首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of resveratrol (trans-3,4',5-trihydroxystilbene) on the oxidative stress in blood platelets induced by platinum compounds [cisplatin and selenium-cisplatin conjugate] were studied in vitro. The production of thiobarbituric acid reactive substances (TBARS), the level of conjugate diene, the generation of superoxide anion radicals (O2-*) and other reactive oxygen species (O2-*, H2O2, singlet oxygen and organic radicals) were measured by chemiluminescence in blood platelets treated with platinum compounds. Cisplatin at the concentration of 10 microg/ml, as well as selenium-cisplatin conjugate (10 microg/ml) induced oxidative stress in blood platelets: an increase in TBARS, conjugate diene, chemiluminescence and generation of O2-*. In the presence of resveratrol (a natural compound with antioxidant activity) at the concentrations of 1-25 microg/ml, the chemiluminescence, the levels of O2-*, conjugate diene and TBARS were reduced (p < 0.05). We showed that resveratrol at different concentrations (1-25 microg/ml) had a protective effect against oxidative stress in platelets caused by platinum compounds (10 microg/ml) and it diminished platelet lipid peroxidation and reactive oxygen species generation induced by platinum compounds.  相似文献   

2.
Antioxidant activity of resveratrol in endotoxin-stimulated blood platelets   总被引:4,自引:0,他引:4  
Resveratrol (3,4′,5-trihydroxystilbene) is a natural molecule with antioxidant action. It is also considered to be a molecule with antiplatelet, anticancer and anti-inflammatory action. The effects of trans-resveratrol on the reactive oxygen species (ROS) generation and thiobarbituric acid-reactive substances (TBARS) in blood platelets induced by endotoxin (lipopolysaccharide, LPS) or thrombin were studiedin vitro. The production of superoxide radicals (O2 .–) and other reactive oxygen species (H2O2, singlet oxygen, and organic radicals) in the presence of resveratrol was measured by a chemiluminescence method in resting blood platelets and platelets stimulated by LPS (0.3 μg/108 platelets) or thrombin (2.5 U/108 platelets). We have shown that resveratrol (6.25–100 μg/ml) inhibits chemiluminescence and generation of O2 .– in blood platelets. It has an inhibitory effect on the production of ROS and TBARS in platelets caused by LPS or thrombin. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The effect of resveratrol (trans-3,4',5-trihydroxystilbene) on the release of adenine nucleotides and proteins from blood platelets activated by lipopolysaccharide (LPS), from Proteus mirabilis and by thrombin, were studied. Thrombin stimulated the release of adenine nucleotides from dense granules and proteins from alpha-granules. The LPS (0.3 microg/10(8) platelets, 5 min, 37 degrees C), like thrombin (2.5 U/10(8) platelets, 5 min, 37 degrees C) was found to cause a release of adenine nucleotides and proteins (p <0.05). Resveratrol (6.25-100 microg/ml, 30 min, 37 degrees C) had a different effect on the platelet release reaction caused by either LPS or thrombin. The results indicated that resveratrol inhibited, in dose-dependent manner, the secretory process (release of adenine nucleotides and proteins) induced by thrombin (p <0.05), but it significantly stimulated the liberation of proteins from blood platelets activated by LPS (p <0.05).  相似文献   

4.
Reactive oxygen species (ROS) produced upon collagen stimulation are implicated in propagating various platelet-activating pathways. Among ROS-producing enzymes, NADPH oxidase (NOX) is largely responsible for collagen receptor-dependent ROS production. Therefore, NOX has been proposed as a novel target for the development of antiplatelet agent. We here investigate whether resveratrol inhibits collagen-induced NOX activation and further examine the effects of resveratrol on ROS-dependent signaling pathways in collagen-stimulated platelets. Collagen-induced superoxide anion production in platelets was inhibited by resveratrol. Resveratrol suppressed collagen-induced phosphorylation of p47phox, a major regulatory subunit of NOX. Correlated with the inhibitory effects on NOX, resveratrol protected SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) from ROS-mediated inactivation and subsequently attenuated the specific tyrosine phosphorylation of key components (spleen tyrosine kinase, Vav1, Bruton’s tyrosine kinase, and phospholipase Cγ2) for collagen receptor signaling cascades. Resveratrol also inhibited downstream responses such as cytosolic calcium elevation, P-selectin surface exposure, and integrin-αIIbβ3 activation. Furthermore, resveratrol inhibited platelet aggregation and adhesion in response to collagen. The antiplatelet effects of resveratrol through the inhibition of NOX-derived ROS production and subsequent oxidative inactivation of SHP-2 suggest that resveratrol is a potential compound for prevention and treatment of thrombovascular diseases.  相似文献   

5.
Resveratrol protection on the main functions of purified rat brain mitochondria submitted to anoxia-reoxygenation was investigated. Resveratrol (<0.1 microM) reversed partly (23.3%) the respiratory control ratio (RCR) decrease by protecting both states 3 and 4. This effect was both observed when resveratrol was added before anoxia or reoxygenation. Resveratrol fully inhibited the release of cytochrome c in a concentration-dependent manner and significantly decreased the superoxide anion (O2(0-)) production at a concentration of 1 nM. The mitochondrial membranes damaged after the anoxia-reoxygenation were partly protected (about 70%) by resveratrol at 0.1 microM. The oxygen consumption of mitochondria in presence of NADH and cytochrome c was significantly inhibited by resveratrol with a low EC50 of 18.34 pM. Resveratrol inhibited the CCCP-induced uncoupling from about 20%. The effects of resveratrol on oxidative phosphorylation parameters were also investigated in rats after pretreatment (0.4, 2 and 10 mg/kg/day) for one week. After the isolation of brain mitochondria, the RCR was significantly less decreased in the resveratrol group compared to the control group. These results showed that resveratrol could preserve the mitochondrial functions with at least three mechanisms: antioxidant properties, action on complex III and a membrane stabilizing effect.  相似文献   

6.
Recent data support the possible role of nitric oxide (NO*) in the development of insulin signalling. The aim of this study was to examine the effect of insulin on NO* production by platelets. The chemiluminescence of platelet-rich plasma prepared from the blood of healthy volunteers was measured in the presence of luminol. Indirect detection of NO* by luminol is possible in the form of peroxynitrite produced in the reaction of NO* with a superoxide free radical. Luminol oxidation induced by hydroxyl free radical and lipid peroxidation was prevented by 150 micromol/l of desferrioxamine mesylate. Insulin, in the range of 0.084-840 nmol/l, induced a concentration-dependent increase in chemiluminescence, which was inhibited both by the competitive antagonist of the NO* synthase enzyme. N(omega)-nitro-L-arginine methyl ester (at concentrations of 2.0-4.0 mmol/l, P<0.001), and by the elimination of superoxide free radicals using superoxide dismutase (72-144 IU/ml, P<0.001). In conclusion, we assume that the insulin-induced increase in chemiluminescence of platelet-rich plasma was due to increased production of NO* and superoxide free radicals forming peroxynitrite. The data are consistent with production of peroxynitrite from human platelets under insulin stimulation.  相似文献   

7.
Hemoglobin (Hb) solution-based blood substitutes are being developed as oxygen-carrying agents for the prevention of ischemic tissue damage and low blood volume-shock. However, the cell-free Hb molecule has intrinsic toxicity to the tissue since harmful reactive oxygen species (ROS) are readily produced during autoxidation of Hb from the ferrous state to the ferric state, and the cell-free Hb also causes distortion in the oxidant/antioxidant balance in the tissues. There may be further hindering dangers in the use of free Hb as a blood substitute. It has been reported that Hb has peroxidase-like activity oxidizing peroxidase substrates such as aromatic amines. Here we observed the Hb-catalyzed ROS production coupled to oxidation of a neurotransmitter precursor, beta-phenylethylamine (PEA). Addition of PEA to Hb solution resulted in generation of superoxide anion (O2*-). We also observed that PEA increases the Hb-catalyzed monovalent oxidation of ascorbate to ascorbate free radicals (Asc'). The O2*- generation and Asc formation were detected by O2*--specific chemiluminescence of the Cypridina lucigenin analog and electron spin resonance spectroscopy, respectively. PEA-dependent O2*- production and monovalent oxidation of ascorbate in the Hb solution occurred without addition of H2O2, but a trace of H2O2 added to the system greatly increased the production of both O2*- and Asc*. Addition of GSH completely inhibited the PEA-dependent production of O2*- and Asc* in Hb solution. We propose that the O2*- generation and Asc* formation in the Hb solution are due to the pseudoperoxidase activity-dependent oxidation of PEA and resultant ROS may damage tissues rich in monoamines, if the Hb-based blood substitutes were circulated without addition of ROS scavengers such as thiols.  相似文献   

8.
Resveratrol, which is a polyphenol present in red wines and vegetables included in human diets, exerts many biological effects. The aim of the present study was to investigate its effect on some activities of polymorphonuclear leukocytes, particularly the generation of superoxide anion ((O2)(-)) in whole blood, hypochlorous acid (HOCl) and nitric oxide (NO) production by isolated cells, and chemotaxis. Resveratrol showed significant dose-dependent inhibitory effect on all these activities. In particular, it inhibited O2(-) generation in stimulated but not in resting neutrophils, decreased HOCl much more than O2(-) production indicating an effect on myeloperoxidase secretion since HOCl production is directly and proportionally dependent on O2(-) generation and reduced cell motility. The small dose of resveratrol (4.38 nM) used is attainable with a diet including red wine and vegetables confirming its protective role against some pathological processes such as inflammation, coronary heart disease, and cancer.  相似文献   

9.
We examined whether superoxide (O(2)(-)) is produced as a precursor of hydrogen peroxide (H(2)O(2)) in cultured thyroid cells using the cytochrome c method and the electron paramagnetic resonance (EPR) method. No O(2)(-) or its related radicals was detected in thyroid cells under the physiological condition. The presence of quinone, 2,3-dimethoxy-l-naphthoquinone (DMNQ), or 2-methyl-1, 4-naphthoquinone (menadione), in the medium produced O(2)(-) and hydroxyl radicals (OH*); the amount of H(2)O(2) generation was also increased. Incubation of follicles with DMNQ or menadione inhibited iodine organification (a step of thyroid hormone formation) and its catalytic enzyme, thyroid peroxidase (TPO). This inhibition should be caused by reactive oxygen species because the two quinones, particularly DMNQ, exert their effect through the generation of reactive oxygen species. It is speculated that the site-specific inactivation of TPO might have occurred at the heme-linked histidine residue of the TPO molecule, a critical amino acid for enzyme activity because OH* (vicious free radicals) can be formed at the iron-linked amino acid. TPO mRNA level and electrophoretic mobility of TPO were not inhibited by quinones. Our study suggests that thyroid H(2)O(2) is produced by divalent reduction of oxygen without O(2)(-) generation. If thyroid cells happen to be exposed to significant amount of reactive oxygen species, TPO and subsequent thyroid hormone formation are inhibited.  相似文献   

10.
The role of platelets in hemostasis may be influenced by alteration of the platelet redox state—the presence of antioxidants and the formation of reactive oxygen and nitrogen species. We investigated the effects of two antioxidants, resveratrol and trolox, on platelet activation. Trolox and resveratrol inhibited aggregation of washed platelets and platelet-rich plasma activated by ADP, collagen, and thrombin receptor-activating peptide. Resveratrol was a more effective agent in reducing platelet static and dynamic adhesion in comparison with trolox. The antioxidant capacity of resveratrol was, however, the same as that of trolox. After incubation of platelets with antioxidants, the resveratrol intraplatelet concentration was about five times lower than the intracellular concentration of trolox. Although both antioxidants comparably lowered hydroxyl radical and malondialdehyde production in platelets stimulated with collagen, TxB2 levels were decreased by resveratrol much more effectively than by trolox. Cyclooxygenase 1 was inhibited by resveratrol and not by trolox. Our data indicate that antioxidants, apart from nonspecific redox or radical-quenching mechanisms, inhibit platelet activation also by specific interaction with target proteins. The results also show the importance of studying platelet activation under conditions of real blood flow in contact with reactive surfaces, e.g., using dynamic adhesion experiments.  相似文献   

11.
Cisplatin (cis-diamminedichloroplatinum II, cisPt) is especially useful in the treatment of epithelial malignancies, however, the use of cisplatin is accompanied by several toxicities including haematological toxicity. Contrary to cisplatin, selenium-cisplatin conjugate ((NH(3))(2)Pt(SeO(3)); Se-Pt) has only a slight toxicity effect on blood platelet function. In the mechanism of platinum compounds action on platelets thiols are involved. The aim of the present studies was to examine in vitro how trans-resveratrol (trans-3,4',5-trihydroxystilbene) acts on the levels of platelet glutathione (GSH) and other thiol-containing compounds and how, as an antioxidant, protecs blood platelets against the oxidative stress caused by platinum compounds (cisPt and Se-Pt). To analyse the level of thiols in human blood platelets treated with platinum compounds and with resveratrol the classical technique HPLC has been used. Blood platelets isolated by differential centrifugation of human blood were incubated (30 min, 37 degrees C) with cisPt or Se-Pt at dose of 10 microg/ml that inhibits platelet function and with resveratrol (25 microg/ml). The obtained results indicate that platinum compounds caused in platelets a decrease of both, reduced glutathione (GSH) and free thiols of cysteine (CSH) and cysteinylglycine (CGSH). The pool of these compounds in unreduced form was increased. Platinum compounds caused the reduction of platelet protein thiols. Resveratrol (after 30 min action) at the concentration of 25 microg/ml partly reduced the platinum compounds induced decrease of platelet thiols, particularly thiols in acid-soluble fraction.  相似文献   

12.
Glutathione acts as a universal scavenger of free radicals at the expense of the formation of the glutathionyl radicals (GS*). Here we demonstrated that GS* radicals specifically interact with a reporter molecule, paramagnetic and non-fluorescent 4-((9-acridinecarbonyl)-amino)-2,2,6,6-tetramethylpiperidine-1-oxyl (Ac-Tempo), and convert it into a non-paramagnetic fluorescent product, identified as 4-((9-acridinecarbonyl)amino)-2,2,6,6-tetramethylpiperidine (Ac-piperidine). Horseradish peroxidase-, myeloperoxidase-, and cyclooxygenasecatalyzed oxidation of phenol in the presence of H2O2 and GSH caused the generation of phenoxyl radicals and GS* radicals, of which only the latter reacted with Ac-Tempo. Oxidation of several other phenolic compounds (e.g. etoposide and tyrosine) was accompanied by the formation of GS* radicals along with a characteristic fluorescence response from Ac-Tempo. In myeloperoxidase-rich HL-60 cells treated with H2O2 and phenol, fluorescence microscopic imaging of Ac-Tempo revealed the production of GS* radicals. A thiol-blocking reagent, N-ethylmaleimide, as well as myeloperoxidase inhibitors (succinyl acetone and azide), blocked formation of fluorescent acridine-piperidine. H2O2/phenolinduced peroxidation of major classes of phospholipids in HL-60 cells was completely inhibited by Ac-Tempo, indicating that GS* radicals were responsible for phospholipid peroxidation. Thus, GSH, commonly viewed as a universal free radical scavenger and major intracellular antioxidant, acts as a pro-oxidant during myeloperoxidase-catalyzed metabolism of phenol in HL-60 cells.  相似文献   

13.
Resveratrol is a dietary phytochemical that has been shown to inhibit proliferation of a number of cell lines, and it behaves as a chemopreventive agent in assays that measure the three stages of carcinogenesis. We tested for its chemopreventive potential against gastric cancer by determining its interaction with signaling mechanisms that contribute to the proliferation of transformed cells. Low levels of exogenous reactive oxygen (H(2)O(2)) stimulated [(3)H]thymidine uptake in human gastric adenocarcinoma SNU-1 cells, whereas resveratrol suppressed both synthesis of DNA and generation of endogenous O(2)(-) but stimulated nitric oxide (NO) synthase (NOS) activity. To address the role of NO in the antioxidant action of resveratrol, we measured the effect of sodium nitroprusside (SNP), an NO donor, on O(2)(-) generation and on [(3)H]thymidine incorporation. SNP inhibited DNA synthesis and suppressed ionomycin-stimulated O(2)(-) generation in a concentration-dependent manner. Our results revealed that the antioxidant action of resveratrol toward gastric adenocarcinoma SNU-1 cells may reside in its ability to stimulate NOS to produce low levels of NO, which, in turn, exert antioxidant action. Resveratrol-induced inhibition of SNU-1 proliferation may be partly dependent on NO formation, and we hypothesize that resveratrol exerts its antiproliferative action by interfering with the action of endogenously produced reactive oxygen. These data are supportive of the action of NO against reactive oxygen and suggest that a resveratrol-rich diet may be chemopreventive against gastric cancer.  相似文献   

14.
Although resveratrol, an active ingredient derived from grapes and red wine, possesses chemopreventive properties against several cancers, the molecular mechanisms by which it inhibits cell growth and induces apoptosis have not been clearly understood. Here, we examined the molecular mechanisms of resveratrol and its interactive effects with TRAIL on apoptosis in prostate cancer PC-3 and DU-145 cells. Resveratrol inhibited cell viability and colony formation, and induced apoptosis in prostate cancer cells. Resveratrol downregulated the expression of Bcl-2, Bcl-XL and survivin and upregulated the expression of Bax, Bak, PUMA, Noxa, and Bim, and death receptors (TRAIL-R1/DR4 and TRAIL-R2/DR5). Treatment of prostate cancer cells with resveratrol resulted in generation of reactive oxygen species (ROS), translocation of Bax to mitochondria and subsequent drop in mitochondrial membrane potential, release of mitochondrial proteins (cytochrome c, Smac/DIABLO, and AIF) to cytosol, activation of effector caspase-3 and caspase-9, and induction of apoptosis. Resveratrol-induced ROS production, caspase-3 activity and apoptosis were inhibited by N-acetylcysteine. Bax was a major proapoptotic gene mediating the effects of resveratrol as Bax siRNA inhibited resveratrol-induced apoptosis. Resveratrol enhanced the apoptosis-inducing potential of TRAIL, and these effects were inhibited by either dominant negative FADD or caspase-8 siRNA. The combination of resveratrol and TRAIL enhanced the mitochondrial dysfunctions during apoptosis. These properties of resveratrol strongly suggest that it could be used either alone or in combination with TRAIL for the prevention and/or treatment of prostate cancer.  相似文献   

15.
Koo BS  Lee WC  Chung KH  Ko JH  Kim CH 《Life sciences》2004,75(19):2363-2375
A number of studies indicate that free radicals are involved in the neurodegeneration in Alzheimer's disease (AD). The role of superoxide anion (O2*-) in neuronal cell injury induced by reactive oxygen species (ROS) was examined in PC12 cells using pyrogallol (1,2,3-benzenetrior), a donor to release O2*-. Pyrogallol induced PC12 cell death at concentrations, which evidently increased intracellular O2*-, as assessed by O2*- sensitive fluorescent precursor hydroethidine (HEt). A water extract of Curcuma longa L. (Zingiberaceae) (CLE), having O2*- scavenging activity rescued PC12 cells from pyrogallol-induced cell death. Hypoxia/reoxygenation injury of PC12 cells was also blocked by CLE. The present study was also conducted to examine the effect of CLE on H2O2 -induced toxicity in rat pheochromocytoma line PC12 by measuring cell lesion, level of lipid peroxidation and antioxidant enzyme activities. Following a 30 min exposure of the cells to H2O2 (150 microM), a marked decrease in cell survival, activities of glutathione peroxidase and catalase as well as increased production of malondialdehyde (MDA) were found. Pretreatment of the cells with CLE (0.5-10 microg/ml) prior to H2O2 exposure significantly elevated the cell survival, antioxidant enzyme activities and decreased the level of MDA. The above-mentioned neuroprotective effects are also observed with tacrine (THA, 1 microM), suggesting that the neuroprotective effects of cholinesterase inhibitor might partly contribute to the clinical efficacy in AD treatment. Further understanding of the underlying mechanism of the protective effects of these radical scavengers reducing intracellular O2*- on neuronal cell death may lead to development of new therapeutic treatments for hypoxic/ischemic brain injury.  相似文献   

16.
17.
The effects of resveratrol (trans-3,4′,5-trihydroxystilbene) on activation responses and the polyphosphoinositide metabolism in human blood platelets have been studied. Resveratrol partially inhibited secretory responses (liberation of dense granule nucleotides and lysosomal acid hydrolases), microparticle formation and protein phosphorylations induced by thrombin. The effects of resveratrol on phosphoinositide metabolites, phosphatidate (PtdOH), phosphatidylinositol (PtdIns), phosphatidylinositol-4-phosphate (PtdIns-4(5)-P), phosphatidylinositol 4,5-bisphosphate (PtdIns-4,5-P2), phosphatidylinositol-3,4-bisphosphate (PtdIns-3,4-P2) and phosphatidylinositol-3,4,5-trisphosphate (PtdIns-3,4,5-P3) were monitored in blood platelets prelabelled with [32P]Pi. Resveratrol not only inhibited the marked increase in levels of PtdOH in platelets activated by thrombin (0.1 U/ml) but it decreased the steady state levels of the other polyphosphoinositide metabolites. The distribution of 32P in phosphoinositides in activated platelets was consistent with inhibition of CDP-DAG inositol transferase and a weak inhibition of PtdIns-4(5)-P kinase. These observations show that resveratrol has a profound effect on phospholipids, particularly on polyphosphoinositide metabolism, and may decrease the amount of PtdIns-4,5-P2 available for signalling in these cells.  相似文献   

18.
Increased oxidative/nitrosative stress, resulting from generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) appears to play an important role in the inflammatory responses to atherosclerosis. By using MitoTracker Orange CM-H(2)TMRos, CM-H(2)DCFDA (DCF-DA), Dihydrorhodamine 123 (DHR123), DAF-FM, Dihydroethidium (DHE) and JC-1 alone or in all combinations of red and green probes, the present study was designed to monitor the ROS and RNS generation in acute exposure of single monocyte U937-derived macrophage to oxidized low density lipoprotein (Ox-LDL). Acute Ox-LDL (100 microg/ml) treatment increased time-dependently production of intracellular nitric oxide (NO), superoxide (O2*-), hydrogen peroxide (H(2)O(2)) and peroxynitrite (ONOO(-)), and decreased mitochondrial membrane potential (Deltapsi) in single cell. Pretreatment of aminoguanidine (an inhibitor of inducible nitric oxide synthase (iNOS), 10 microM) and vitamin C (an antioxidant agent, 100 microM) for 2h, reduced significantly the Ox-LDL-induced increase of NO and O2*-, and vitamin C completely inhibited increase of intracellular NO and O2*-. In contrast to aminoguanidine, Vitamin C pretreatment significantly prevented Ox-LDL-induced overproduction of NO and O2*- (P<0.01), indicating that antioxidant may be more effective in therapeutic application than iNOS inhibitor in dysfunction of ROS/RNS. By demonstrating a complex imbalance of ROS/RNS via fluorescent probes in acute exposure of single cell to Ox-LDL, oxidative/nitrosative stress might be more detected in the early atherosclerotic lesions.  相似文献   

19.
Treatment of microsomes (preferably enriched with endoplasmic reticulum) isolated from bovine pulmonary artery smooth muscle tissue with the O2*- -generating system (hypoxanthine (HPX) plus xanthine oxidase (XO)), markedly stimulated matrix metalloproteinase-2 (MMP-2) activity and also enhanced Ca2+ ATPase activity and ATP-dependent Ca2+ uptake. Pretreatment with superoxide dismutase (SOD) and tissue inhibitor of metalloproteinase (TIMP-2) (50 microg ml(-1)), preserved the increase in MMP-2 activity, Ca2+ ATPase activity and also ATP-dependent Ca2+ uptake in the microsomes. In contrast, Na+-dependent Ca2+ uptake in the microsomes was found to be inhibited by the O2*- - generating system. Additionally, O2*- -induced inhibition of Na+-dependent Ca2+ uptake was reversed by SOD and TIMP-2 (50 microg ml(-1)). Electron microscopy revealed that treatment with the O2*- -generating system did not cause any noticeable damage to the microsomes. O2*- -induced changes in MMP-2 activity, ATP-dependent Ca2+ uptake and Na+-dependent Ca2+ uptake, were not reversed upon pretreatment of the microsomes with a low dose (5 microg ml(-1)) of TIMP-2 which, on the contrary, reversed MMP-2 (1 microg ml(-1))-mediated alteration on these parameters. The inhibition of Na+-dependent Ca2+ uptake by O2*- and MMP-2, overpowered the stimulation of ATP-dependent Ca2+ uptake in the microsomes. Treatment of TIMP-2 (5 microg ml(-1)) with the O2*- -generating system abolished the inhibitory effect of TIMP-2 (5 microg ml(-1)) on MMP-2 (1 microg ml(-1)) (measured by (14)C-gelatin degradation). Overall, the present study suggests that O2*- inactivated TIMP-2, the ambient inhibitor of MMP-2, leading to activation of the ambient proteinase, MMP-2, which subsequently stimulated Ca2+ ATPase activity and ATP-dependent Ca2+ uptake, but inhibited Na+-dependent Ca2+ uptake, resulting in a marked decrease in Ca2+ uptake in the smooth muscle microsomes.  相似文献   

20.
Pedilanthus tithymaloides (L.) Poit. (Euphorbiaceae) is a low tropical American shrub with a reported wide range of healing properties such as emetic, anti-inflammatory, antibiotic, antiseptic, antihemorrhagic, antiviral, antitumoral, and abortive. In the present study, a tincture from P. tithymaloides collected in Cuba was evaluated for its in vivo anti-inflammatory activity, using the rat paw oedema assay, and for its in vitro scavenging effects on reactive oxygen species (ROS) (HO*, O2*-, HOCl, ROO* and H2O2), reactive nitrogen species (RNS) (ONOO- and *NO), and DPPH* radical. The protein, free amino acid, and phenolic contents of the tincture were also determined. Pertaining to the anti-inflammatory activity, the intraperitoneal administration of the tincture inhibited carrageenan-induced rat paw oedema, whereas in the scavenging assays the tincture showed to be effective against all the assayed ROS and RNS, specially for HO* (IC50 = 345+/-77 microg/mL), O2*- (IC50 = 143+/-7 microg/mL), HOCl (IC50 = 113+/-20 microg/mL), ONOO- (IC50 = 44+/-3 microg/mL), and *NO (IC50 = 54+/-4 microg/mL), but displayed weak activity in the DPPH* assay. The protein content of the tincture was 0.70%, and twenty free amino acids were identified and quantified. The content of total phenolics was 17.4+/-0.15 mg of gallic acid equivalents (GAE)/g dry material. These results provide scientific support for the empirical use of P. tithymaloides tincture as an anti-inflammatory medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号