首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A comparison of a series of extended molecular dynamics (MD) simulations of bacteriophage T4 lysozyme in solvent with X-ray data is presented. Essential dynamics analyses were used to derive collective fluctuations from both the simulated trajectories and a distribution of crystallographic conformations. In both cases the main collective fluctuations describe domain motions. The protein consists of an N- and C-terminal domain connected by a long helix. The analysis of the distribution of crystallographic conformations reveals that the N-terminal helix rotates together with either of these two domains. The main domain fluctuation describes a closure mode of the two domains in which the N-terminal helix rotates concertedly with the C-terminal domain, while the domain fluctuation with second largest amplitude corresponds to a twisting mode of the two domains, with the N-terminal helix rotating concertedly with the N-terminal domain. For the closure mode, the difference in hinge-bending angle between the most open and most closed X-ray structure along this mode is 49 degrees. In the MD simulation that shows the largest fluctuation along this mode, a rotation of 45 degrees was observed. Although the twisting mode has much less freedom than the closure mode in the distribution of crystallographic conformations, experimental results suggest that it might be functionally important. Interestingly, the twisting mode is sampled more extensively in all MD simulations than it is in the distribution of X-ray conformations. Proteins 31:116–127, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
The Legionella virulence factor Mip (macrophage infectivity potentiator) contributes to bacterial dissemination within infected lung tissue. The Mip protein, which belongs to the enzyme family of FK506-binding proteins (FKBP), binds specifically to collagen IV. We identified a surface-exposed Mip-binding sequence in the NC1 domain of human collagen IV α1. The corresponding collagen IV-derived peptide (P290) co-precipitated with Mip and competitively inhibited the Mip-collagen IV binding. Transmigration of Legionella pneumophila across a barrier of NCI-H292 lung epithelial cells and extracellular matrix was efficiently inhibited by P290. This significantly reduced transmigration was comparable to the inefficient transmigration of PPIase-negative Mip mutant or rapamycin-treated L. pneumophila. Based on NMR data and docking studies a model for the mode of interaction of P290 and Mip was developed. The amino acids of the hydrophobic cavity of Mip, D142 and to a lesser extent Y185 were identified to be part of the interaction surface. In the complex structure of Mip(77-213) and P290, both amino acid residues form hydrogen bonds to P290. Utilizing modelling, molecular dynamics (MD) simulations and structural data of human PPIase FKBP12, the most related human orthologue of Mip, we were able to propose optimized P290 variants with increased binding specificity and selectivity for the putative bacterial drug target Mip.  相似文献   

3.
4.
During bacterial DNA replication, the DnaG primase interacts with the hexameric DnaB helicase to synthesize RNA primers for extension by DNA polymerase. In Escherichia coli, this occurs by transient interaction of primase with the helicase. Here we demonstrate directly by surface plasmon resonance that the C-terminal domain of primase is responsible for interaction with DnaB6. Determination of the 2.8-angstroms crystal structure of the C-terminal domain of primase revealed an asymmetric dimer. The monomers have an N-terminal helix bundle similar to the N-terminal domain of DnaB, followed by a long helix that connects to a C-terminal helix hairpin. The connecting helix is interrupted differently in the two monomers. Solution studies using NMR showed that an equilibrium exists between a monomeric species with an intact, extended but naked, connecting helix and a dimer in which this helix is interrupted in the same way as in one of the crystal conformers. The other conformer is not significantly populated in solution, and its presence in the crystal is due largely to crystal packing forces. It is proposed that the connecting helix contributes necessary structural flexibility in the primase-helicase complex at replication forks.  相似文献   

5.
Molecular dynamics (MD) simulations (5-10ns in length) and normal mode analyses were performed for the monomer and dimer of native porcine insulin in aqueous solution; both starting structures were obtained from an insulin hexamer. Several simulations were done to confirm that the results obtained are meaningful. The insulin dimer is very stable during the simulation and remains very close to the starting X-ray structure; the RMS fluctuations calculated from the MD simulation agree with the experimental B-factors. Correlated motions were found within each of the two monomers; they can be explained by persistent non-bonded interactions and disulfide bridges. The correlated motions between residues B24 and B26 of the two monomers are due to non-bonded interactions between the side-chains and backbone atoms. For the isolated monomer in solution, the A chain and the helix of the B chain are found to be stable during 5ns and 10ns MD simulations. However, the N-terminal and the C-terminal parts of the B chain are very flexible. The C-terminal part of the B chain moves away from the X-ray conformation after 0.5-2.5ns and exposes the N-terminal residues of the A chain that are thought to be important for the binding of insulin to its receptor. Our results thus support the hypothesis that, when monomeric insulin is released from the hexamer (or the dimer in our study), the C-terminal end of the monomer (residues B25-B30) is rearranged to allow binding to the insulin receptor. The greater flexibility of the C-terminal part of the beta chain in the B24 (Phe-->Gly) mutant is in accord with the NMR results. The details of the backbone and side-chain motions are presented. The transition between the starting conformation and the more dynamic structure of the monomers is characterized by displacements of the backbone of Phe B25 and Tyr B26; of these, Phe B25 has been implicated in insulin activation.  相似文献   

6.
Kong Y  Karplus M 《Proteins》2009,74(1):145-154
PDZ domains are found in many signaling proteins. One of their functions is to provide scaffolds for forming membrane-associated protein complexes by binding to the carboxyl termini of their partners. PDZ domains are thought also to play a signal transduction role by propagating the information that binding has occurred to remote sites. In this study, a molecular dynamics (MD) simulation-based approach, referred to as an interaction correlation analysis, is applied to the PDZ2 domain to identify the possible signal transduction pathways. A residue correlation matrix is constructed from the interaction energy correlations between all residue pairs obtained from the MD simulations. Two continuous interaction pathways, starting at the ligand binding pocket, are identified by a hierarchical clustering analysis of the residue correlation matrix. One pathway is mainly localized at the N-terminal side of helix alpha1 and the adjacent C-terminus of loop beta1-beta2. The other pathway is perpendicular to the central beta-sheet and extends toward the side of PDZ2 domain opposite to the ligand binding pocket. The results complement previous studies based on multiple sequence analysis, NMR, and MD simulations. Importantly, they reveal the energetic origin of the long-range coupling. The PDZ2 results, as well as the earlier rhodopsin analysis, show that the interaction correlation analysis is a robust approach for determining pathways of intramolecular signal transduction.  相似文献   

7.
Recent advances in the experimentally determined structures and dynamics of the domains within LacI provide a rare context for evaluating dynamics calculations. A 1500-ps trajectory was simulated for a variant of the LacI DNA-binding domain, which consists of the first three helices in LacI and the hinge helix of the homologous PurR. Order parameters derived from dynamics simulations are compared to those obtained for the LacI DNA-binding domain with 15N relaxation NMR spectroscopy (Slijper et al., 1997. Biochemistry. 36:249-254). The MD simulations suggest that the unstructured loop between helices II and III does not exist in a discrete state under the conditions of no salt and neutral pH, but occupies a continuum of states between the DNA-bound and free structures. Simulations also indicate that the unstructured region between helix III and the hinge helix is very mobile, rendering motions of the hinge helix essentially independent of the rest of the protein. Finally, the alpha-helical hydrogen bonds in the hinge helix are broken after 1250 ps, perhaps as a prelude to helix unfolding.  相似文献   

8.
It was shown experimentally that binding of a micelle composed of Congo red molecules to immunological complexes leads to the enhanced stability of the latter, and simultaneously prevents binding of a complement molecule (C1q). The dye binds in a cavity created by the removal of N-terminal polypeptide chain, as observed experimentally in a model system-immunoglobulin G (IgG) light chain dimer. Molecular Dynamics (MD) simulations of three forms of IgG light chain dimer, with and without the dye, were performed to investigate the role of N-terminal fragment and self-assembled ligand in coupling between V and C domains. Root-mean-square distance (RMSD) time profiles show that removal of N-terminal fragment leads to destabilization of V domain. A micelle composed of four self-assembled dye molecules stabilizes and fixes the domain. Analysis of root-mean-square fluctuation (RMSF) values and dynamic cross-correlation matrices (DCCM) reveals that removal of N-terminal fragment results in complete decoupling between V and C domains. Binding of self-assembled Congo red molecules improves the coupling, albeit slightly. The disruption of a small beta-sheet composed of N- and C-terminal fragments of the domain (NC sheet) is the most likely reason for the decoupling. Self-assembled ligand, bound in the place originally occupied by N-terminal fragment, is not able to take over the function of the beta-sheet. Lack of correlation of motions between residues in V and C domains denotes that light chain-Congo red complexes have hampered ability to transmit conformational changes between domains. This is a likely explanation of the lack of complement binding by immunological complexes, which bind Congo red, and supports the idea that the NC sheet is the key structural fragment taking part in immunological signal transduction.  相似文献   

9.
Time-correlated atomic motions were used to characterize protein domain boundaries from atomic coordinates generated by molecular dynamics simulations. A novel application of the dynamical cross-correlation matrix (DCCM) analysis tool was used to help identify putative protein domains. In implementing this new approach, several DCCM maps were calculated, each using a different coordinate reference frame from which protein domain boundaries and protein domain residue constituents could be identified. Cytochrome P450BM-3, from Bacillus megaterium, was used as the model protein in this study. The analyses indicated that the simulated protein comprises three distinct domain regions; in contrast, only two protein domains were identified in the original crystal structure report. Specifically, the DCCM analyses showed that the F-G helix region was a separate domain entity and not a part of the alpha domain, as previously designated. The simulations demonstrated that the domain motions of the F-G helix region effected both the size and shape of the enzyme active site, and that the dynamics of the F-G helix domain could possibly control access of substrate to the binding pocket.  相似文献   

10.
We used molecular dynamics simulation to evaluate the association properties of C-terminal sterile alpha-motif (SAM) domain of human p73alpha. To test the dimerization propensity of this structure we carried out four simulations: EphB2 X-ray dimer, p73 modeled dimer, p73 NMR monomer, and p73 modeled monomer with an elongated helix 5. The results show a direct interaction between helix 5 and helix 3 since a conformational collapse of helix 3 is observed when dimer contact and/or an elongation of helix 5 is introduced by modeling in p73 SAM domain. On the basis of these results we suggest that the recognition properties of the SAM domains may be modulated by the conformational state of helix 5.  相似文献   

11.
As time- and ensemble-averaged measures, NMR observables contain information about both protein structure and dynamics. This work represents a computational study to extract such information for membrane proteins from orientation-dependent NMR observables: solid-state NMR chemical shift anisotropy and dipolar coupling, and solution NMR residual dipolar coupling. We have performed NMR-restrained molecular dynamics simulations to refine the structure of the membrane-bound form of Pf1 coat protein in explicit lipid bilayers using the recently measured chemical shift anisotropy, dipolar coupling, and residual dipolar coupling data. From the simulations, we have characterized detailed protein-lipid interactions and explored the dynamics. All simulations are stable and the NMR restraints are well satisfied. The C-terminal transmembrane (TM) domain of Pf1 finds its optimal position in the membrane quickly (within 6 ns), illustrating efficient solvation of TM domains in explicit bilayer environments. Such rapid convergence also leads to well-converged interaction patterns between the TM helix and the membrane, which clearly show the interactions of interfacial membrane-anchoring residues with the lipids. For the N-terminal periplasmic helix of Pf1, we identify a stable, albeit dynamic, helix orientation parallel to the membrane surface that satisfies the amphiphatic nature of the helix in an explicit lipid bilayer. Such detailed information cannot be obtained solely from NMR observables. Therefore, the present simulations illustrate the usefulness of NMR-restrained MD refinement of membrane protein structure in explicit membranes.  相似文献   

12.
Bcr-Abl, a nonreceptor tyrosine kinase, is associated with leukemias, especially chronic myeloid leukemia (CML). Deletion of Abl's N-terminal region, to which myristoyl is linked, renders the Bcr-Abl fusion oncoprotein constitutively active. The substitution of Abl's N-terminal region by Bcr enables Bcr-Abl oligomerization. Oligomerization is critical: it promotes clustering on the membrane, which is essential for potent MAPK signaling and cell proliferation. Here we decipher the Bcr-Abl specific, step-by-step oligomerization process, identify a specific packing surface, determine exactly how the process is structured and identify its key elements. Bcr's coiled coil (CC) domain at the N-terminal controls Bcr-Abl oligomerization. Crystallography validated oligomerization via Bcr-Abl dimerization between two Bcr CC domains, with tetramerization via tight packing between two binary assemblies. However, the structural principles guiding Bcr CC domain oligomerization are unknown, hindering mechanistic understanding and drugs exploiting it. Using molecular dynamics (MD) simulations, we determine that the binary complex of the Bcr CC domain serves as a basic unit in the quaternary complex providing a specific surface for dimer–dimer packing and higher-order oligomerization. We discover that the small α1-helix is the key. In the binary assembly, the helix forms interchain aromatic dimeric packing, and in the quaternary assembly, it contributes to the specific dimer–dimer packing. Our mechanism is supported by the experimental literature. It offers the key elements controlling this process which can expand the drug discovery strategy, including by Bcr CC-derived peptides, and candidate residues for small covalent drugs, toward quenching oligomerization, supplementing competitive and allosteric tyrosine kinase inhibitors.  相似文献   

13.
NMR studies of the antiapoptotic protein survivin have been used to determine the homodimer interface of the protein in solution and to identify residues of the protein that interact with Smac/Diablo. In solution, survivin(1-120) forms a bow-tie-shaped dimer whose interface is composed of its N-terminal residues as well as residues connecting its BIR domain to the C-terminal alpha helix. The solution structure resolves the controversy regarding the two possible dimer interfaces for survivin observed in X-ray crystal structures. The structural basis for the interaction between survivin and Smac/Diablo was also investigated. When Smac/Diablo or N-terminal Smac/Diablo peptide analogues are added to a solution of survivin, specific residues near alpha4 and beta3 are perturbed. NMR experiments indicate that the peptides bind across the third beta-strand of survivin in a manner similar to the way Smac/Diablo peptides bind to the BIR3 domain of X-linked IAP (XIAP).  相似文献   

14.
As time- and ensemble-averaged measures, NMR observables contain information about both protein structure and dynamics. This work represents a computational study to extract such information for membrane proteins from orientation-dependent NMR observables: solid-state NMR chemical shift anisotropy and dipolar coupling, and solution NMR residual dipolar coupling. We have performed NMR-restrained molecular dynamics simulations to refine the structure of the membrane-bound form of Pf1 coat protein in explicit lipid bilayers using the recently measured chemical shift anisotropy, dipolar coupling, and residual dipolar coupling data. From the simulations, we have characterized detailed protein-lipid interactions and explored the dynamics. All simulations are stable and the NMR restraints are well satisfied. The C-terminal transmembrane (TM) domain of Pf1 finds its optimal position in the membrane quickly (within 6 ns), illustrating efficient solvation of TM domains in explicit bilayer environments. Such rapid convergence also leads to well-converged interaction patterns between the TM helix and the membrane, which clearly show the interactions of interfacial membrane-anchoring residues with the lipids. For the N-terminal periplasmic helix of Pf1, we identify a stable, albeit dynamic, helix orientation parallel to the membrane surface that satisfies the amphiphatic nature of the helix in an explicit lipid bilayer. Such detailed information cannot be obtained solely from NMR observables. Therefore, the present simulations illustrate the usefulness of NMR-restrained MD refinement of membrane protein structure in explicit membranes.  相似文献   

15.
Bovine pancreatic ribonuclease (RNase A) forms two 3-dimensional domain-swapped dimers with different quaternary structures. One dimer is characterized by the swapping of the C-terminal region (C-Dimer) and presents a rather loose structure. The other dimer (N-Dimer) exhibits a very compact structure with exchange of the N-terminal helix. Here we report the results of a molecular dynamics/essential dynamics (MD/ED) study carried out on the N-Dimer. This investigation, which represents the first MD/ED analysis on a three-dimensional domain-swapped enzyme, provides information on the dynamic properties of the active site residues as well as on the global motions of the dimer subunits. In particular, the analysis of the flexibility of the active site residues agrees well with recent crystallographic and site-directed mutagenesis studies on monomeric RNase A, thus indicating that domain swapping does not affect the dynamics of the active sites. A slight but significant rearrangement of N-Dimer quaternary structure, favored by the formation of additional hydrogen bonds at subunit interface, has been observed during the MD simulation. The analysis of collective movements reveals that each subunit of the dimer retains the functional breathing motion observed for RNase A. Interestingly, the breathing motion of the two subunits is dynamically coupled, as they open and close in phase. These correlated motions indicate the presence of active site intercommunications in this dimer. On these bases, we propose a speculative mechanism that may explain negative cooperativity in systems preserving structural symmetry during the allosteric transitions.  相似文献   

16.
Tan YS  Fuentes G  Verma C 《Proteins》2011,79(6):1715-1727
Pantothenate synthetase (PS) catalyzes the final step of the pantothenate pathway, in which pantothenate is formed from pantoate and β-alanine in an ATP-dependent reaction. Mycobacterium tuberculosis PS (MTB PS) is functionally a dimer and a potential target for novel antitubercular drugs. Molecular dynamics simulations show that the functional dynamics of the enzyme are dominated by motions of a flexible gate loop in the N-terminal domain and of the C-terminal domain. The gate loop motions dominate in MTB PS while the C-terminal domain motion dominates in Escherichia coli PS. Simulations also show that the correlated motions of the domains are severely compromised in the monomeric forms. Mutations that reduce the mobility of the gate loop in MTB PS and increased it in E. coli PS were designed and validated through simulations.  相似文献   

17.
Bending of the calmodulin central helix: a theoretical study.   总被引:5,自引:2,他引:3  
The crystal structure of calcium-calmodulin (CaM) reveals a protein with a typical dumbbell structure. Various spectroscopic studies have suggested that the central linker region of CaM, which is alpha-helical in the crystal structure, is flexible in solution. In particular, NMR studies have indicated the presence of a flexible backbone between residues Lys 77 and Asp 80. This flexibility is related directly to the function of the protein because it enables the N- and C-terminal domains of the protein to move toward each other and bind to the CaM-binding domain of a target protein. We have investigated the flexibility of the CaM central helix by a variety of computational techniques: molecular dynamics (MD) simulations, normal mode analysis (NMA), and essential dynamics (ED) analysis. Our MD results reproduce the experimentally determined location of the bend in a simulation of only the CaM central helix, indicating that the bending point is an intrinsic property of the alpha-helix, for which the remainder of the protein is not important. Interestingly, the modes found by the ED analysis of the MD trajectory are very similar to the lowest frequency modes from the NM analysis and to modes found by an ED analysis of different structures in a set of NMR structures. Electrostatic interactions involving residues Arg 74 and Asp 80 seem to be important for these bending motions and unfolding, which is in line with pH-dependent NMR and CD studies.  相似文献   

18.
EnvZ, a dimeric transmembrane histidine kinase, belongs to the family of His-Asp phosphorelay signal transduction systems. The cytoplasmic kinase domain of EnvZ can be dissected into two independently functioning domains, A and B, whose NMR solution structures have been individually determined. Here, we examined the topological arrangement of these two domains in the EnvZ dimer, a structure that is key to understanding the mechanism underlying the autophosphorylation activity of the kinase. A series of cysteine substitution mutants were constructed to test the feasibility of chemical crosslinking between the two domains. These crosslinking data demonstrate that helix I of domain A of one subunit in the EnvZc dimer is in close proximity to domain B of the other subunit in the same dimer, while helix II of domain A of one subunit interacts with domain B of the same subunit in the EnvZc dimer. This is the first demonstration of the topological arrangement between the central dimerization domain containing the active center His residues (domain A) and the ATP-binding catalysis assisting domain (domain B) in a class I histidine kinase.  相似文献   

19.
Piserchio A  Fellows A  Madden DR  Mierke DF 《Biochemistry》2005,44(49):16158-16166
The association of the cystic fibrosis transmembrane regulator (CFTR) with two PDZ-containing molecular scaffolds (CAL and EBP50) plays an important role in CFTR trafficking and membrane maintenance. The CFTR-molecular scaffold interaction is mediated by the association of the C-terminus of the transmembrane regulator with the PDZ domains. Here, we characterize the structure and dynamics of the PDZ of CAL and the complex formed with CFTR employing high-resolution NMR. On the basis of NMR relaxation data, the alpha2 helix as well as the beta2-beta3 loop of CAL PDZ domain undergoes rapid dynamics. Molecular dynamics simulations suggest a concerted motion between the alpha2 helix and the beta1-beta2 and beta2-beta3 loops, elements which define the binding pocket, suggesting that dynamics may play a role in PDZ-ligand specificity. The C-terminus of CFTR binds to CAL with the final four residues (-D(-)(3)-T-R-L(0)) within the canonical PDZ-binding motif, between the beta2 strand and the alpha2 helix. The R(-)(1) and D(-)(3) side chains make a number of contacts with the PDZ domain; many of these interactions differ from those in the CFTR-EBP50 complex, suggesting sites that can be targeted in the development of PDZ-selective inhibitors that may help modulate CFTR function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号