首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Noncoding Y RNAs are essential for the initiation of chromosomal DNA replication in mammalian cell extracts, but their role in this process during early vertebrate development is unknown. Here, we use antisense morpholino nucleotides (MOs) to investigate Y RNA function in Xenopus laevis and zebrafish embryos. We show that embryos in which Y RNA function is inhibited by MOs develop normally until the midblastula transition (MBT) but then fail to replicate their DNA and die before gastrulation. Consistent with this observation, Y RNA function is not required for DNA replication in Xenopus egg extracts but is required for replication in a post-MBT cell line. Y RNAs do not bind chromatin in karyomeres before MBT, but they associate with interphase nuclei after MBT in an origin recognition complex (ORC)-dependent manner. Y RNA-specific MOs inhibit the association of Y RNAs with ORC, Cdt1, and HMGA1a proteins, suggesting that these molecular associations are essential for Y RNA function in DNA replication. The MBT is thus a transition point between Y RNA-independent and Y RNA-dependent control of vertebrate DNA replication. Our data suggest that in vertebrates Y RNAs function as a developmentally regulated layer of control over the evolutionarily conserved eukaryotic DNA replication machinery.  相似文献   

6.
7.
Checkpoint pathways inhibit cyclin-dependent kinases (Cdks) to arrest cell cycles when DNA is damaged or unreplicated. Early embryonic cell cycles of Xenopus laevis lack these checkpoints. Completion of 12 divisions marks the midblastula transition (MBT), when the cell cycle lengthens, acquiring gap phases and checkpoints of a somatic cell cycle. Although Xenopus embryos lack checkpoints prior to the MBT, checkpoints are observed in cell-free egg extracts supplemented with sperm nuclei. These checkpoints depend upon the Xenopus Chk1 (XChk1)-signaling pathway. To understand why Xenopus embryos lack checkpoints, xchk1 was cloned, and its expression was examined and manipulated in Xenopus embryos. Although XChk1 mRNA is degraded at the MBT, XChk1 protein persists throughout development, including pre-MBT cell cycles that lack checkpoints. However, when DNA replication is blocked, XChk1 is activated only after stage 7, two cell cycles prior to the MBT. Likewise, DNA damage activates XChk1 only after the MBT. Furthermore, overexpression of XChk1 in Xenopus embryos creates a checkpoint in which cell division arrests, and both Cdc2 and Cdk2 are phosphorylated on tyrosine 15 and inhibited in catalytic activity. These data indicate that XChk1 signaling is intact but blocked upstream of XChk1 until the MBT.  相似文献   

8.
9.
10.
11.
It has been proposed and is now widely accepted that in Xenopus laevis embryogenesis RNA synthesis starts only at and after 12 rounds of cleavage, at the time of the midblastula transition (MBT). In this report, however, we provide evidence that RNA synthesis takes place prior to the MBT stage in normally developing Xenopus embryos. In the present experiments, we cultured fertilized eggs in 80 mM phosphate buffer and loosened the adhesion between blastomeres, so that [3H]uridine could be incorporated into blastomeres from the surrounding medium. By this method and also by microinjection of [3H]GTP, we found that embryos synthesize heterogeneous, nonribosomal, high-molecular-weight RNAs and a relatively small amount of low-molecular-weight RNA as early as the sixth cleavage. RNAs synthesized were not of mitochondrial origin, and the synthesis was sensitive to actinomycin D and alpha-amanitin. From these results we conclude that mRNA-like RNA and low-molecular-weight RNA start to be synthesized during the cleavage stage.  相似文献   

12.
13.
14.
In Xenopus, an early and a late pathway exist for the selective localization of RNAs to the vegetal cortex during oogenesis. Previous work has suggested that distinct cellular mechanisms mediate localization during these pathways. Here, we provide several independent lines of evidence supporting the existence of common machinery for RNA localization during the early and late pathways. Data from RNA microinjection assays show that early and late pathway RNAs compete for common localization factors in vivo, and that the same short RNA sequence motifs are required for localization during both pathways. In addition, quantitative filter binding assays demonstrate that the late localization factor Vg RBP/Vera binds specifically to several early pathway RNA localization elements. Finally, confocal imaging shows that early pathway RNAs associate with a perinuclear microtubule network that connects to the mitochondrial cloud of stage I oocytes suggesting that motor driven transport plays a role during the early pathway as it does during the late pathway. Taken together, our data indicate that common machinery functions during the early and late pathways. Thus, RNA localization to the vegetal cortex may be a regulated process such that differential interactions with basal factors determine when distinct RNAs are localized during oogenesis.  相似文献   

15.
16.
17.
Two general pathways of mRNA decay have been characterized in yeast. Both start with deadenylation. The major pathway then proceeds via cap hydrolysis and 5'-exonucleolytic degradation whereas the minor pathway consists of 3'-exonucleolytic decay followed by hydrolysis of the remaining cap structure. In higher eukaryotes, these pathways of mRNA decay are believed to be conserved but have not been well characterized. We have investigated the decay of the hsp70 mRNA in Drosophila Schneider cells. As shown by the use of reporter constructs, rapid deadenylation of this mRNA is directed by its 3'-untranslated region. The main deadenylase is the CCR4.NOT complex; the PAN nuclease makes a lesser contribution. Heat shock prevents deadenylation not only of the hsp70 but also of bulk mRNA. A completely deadenylated capped hsp70 mRNA decay intermediate accumulates transiently and is degraded via cap hydrolysis and 5'-decay. Thus, decapping is a slow step in the degradation pathway. Cap hydrolysis is also inhibited during heat shock. Degradation of reporter RNAs from the 3'-end became detectable only upon inhibition of 5'-decay and thus represents a minor decay pathway. Because two reporter RNAs and at least two endogenous mRNAs were degraded primarily from the 5'-end with cap hydrolysis as a slow step, this pathway appears to be of general importance for mRNA decay in Drosophila.  相似文献   

18.
In Xenopus laevis embryogenesis, gene expression from endogenous and exogenously-introduced DNAs is reported to start only after 12 rounds of cleavage, at the stage called midblastula transition (MBT). In isotopic labeling experiments, however, we found that the synthesis of heterogeneous mRNA-like RNA occurs from the early cleavage stage, and that gene expression from zygotic genomes occurs sequentially in three characteristically different phases: the pre-MBT phase, in which heterogeneous mRNA-like RNA and small amounts of small-molecular-weight RNAs are synthesized; the MBT phase, in which there is a large increase in 4S RNA synthesis, and the post-MBT phase, in which rRNA is also synthesized. Moreover in our studies on the expression of exogenously introduced DNA, we found that circular forms of bacterial chloramphenicol acetyltransferase (CAT) genes connected to viral promoters were expressed from the early cleavage stage, whereas circular forms of genes connected to Xenopus cardiac α-actin promoter were expressed only after the embryos reached the neurula stage, when the endogenous α-actin gene started to be expressed. We, therefore, conclude that in Xenopus embryogenesis, DNA-dependent RNA polymerases II, III and I are activated in this order, and that the promoter, not changes associated with the MBT, probably determine the timing of gene expression.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号