首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunoreactivity to cockroach Diploptera punctata allatostatin-7 (Dippu AST-7) has been demonstrated previously in axons innervating the corpora allata of the termite Reticulitermes flavipes. This peptide and Dippu AST-11 inhibited juvenile hormone (JH) synthesis by corpora allata (CA) of brachypterous neotenic reproductives (secondary reproductives) of termites. The present study shows that R. flavipes CA are also inhibited by Dippu AST-2, AST-5, AST-8, and AST-9 at approximately the same rank order of potency as demonstrated in D. punctata. Another allatostatin from Periplaneta americana (Peram AST-12) also inhibits JH synthesis by R. flavipes CA. Sensitivity to the allatostatins is higher in glands with low rates of JH synthesis than in those with relatively high JH synthetic rates as has been demonstrated in CA from male and female secondary reproductives as well as in those from non-egg-laying and egg-laying females. The identical inhibitory effects of R. flavipes brain extract on CA from both D. punctata and R. flavipes and the isolation and identification of five cockroach allatostatins (Dippu AST-1, AST-2, AST-5, AST-8, and Peram AST-12) from termite brain extract reflect the close relationship between cockroaches and termites.  相似文献   

2.
Elliott KL  Chan KK  Teesch L  Clor O  Stay B 《Peptides》2009,30(3):495-506
The allatostatins (ASTs), with a Tyr/Phe-Xaa-Phe-Gly-Leu/Ile-amide C-terminus, are neuropeptides that occur in many orders of insects, but are known to inhibit juvenile hormone (JH) synthesis by corpora allata (CA) only in cockroaches, crickets, and termites. 5 AST peptides with similar sequences to those of 6 species of cockroaches have been isolated and sequenced from extract of brain tissue of the termite Reticulitermes flavipes. The amino acid sequence of a 6th peptide, R. flavipes AST-7, determined by LC-MS/MS following HPLC fractionation of brain extract, is S-P-S-S-G-N-Q-R-L-Y-G-F-G-L-NH(2). The 8 terminal amino acids are identical to AST-7 of the cockroach Diploptera punctata. R. flavipes and D. punctata AST-7s inhibited JH synthesis by CA of both species equally and their affinity for antibody against D. punctata AST-7 is similar. Immunoreactivity of termite tissue with this antibody indicates neuro- and myomodulatory activity of the peptide in addition to its demonstrated allatostatic function. The density of AST immunostaining in axons within the CA of R. flavipes and the rate of JH synthesis by similar glands were negatively correlated. This is evidence that when AST is abundant in the glands it is being released in vivo to limit JH production.  相似文献   

3.
Allatostatins are a family of neuropeptides first isolated from the cockroach, Diploptera punctata, that inhibit juvenile hormone production in that species (but do not do so in earwigs), and inhibit hindgut muscle contractions in some insects, including the earwig, Euborellia annulipes. We examined whether material from earwig brains is similar to cockroach allatostatins biochemically, immunologically and physiologically. Brain extracts from adult female earwigs were separated by high performance liquid chromatography (HPLC), followed by radioimmunoassay using antibodies to cockroach allatostatin (Dip-AST). Fractions that co-eluted with cockroach allatostatins were immunoreactive, and at least two peaks of immunoreactivity were detected. Material from each peak at 10 nM Dip-AST equivalents inhibited juvenile hormone biosynthesis in vitro by corpora allata of 2-day virgin D. punctata cockroaches; 1 nM was less effective, and non-immunoreactive fractions failed to inhibit juvenile hormone biosynthesis. Both crude and Sep-Pak (Waters) purified extracts of brains of earwigs containing 1 nM Dip-AST equivalents failed to suppress hindgut contractions in vitro of 2-day earwigs and of brooding female earwigs. In contrast, 1 nM cockroach allostatin 1 (Dip-AST 7) reversibly inhibited hindgut contractions in vitro. These results suggested the presence of another brain factor, such as proctolin, that counteracts the inhibitory effects of Dip-AST. In support of this hypothesis, proctolin stimulated hindgut contractions in vitro at 1 nM; the effects of equal concentrations of allatostatin and proctolin varied with the stage of the female. Furthermore, HPLC-separated fractions that co-eluted with cockroach allatostatin and were immunoreactive with antibodies to Dip-AST suppressed hindgut contractions in vitro of 2-day female earwigs. Finally, crude brain extracts of earwigs suppressed earwig juvenile hormone biosynthesis in vitro in glands of low, but not in glands of high, activity. Thus, earwig brain extract after HPLC separation has Dip-AST-like material that inhibits cockroach corpora allata and suppresses earwig hindgut contractions. Sep-Pak-extracted earwig brain material, however, does not inhibit earwig gut contraction. Although synthetic Dip-AST 7 does not inhibit juvenile hormone synthesis by earwig corpora allata, there is heat-stable material in earwig brain extract that does have this action.  相似文献   

4.
Methanolic brain extracts of Locusta migratoria inhibit in vitro juvenile hormone biosynthesis in both the locust L. migratoria and the cockroach Diploptera punctata. A polyclonal antibody against allatostatin-5 (AST-5) (dipstatin-2) of this cockroach was used to immunolocalize allatostatin-5-like peptides in the central nervous system of the locusts Schistocerca gregaria and L. migratoria and of the fleshfly Neobellieria bullata. In both locust species, immunoreactivity was found in many cells and axons of the brain-retrocerebral complex, the thoracic and the abdominal ganglia. Strongly immunoreactive cells were stained in the pars lateralis of the brain with axons (NCC II and NCA I) extending to and arborizing in the corpus cardiacum and the corpora allata. Although many neurosecretory cells of the pars intercerebralis project into the corpus cardiacum, only 12 of them were immunoreactive and the nervi corporis cardiaci I (NCC I) and fibers in the nervi corporis allati II (NCA II) connecting the corpora allata to the suboesophageal ganglion remained unstained. S. gregaria and L. migratoria seem to have an allatostatin-like neuropeptide present in axons of the NCC II and the NCA I leading to the corpus cardiacum and the corpora allata. All these data suggest that in locusts allatostatin-like neuropeptides might be involved in controlling the production of juvenile hormone by the corpora allata and, perhaps, some aspects of the functioning of the corpus cardiacum as well. However, when tested in a L. migratoria in-vitro juvenile hormone-biosynthesis assay, allatostatin-5 did not yield an inhibitory or stimulatory effect. There is abundant AST-5 immunoreactivity in cell bodies of the fleshfly N. bullata, but none in the CA-CC complexes. Apparently, factors that are immunologically related to AST-5 do occur in locusts and fleshflies but, the active protion of the peptide required to inhibit JH biosynthesis in locusts is probably different from that of AST-5.  相似文献   

5.
A radiochemical assay measuring juvenile hormone synthesis by corpora allata incubated in vitro was adapted for use with the termite Zootermopsis angusticollis. Corpora allata from 3–4-day old virgin female neotenic reproductives were used in these studies because this caste showed the highest rates of juvenile hormone synthesis (0.6 pmol h?1 per pair corpora allata). Juvenile hormone-III synthesis was linear for up to 6 h over the range of concentrations of labelled l-methionine from 27–280 μM. Rates of juvenile hormone synthesis were stimulated up to 10-fold in a dose-dependent manner by the addition of farnesoic acid to the incubation medium. However, the relatively high concentration of 120 μM farnesoic acid reduced the rates of juvenile hormone synthesis. The radiochemical assay was used to determine rates of juvenile hormone synthesis in vitro by corpora allata from larvae with a queen and king vs orphaned larvae. The presence of reproductives resulted in a suppression of larval corpus allatum activity relative to orphaned controls.  相似文献   

6.
Juvenile hormone synthesis by corpora allata is regulated partly by allatostatin containing nerves from the brain that innervate the corpora cardiaca and the corpora allata. To investigate whether NO also participates in the regulation of juvenile hormone synthesis, antibody against NO synthase and the histochemical test for NADPH diaphorase activity, a marker for NO synthase, were applied to the corpora cardiaca-corpora allata of Diploptera punctata. Strong NADPH diaphorase activity occurred in corpus allatum cells but not in nerve fibers in the corpora allata or corpora cardiaca. In contrast, NO immunoreactivity occurred in nerves in the corpora cardiaca but not within the corpora allata. NO and allatostatin were not colocalized. NO synthase and NADPH diaphorase activity were localized in similar areas of the subesophageal ganglion and cells in the pars intercerebralis of the brain. Positive correlation of the quantity of NADPH diaphorase activity with juvenile hormone synthesis during the gonadotrophic cycle and lack of such correlation in subesophageal ganglia suggest that NADPH diaphorase activity reflects the necessity of NADPH in the pathway of juvenile hormone synthesis. These data suggest that NO is unlikely to play a significant role in the regulation of the corpora allata.  相似文献   

7.
Stay B  Zhang JR  Kwok RD  Tobe SS 《Peptides》2003,24(10):1501-1510
The distribution of FMRFamide immunoreactivity in the brain-retrocerebral complex of adult female Diploptera punctata was examined. Immunoreactivity was observed in the brain and corpus allatum as well as in the corpus cardiacum. Immunoreactivity co-localized with allatostatin immunoreactivity within several lateral neurosecretory cells of the brain and in their endings within the corpus allatum. By in vitro radiochemical assay of juvenile hormone release, the effect of two native D. punctata RFamides, an FLRFamide (Leucomyosuppressin) and an FIRFamide were examined. The latter, for which the sequence (SKPANFIRFamide) is reported here, stimulated juvenile hormone release but acted only on corpora allata from females at the end of vitellogenesis (day 6). The interaction of these two RFamides and three D. punctata allatostatins, Dippu-AST 2, 5, and 7 were similarly examined. Only Dippu-AST 2 stimulated release of RFamides from the corpora allata and only on day 6 whereas both RFamides were able to attenuate the inhibitory activity of Dippu-AST 2.  相似文献   

8.
YXFGL-NH(2) family allatostatins (ASTs) were isolated from cockroach brain extracts based on their capacity to inhibit juvenile hormone (JH) biosynthesis in corpora allata (CA) incubated in vitro. Subsequently, the inhibitory activity of synthetic ASTs was demonstrated experimentally, although these peptides were shown to be active as JH inhibitors only in cockroaches, crickets, and termites. Here, we sought to examine whether ASTs are true physiological regulators of JH synthesis. To this end, we used RNA interference methodologies and the cockroach Blattella germanica as a model. Treatments with double-stranded RNA targeting the allatostatin gene in females of B. germanica produced a rapid and long-lasting reduction in mRNA and peptide levels in both brain and midgut during the reproductive cycle. Nevertheless, while brain AST levels were reduced approximately 70-80%, JH synthesis did not increase in any of the age groups tested.  相似文献   

9.
The presence of allatostatins in the nerves of the antennal pulsatile organ muscle of the cockroach Diploptera punctata was confirmed by immunocytochemistry, bioassay, and HPLC. Immunocytochemical reactivity with monoclonal antibody against allatostatin I showed strong allatostatin immunoreactivity in the antennal heart nerve which innervates this muscle with varicosities along the muscle fibers and in the insertion of the muscle on the pulsatile ampullae. Bioassay of Sep-Pak purified muscle extract demonstrated inhibition of juvenile hormone synthesis by corpora allata in vitro. A dose-response curve showed maximum inhibition of juvenile hormone synthesis was achieved with 10-20 pulsatile organ muscle eq/corpora allata, and 50% inhibition achieved with an estimated 2.6 pulsatile organ muscle eq. Two successive HPLC separations of the Sep-Pak purified extract yielded bioactive fractions corresponding to the elution times of the five known allatostatins.  相似文献   

10.
Juvenile hormone synthesis by adult female corpora allata was inhibited following implantation into final-larval-instar males; inhibition was prevented by decapitation of the larval hosts on day 11 (prior to the head critical period for moulting), but not by decapitation on day 13. Implantation of one larval protocerebrum restored inhibition of implanted corpora allata, demonstrating that the brain releases an inhibitory factor. Corpora allata implanted into larvae decapitated on day 11 were inhibited by injections of 20-hydroxyecdysone. Since treatment of corpora allata with 20-hydroxyecdysone in vitro did not inhibit juvenile hormone synthesis, ecdysteroids probably act indirectly on the corpora allata. Juvenile hormone synthesis and haemolymph ecdysteroid concentration were measured following implantation of corpora allata along with two larval brains into larval hosts. Brain implantation did not affect ecdysteroid concentration, but did inhibit juvenile hormone synthesis, even in animals with low haemolymph ecdysteroid concentration. Incubation with farnesoic acid stimulated juvenile hormone synthesis by corpora allata from males early in the final larval stadium, but not after day 8, showing that one of the final two reactions of juvenile hormone synthesis is rate-limiting in larval corpora allata at this stage. Adult female corpora allata which had been humorally inhibited by implantation into larvae were stimulated by farnesoic acid.  相似文献   

11.
Adult mated females of the viviparous cockroach Diploptera punctata are moderately sensitive to precocenes. Oöcyte growth is inhibited and oviposition is delayed in insects topically treated with precocene II or precocene III. C16 juvenile hormone release by corpora allata of precocene-treated insects is markedly inhibited when compared to corpora allata of acetone-treated controls. Electron microscopy of the corpora allata reveals that precocene treatment results in a disorganisation of the intracellular organelles. Topically applied precocene II reaches a high concentration in the haemolymph (0.5 mM 2 hr after topical application of 250 μg). C16 juvenile hormone release by isolated corpora allata is inhibited by precocenes in vitro; half-maximal inhibition over a 3 hr period is obtained at 0.4 mM precocene II. In vitro inhibition of corpora allata by precocene II concentrations higher than 1 mM rapidly destroys the glands as evidenced by electron microscopy (total disintegration of cellular organelles) and by the virtual cessation of C16 juvenile hormone synthesis by the corpora allata. Inhibition of C16 juvenile hormone release by precocene is time-dependent and is not reversible over the short-term incubation in vitro. This inhibition does not appear to be related to the spontaneous activity of the glands in vitro, and it can be reduced by two epoxidase inhibitors. Precocenes are pro-allatocidins in this species: they are bioactivated within the corpora allata to cytotoxic epoxides.  相似文献   

12.
13.
Retrograde and orthograde labeling of neurons projecting to the corpus allatum was performed in locust, grasshopper, cricket, and cockroach species in order to identify brain neurons that may be involved in the regulation of juvenile hormone production. In the acridid grasshopper Gomphocerus rufus L., and the locusts Locusta migratoria (R.&F.) and Schistocerca gregaria Forskal, the corpora allata are innervated by two morphologically distinguishable types of brain neurons. One group of 9–13 neurons (depending on species) with somata in the pars lateralis extend axons via the nervus corporis cardiaci 2 and nervus corporis allati 1 to the ipsilateral corpus allatum, whereas two cells in each pars lateralis have bilateral projections and innervate both glands. No direct connection between the pars intercerebralis and corpus allatum has been found. In contrast, neurons with paired axons innervating both glands are not present in Periplaneta americana (L.) and Gryllus bimaculatus de Geer. Instead, two cells in each pars lateralis project only to the gland contralateral to their somata. Electrophysiological experiments on acridid grasshoppers have confirmed the existence of a direct conduction pathway between the two glands via the paired axons of four cells that have been identified by neuroanatomy. These cells are not spontaneously active under experimental conditions. Ongoing discharges in the left and right nerves are unrelated, suggesting that the corpora allata receive independent neuronal inputs from the brain.  相似文献   

14.
The synthesis of insect juvenile hormone III (JH III) by isolated corpora allata of the cockroach Diploptera punctata incubated in vitro is inhibited by phorbol 12-myristate 13-acetate (PMA), phorbol 12,13-dibutyrate and 1-oleyl-2-acetylglycerol. 4 alpha-Phorbol 12,13-didecanoate and diolein are inactive. The inhibitory effect of phorbol 12-myristate 13-acetate is fully reversed by 2E,6E-farnesol or by 2E,6E-farnesoic acid. It is highest in corpora allata that are past their peak in secretory activity or that have been inhibited by injections of 20-hydroxyecdysone. This effect of phorbol esters implicates protein kinase C in the regulation of insect corpus allatum activity.  相似文献   

15.
The O-methyltransferase, which is responsible for the methylation of farnesoic acid in the corpora allata of Diploptera punctata, is a cytosolic enzyme. The activity of O-methyltransferase closely parallels JH biosynthesis in last instars and adult females. Because allatostatin 4 (AST 4) from D. punctata and callatostatin 5 (CAST 5) from Calliphora vomitoria can inhibit juvenile hormone biosynthesis, their effects on the activity of O-methyltransferase and epoxidase, the enzymes involved in the final two steps of juvenile hormone biosynthesis, were investigated in vitro. AST 4 can inhibit methyltransferase activity whereas CAST 5 stimulates it. AST 4 inhibits epoxidase activity slightly whereas CAST 5 inhibits it significantly (36%). Treatment of corpora allata with farnesoic acid (40 μM) can reverse the inhibitory effect of AST 4 and CAST 5 on JH release by corpora allata. Thus, allatostatins appear to exert their inhibitory effect on JH biosynthesis at least partially through inhibition of the activity of terminal enzymes. Two biosynthetic pathways for the conversion of farnesoic acid to JH may exist in corpora allata of D. punctata: the predominant pathway is farnesoic acid to methyl farnesoate, then to JH whereas the other, representing about 5–10% of total JH production, is farnesoic acid to JH III acid, then to JH.  相似文献   

16.
SYNOPSIS. Neuropeptides of the insect brain that regulate juvenilehormone synthesis by the corpora allata include allatotropins,stimulatory modulators, and allatostatins, inhibitory modulators.A radiochemical assay for juvenile hormone synthesis by corporaallata in vitro was utilized in the high pressure liquid chromatographicisolation of brain neuropeptides leading to the determinationof their primary structure. Identified are an allatotropin andan allatostatin from a Lepidopteran, Manduca sexta, and a familyof five allatostatins from a Dictyopteran, Diploptera punctata.These neuropeptides are all unique, effective at low concentration(10–10 to 10–8 M), act quickly (within hrs) andappear to be effective only within the same order of insectsas that from which the peptides were isolated. The physiologicalstate of the corpora allata conditions the effectiveness ofthe allatostatins of D. punctata. These neuropeptide regulatorsof corpora allatal function may have multiple regulatory roles.This is indicated for D. punctata allatostatin I by specificreceptors in brain and fat body as well as in corpora allatalmembrane preparations, and also by immunocytochemical localizationof allatostatin I in medial nerve cells that terminate withinthe brain as well as in the lateral neurosecretory cells thatterminate on corpus allatum cells.  相似文献   

17.
In the 1950s, Berta Scharrer predicted that neurosecretions from the brain regulated corpus allatum activity based upon the observation of the change in localization of neurosecretory material in the brain and change in gland activity after severance of nerves between the brain and corpus allatum. Isolation and characterization of neuropeptide regulators of juvenile hormone production by the corpora allata in the late 1980s has confirmed this prediction. Both a stimulatory allatotropin and an inhibitory allatostatin have been isolated from moth brains. Two families of allatostatins, both quite different from each other and that of moths, have been isolated from cockroaches and crickets.The wide distribution of these peptides in the nervous system, in nerves to visceral muscle, in endocrine cells of the midgut and in blood cells, indicate multifunctions in the insects in which they are allatoregulatory. Some of these other functions have been demonstrated in these insects and in insects in which these neuropeptides occur but do not act as corpus allatum regulators. For the latter group, the neuropeptide regulators of the corpora allata have yet to be isolated. The families of neurosecretory regulators will continue to grow.  相似文献   

18.
Summary Neuronal circuits in the brain and retrocerebral complex of the cockroach Diploptera punctata have been mapped immunocytochemically with antisera directed against the extended enkephalin, Met-enkephalin-Arg6-Gly7-Leu8 (Met-8). The pathways link median and lateral neurosecretory cells with the corpus cardiacum/corpus allatum complex. In females, nerve fibres penetrate the corpora allata and varicosities or terminals, immunoreactive to Met-8, surround the glandular cells. Males differ in having almost no Met-8 immunoreactivity in the corpora allata. The corpora cardiaca of both males and females are richly supplied with Met-8 immunoreactive material, in particular in the cap regions immediately adjacent to the corpora allata. A similarity in the amino-acid sequences of Met-8 and the C-terminus of the recently characterised allatostatins of D. punctata suggests that the pathways identified with the Met-8 antisera may be the same as those by which the allatostatins are transported from the brain to the corpus allatum. In comparative studies on the blowfly Calliphora vomitoria, similar neuronal pathways have been identified except that no sexual dimophism with respect to amounts of immunoreactive material within the corpus allatum has been observed. These results suggest a possible homology in the neuropeptide regulation of the gland.  相似文献   

19.
The occurrence of allatostatins in retrocerebral complexes and antennal pulsatile organs of the American cockroach, Periplaneta americana, was investigated. Previously, molecular cloning of the P. americana allatostatin gene had predicted 14 peptides of this family [Ding et al., Comparison of the allatostatin neuropeptide precursors in the distantly related cockroaches Periplaneta americana and Diploptera punctata. Eur J Biochem 1997;234:737-746], however, only two forms had been identified by peptide isolation procedures [Weaver et al., Identification of two allatostatins from the CNS of the cockroach Periplaneta americana: novel members of a family of neuropeptide inhibitors of insect juvenile hormone biosynthesis. Comp Biochem Physiol 1994;107(C):119-127]. Using an extract of only 200 corpora cardiaca/corpora allata, we have found that at least 11 allatostatins occur in the retrocerebral complex. These peptides were already separated from other substances of the crude extract in the first HPLC step with heptafluorobutyric acid as organic modifier, and subsequently identified by MALDI-TOF mass spectrometry. Moreover, we have demonstrated the occurrence of nearly all allatostatins, including the cleavage product of Pea-AST-2 (LPVYNFGL-NH2), in antennal pulsatile organs of males and females. Allatostatins are predominant neuropeptides in these organs. Additionally, only two other known peptides could be identified in these organs by mass screening: proctolin and leucomyosuppressin. The function of allatostatins in antennal pulsatile organs remains unclear. We assume a release into the hemolymph via the ampullac, which could act as neurohemal release sites. The method described for the identification of allatostatins is a very fast method for neuropeptide screening in neurohemal tissues.  相似文献   

20.
Allatostatins are a family of peptides that inhibit the production of juvenile hormone in the cockroach, Diploptera punctata. It is likely that the allatostatin prohormone precursor is processed to give rise to all 13 members of the family simultaneously. All members of the family show potency and efficacy, in terms of their ability to inhibit juvenile hormone production, albeit with dramatically different IC(50) and ED(50) values, ranging from a maximum of 0.014 nM for Dippu-AST 2 to 107 nM for Dippu-AST 1 (ED(50)). The likely occurrence of all 13 peptides in tissues and in haemolymph suggests that they may act in concert to produce physiological effects. We have employed combinations of the allatostatins, including a cocktail of all 13, 12 (minus Dippu-AST 2) and 11 (minus Dippu-AST 2 and 5) as well as mixtures of high and low activity allatostatins (Dippu-AST 5 plus either Dippu-AST 1 or 13) in dose-response studies to examine the possibility of synergistic or additive effects of the peptides on biological activity. None of the peptide combinations yielded evidence of synergistic interactions between allatostatins. However, the data do provide insight into receptor-ligand interactions in cockroaches and suggest the allatostatins regulate JH biosynthesis through a complex mix of differing affinity interactions with receptors in the corpora allata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号