.  相似文献   

7.
Koo KI  Bae JH  Lee CH  Yoon CD  Pyun JH  Shin SH  Jeon YC  Bae MK  Jang HO  Wood WG  Yun I 《Protoplasma》2008,234(1-4):3-12
Fluorescent probe techniques were used to evaluate the effect of bupivacaine.HCl on the physical properties (transbilayer asymmetric lateral and rotational mobilities, annular lipid fluidity and protein distribution) of synaptosomal plasma membrane vesicles (SPMVs) isolated from bovine cerebral cortex. An experimental procedure was used based on selective quenching of both 1,3-di(1-pyrenyl)propane (Py-3-Py) and 1,6-diphenyl-1,3,5-hexatriene (DPH) by trinitrophenyl groups, and radiationless energy transfer (RET) from the tryptophans of membrane proteins to Py-3-Py. Bupivacaine.HCl increased the bulk lateral and rotational mobilities, and annular lipid fluidity in SPMVs lipid bilayers, and had a greater fluidizing effect on the inner monolayer than that of the outer monolayer. The magnitude of increasing effect on annular lipid fluidity in SPMVs lipid bilayer induced by bupivacaine.HCl was significantly far greater than magnitude of increasing effect of the drug on the lateral and rotational mobilities of bulk SPMVs lipid bilayer. It also caused membrane proteins to cluster. These effects of bupivacaine.HCl on neuronal membranes may be responsible for some, though not all, of the local anesthetic actions of bupivacaine.HCl.  相似文献   

8.
Stopped-flow fluorometry has been employed to study the effects of melittin, the major protein component of bee venom, on dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylcholine (DPPC) small unilamellar vesicles (SUVs) on the millisecond time scale, before melittin-induced vesicle fusion takes place. Use is made of 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH), which is an oriented fluorescent probe that anchors itself to the bilayer-water interface and is aligned parallel to the normal to the bilayer surface; its fluorescence anisotropy reports on the "fluidity" of the bilayer. For DMPC bilayers, melittin is found to decrease their fluidity only at their melting transition temperature. This perturbation appears to be exerted almost instantaneously on the millisecond time scale of the measurements, as deduced from the fact that its rate is comparable to that obtained by following the change in the fluorescence of the single tryptophan residue of melittin upon inserting itself into the bilayer. The perturbation is felt in the bilayer over a distance of at least 50 A, with measurements of transfer of electronic energy indicating that the protein is not sequestered in the neighborhood of TMA-DPH. The length of the acyl chains is found to be an important physical parameter in the melittin-membrane interaction: unlike the case of DMPC SUVs, melittin does not alter the fluidity of DPPC SUVs and has a considerably greater affinity for them. These results are discussed in terms of the concept of elastic distortion of the lipids, which results from a mismatch between the protein and the acyl chains that are attempting to accommodate it. Melittin is also found to cause a small (approximately 10%) enhancement in the total fluorescence intensity of TMA-DPH, which is interpreted as indicating a reduction in the degree of hydration of the bilayer.  相似文献   

9.
The partitioning of fluorescence probes into intracellular organelles poses a major problem when fluorescence methods are applied to evaluate the fluidity properties of cell plasma membranes with intact cells. This work describes a method for resolution of fluidity parameters of the plasma membrane in intact cells labelled with the fluorescence polarization probe 1,6-diphenyl-1,3,5-hexatriene (DPH). The method is based on selective quenching, by nonradiative energy transfer, of the fluorescence emitted from the plasma membrane after tagging the cell with a suitable membrane impermeable electron acceptor. Such selective quenching is obtained by chemical binding of 2,4,6-trinitrobenzene sulfonate (TNBS), or by incorporation of N-bixinoyl glucosamine (BGA) to DPH-labelled cells. The procedures for determination of lipid fluidity in plasma membranes of intact cells by this method are simple and straightforward.  相似文献   

10.
Membrane fluidity of erythrocytes obtained from 15 children with trisomy 21 and 20 healthy controls were studied by measuring steady-state fluorescence anisotropy and fluorescence lifetime of 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) incorporated in hemoglobin-free erythrocyte membranes. Our results demonstrate a significant decrease in DPH fluorescence anisotropy and a significant increase in TMA-DPH fluorescence anistropy in erythrocytes from subjects with trisomy 21. No significant differences between the two groups were observed in the fluorescence lifetime of DPH and TMA-DPH. These data suggest an increase in membrane fluidity in the interior part of the membrane and a decrease in fluidity at the lipid-water interface region. This could be in part attributed to an increased oxidative damage in trisomy 21.  相似文献   

11.
The effects of 13 non-electrolytes with moderate anesthetic potency on the order of DMPC liposomes were examined. Changes in order were monitored by steady-state fluorescence polarization techniques using 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPG). At 30 degrees C, all of the compounds tested decreased the DPH steady-state anisotropy (rs), with potencies highly correlated to their oil/water partition coefficients. However, only the most hydrophobic anesthetics decreased TMA-DPH RS. Some of the most hydrophilic compounds, including ethanol and urethane, actually increased TMA-DPH rs, suggestive of an increase in membrane order. The concept of selectivity was borrowed from partitioning theory and used to explain some effects on anesthetic potency of decreasing temperature to 18 degrees C. In the gel as opposed to the liquid crystalline phase, selectivity for decreasing membrane order (as monitored by DPH) markedly increased, suggesting that anesthetic partitioning and/or the site of anesthetic action was occurring in a more hydrophobic domain. The solute-independent difference (or capacity) between two membranes for perturbation was defined as membrane sensitivity. Sensitivity appeared to also decrease with decreasing temperature, despite the decrease in membrane partitioning. This effect is thought to result from the selective delivery of the anesthetic solute to the membrane interior and away from more hydrophilic domains where anesthetics may order membrane structure.  相似文献   

12.
Transbilayer effects of ethanol on fluidity of brain membrane leaflets   总被引:5,自引:0,他引:5  
Previous work on membrane effects of ethanol focused on fluidization of the bulk membrane lipid bilayer. That work was extended in the present study to an examination of ethanol's effect on lipid domains. Two independent methods were developed to examine the effects of ethanol on the inner and outer leaflets of synaptic plasma membranes (SPM). First, differential polarized phase and modulation fluorometry and selective quenching of diphenyl-1,3,5-hexatriene (DPH) were used to examine individual leaflets. Both limiting anisotropy and rotational relaxation time of DPH in SPM indicated that the outer leaflet was more fluid than the inner leaflet. Second, plasma membrane sidedness selective fluorescent DPH derivatives, cationic 1-[4-(trimethylammonio)phenyl]-6-phenylhexa-1,3,5-triene (TMA-DPH) and anionic 3-[p-6-phenyl)-1,3,5-hexatrienyl]phenylpropionic acid (PRO-DPH), confirmed this transmembrane fluidity difference. TMA-DPH and PRO-DPH preferentially localized in the inner and outer leaflets of SPM, respectively. Ethanol in vitro had a greater fluidizing effect in the outer leaflet as compared to the inner leaflet. Thus, ethanol exhibits a specific rather than nonspecific fluidizing action within transbilayer SPM domains. This preferential fluidization of the SPM outer leaflet may have a role in ethanol affecting transmembrane signaling in the nervous system.  相似文献   

13.
The effect of ethanol on the physical properties of neuronal membranes   总被引:1,自引:0,他引:1  
Intramolecular excimer formation of 1,3-di(1-pyrenyl) propane(Py-3-Py) and fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) were used to evaluate the effect of ethanol on the rate and range of lateral and rotational mobilities of bulk bilayer structures of synaptosomal plasma membrane vesicles (SPMVs) from the bovine cerebral cortex. Ethanol increased the excimer to monomer fluorescence intensity ratio (I'/I) of Py-3-Py in the SPMVs. Selective quenching of both DPH and Py-3-Py by trinitrophenyl groups was used to examine the range of transbilayer asymmetric rotational mobility and the rate and range of transbilayer asymmetric lateral mobility of SPMVs. Ethanol increased the rotational and lateral mobility of the outer monolayer more than of the inner one. Thus ethanol has a selective fluidizing effect within the transbilayer domains of the SPMVs. Radiationless energy transfer from the tryptophans of membrane proteins to Py-3-Py was used to examine both the effect of ethanol on annular lipid fluidity and protein distribution in the SPMVs. Ethanol increased annular lipid fluidity and also caused membrane proteins to cluster. These effects on neuronal membranes may be responsible for some, though not all, of the general anesthetic actions of ethanol.  相似文献   

14.
A fluorescent phospholipid derivative, the fluoresceinthiocarbamyl adduct of a natural phosphatidylethanolamine, has been synthesized and incorporated into sonicated single-bilayer vesicles of egg lecithin and dipalmitoyllecithin. The surface location of this probe has been confirmed by using extrinsic fluorescence quenching studies together with steady-state emission anisotropy measurements. Electronic excitation energy transfer between 1,6-diphenyl-1,3,5-hexatriene incorporated within the hydrophobic core of the bilayer and the novel derivative has been investigated to estimate the depth within the bilayer at which the former is located. Efficiencies have been measured for two different phospholipids, egg lecithin and dipalmitoyllecithin, in the latter case both above and below the phospholipid phase transition, with and without added cholesterol. The observed dependence of the transfer efficiency on the acceptor concentration was compared with that calculated according to F?rster theory applied to random two-dimensional distributions of donor and acceptor molecules in parallel planes for various interplanar separations, taking into account orientational effects. The F?rster R0 of about 45 A for this donor-acceptor pair is particularly well suited to such studies since it is of the order of the width of the bilayer. The experiments showed that energy-transfer spectroscopy can provide useful quantitative information as to the transverse location of diphenylhexatriene in homogeneous phospholipid bilayers and may also reflect lateral partitioning of donor or of both donor and acceptor into different phases in systems exhibiting phase separations.  相似文献   

15.
The interaction of adriamycin with lipids was studied in model (monolayers, small unilamellar vesicles, large multilamellar vesicles) and natural (chinese hamster ovary cell) membranes by measurement of fluorescence energy transfer and fluorescence quenching. 2-APam, 7-ASte, 12-ASte and anthracene-phosphatidylcholine were used as fluorescent probes in which the anthracene group is well located at graded depths in the membrane. Egg-yolk phosphatidylcholine and a 1/1 mixture of it with bovine brain phosphatidylserine were used in model membrane systems. Large fluorescence energy transfer was observed between these molecules as donors and the drug as acceptor. With liposomes, at pH 7.4 and over an adriamycin concentration range of 0-100 microM, the efficiency of energy transfer was 12-ASte greater than 7-ASte greater than 2-APam, with 100% energy transfer for 12-ASte above a drug concentration of 30 microM. At pH 5, where the fatty acids are buried deeper (0.45 nm) in the lipid bilayer due to protonation of the carboxyl group, the order of energy transfer 7-ASTe greater than 12-ASte = 2-APam was observed. Measurements of fluorescence quenching using the non-permeant Cu2+ ion as quencher and spectrophotometric assays indicated that around 40% of the adriamycin molecules were deeply embedded in the lipid bilayer. Adriamycin molecules thus appear to penetrate the lipid bilayer, with the aminoglycosyl group interacting with the lipid phosphate groups and the dihydroanthraquinone residue in contact with the lipid fatty acid chains. In contrast, fluorescence energy transfer and quenching studies on CHO cells showed that adriamycin penetrated the plasma membrane of these cells to a much more limited extent than in the model membrane systems. This can be related to the squeezing out of the drug from a film of phosphatidylcholine which was observed in monolayers by means of surface pressure, potential and fluorescence experiments. These observations indicated that the penetration of adriamycin into lipid bilayers strongly depends on the molecular packing of the lipid.  相似文献   

16.
The effect of phospholipid bilayer acyl chain packing free volume on the equilibrium concentration of the form of photolyzed rhodopsin which initiates visual signal transduction, metarhodopsin II (meta II), is examined in reconstituted systems formed from the saturated phospholipid dimyristoylphosphatidylcholine (DMPC) and in the polyunsaturated phospholipid sn-1-palmitoyl-sn-2-arachidonoylphosphatidylcholine (PAPC) with and without 30 mol% cholesterol. The extent of meta II formation is determined from both flash photolysis measurements and rapidly acquired absorbance spectra. Equilibrium and dynamic properties of the lipid bilayer are characterized by the dynamic fluorescence properties of 1,6-diphenyl-1,3,5-hexatriene (DPH). DPH orientational properties are characterized by fv, a parameter which reflects the volume available for probe reorientation in the bilayer, relative to that available in an unhindered, isotropic environment [Straume, M., & Litman, B. J. (1987) Biochemistry 26, 5121-5126]. The metarhodopsin I in equilibrium with meta II equilibrium constant, Keq has a linear relationship with fv for rhodopsin in PAPC vesicles with and without cholesterol as well as for rhodopsin in DMPC vesicles, and these two correlation lines have different slopes. The correlations between Keq and fv in PAPC and DMPC systems are compared with a similar correlation in the native rod outer segment disk membrane and one reported previously in an egg phosphatidylcholine (egg PC) system [Mitchell, D. C., Straume, M., Miller, J. L., & Litman, B. J. (1990) Biochemistry 29, 9143-9149].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Summary The interacting effects of pH and temperature on membrane fluidity were studied in plasma membranes isolated from liver of rainbow trout (Oncorhynchus mykiss) acclimated to 5 and 20°C. Fluidity was determined as a function of temperature under conditions of both constant (in potassium phosphate buffer) and variable pH (in imidazole buffer, consistent with imidazole alphastat regulation) from the fluorescence anisotropy of two probes: 1,6-diphenyl-1,3,5-hexatriene, which intercalates into the bilayer interior, and 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene which is anchored at the membrane/water interface. The temperature dependence of the anisotropy parameter for 1,6-diphenyl-1,3,5-hexatriene in plasma membranes of 20°C-acclimated trout was greater when determined in phosphate (AP per °C=-0.047) than in imidazole buffer (AP per °C=-0.022); similar, but less significant, trends were noted with 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene. In contrast, the temperature dependence of fluidity (AP/°C in the range-0.0222 to-0.027) did not vary with buffer composition in membranes of 5°C-acclimated trout. In phosphate buffer, anisotropy parameter values for 1,6-diphenyl-1,3,5-hexatriene were significantly lower in 5°C-than 20°C-acclimated trout, indicating a less restricted probe environment following cold acclimation and nearly perfect compensation (91%) of fluidity. Temperature-dependent patterns of acid-base regulation were estimated to account for 11–40% of the fluidization evident in membranes of 5°C-trout, but a period of cold acclimation was required for complete fluidity compensation. In contrast, no homeoviscous adaptation was evident in imidazole buffer, indicating that membrane fluidity is sensitive to buffer composition. Accordingly, vesicles of bovine brain phosphatidylcholine, suspensions of triolein, and plasma membranes of 5°C-acclimated trout were consistently more fluid in imidazole than phosphate buffer. Membranes of 5°C-acclimated trout were enriched in molecular species of phosphatidylcholine containing 22:6n3 (at the expense of species containing 18:1n9 and 18:2n6) compared to membranes of 20°C-trout; consequently, the unsaturation index was significantly higher (3.29 versus 2.73) in trout maintained at 5 as opposed to 20°C. It is concluded that: 1) the chemical composition of the internal milieu can significantly influence the physical properties of membrane lipids; 2) temperature-dependent patterns of intracellular pH regulation may partially offset the ordering effect of low temperature on membrane fluidity in 20°C-acclimated trout transferred to 5°C, but not in 5°C-acclimated trout transferred to warmer temperatures; 3) the majority of the thermal compensation of plasma membrane fluidity resulting from a period of temperature acclimation most likely reflects differences in membrane composition between acclimation groups; 4) imidazole apparently interacts with trout hepatocyte plasma membranes in a unique way.Abbreviations im netcharge stateofproteins - AP anisotropyparameter - bw body weight - DPH 1,6-diphenyl-1,3,5-hexatriene - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulphonicacid - PC phosphatidylcholine - pHe pHofarterial blood - pHi intracellular pH - TMA-DPH 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene - TRIS tris(hydroxymethyl)aminomethane  相似文献   

18.
We describe practical aspects of photobleaching fluorescence energy transfer measurements on individual living cells. The method introduced by T. M. Jovin and co-workers (see, most recently, Kubitscheck et al. 1993. Biophys. J. 64:110) is based on the reduced rate of irreversible photobleaching of donor fluorophores when acceptor fluorophores are present. Measuring differences in donor photobleaching rates on cells labeled with donor only (fluorescein isothiocyanate-conjugated proteins) and with both donor and acceptor (tetramethylrhodamine-conjugated proteins) allows calculation of the fluorescence energy transfer efficiency. We assess possible methods of data analysis in light of the underlying processes of photobleaching and energy transfer and suggest optimum strategies for this purpose. Single murine B lymphocytes binding various ratios of donor and acceptor conjugates of tetravalent concanavalin A (Con A) and divalent succinyl Con A were examined for interlectin energy transfer by these methods. For Con A, a maximum transfer efficiency of 0.49 +/- 0.02 was observed. Under similar conditions flow cytometric measurements of donor quenching yielded a value of 0.54 +/- 0.03. For succinyl Con A, the maximum transfer efficiency was 0.36. To provide concrete examples of quantities arising in such energy transfer determinations, we present examples of individual cell data and kinetic analyses, population rate constant distributions, and error estimates for the various quantities involved.  相似文献   

19.
In this study we have demonstrated a transfer of a phosphatidylcholine derivative of 1,6-diphenyl-1,3,5-hexatriene (DPH-PC) from self-quenched lipid vesicles to intact lymphocytes. Membrane labeling was followed measuring the time dependent reexpression of fluorescence. The results of fluorescence quenching by 2,4,6-trinitrobenzene sulfonate and the decrease of fluorescence polarization values during incubation at 37 degrees C, suggest that the probe could remain localized at level of the plasma membrane until 20-30 minutes. DPH-PC is identical to the natural phospholipid with respect to head group structure and polarity therefore we suggest that under appropriate experimental conditions, it could represent an useful tool to study the physico-chemical properties of specific phospholipid domains in the plasma membrane of intact cells.  相似文献   

20.
Although the phenomenon of stimulus-response coupling in polymorphonuclear leukocytes involves a series of membrane events the influence of stimulation on membrane fluidity is to clarify. In our experiments we have used 1-(4-trimethylaminophenyl) 6-phenyl-1,3,5-hexatriene and 1,6-diphenyl-1,3,5-hexatriene fluorescence polarization technique to evaluate membrane fluidity in living polymorphonuclear leukocytes after stimulation with N-formyl-methyonil-leucyl-phenylalanine peptide which has a well defined membrane receptor on the plasma membrane. We report that polymorphonuclear leukocytes stimulation increases 1-(4-trimethylaminophenyl)-6-phenyl-1,3,5-hexatriene polarization, only when colcemid, a microtubule disrupting drug, is added to polymorphonuclear leukocytes. This can be viewed as an indirect evidence that microtubules are involved in the control of polymorphonuclear leukocytes membrane fluidity. On the contrary no changes have been observed with 1,6-diphenyl-1,3,5-hexatriene. This study indicates the potential use of 1-(4-trimethylaminophenyl)-6-phenyl-1,3,5-hexatriene to evaluate the involvement of plasma membrane physical state during intact cell activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号