首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 241 毫秒
1.
While the insulin-like growth factor (IGF) system is known to regulate uterine function during the estrous cycle, there are limited data on its role in myometrial growth and development during pregnancy. To address this issue, we defined the expression of the Igf hormones (1 and 2), their binding proteins (Igfbp 1-6), and Igf1r receptor genes in pregnant, laboring, and postpartum rat myometrium by real-time PCR. IGF family genes were differentially expressed throughout gestation. Igf1 and Igfbp1 mRNA levels were upregulated during proliferative phase (Days 6-12) of rat gestation. Igfbp3 gene expression also was elevated in proliferating smooth muscle cells (SMCs) and was highest at the time of transition between proliferative and synthetic phases (Days 12-15). Igfbp6 gene expression profile paralleled plasma progesterone (P4) concentrations, peaking during the synthetic phase (Days 17-19) and decreasing thereafter. Administration of P4 at late pregnancy (starting from Day 20) to maintain elevated plasma P4 concentrations blocked the onset of labor and prevented the fall in Igfbp6 mRNA levels. In contrast, the treatment of pregnant rats with the P4 receptor antagonist RU486 on Day 19 induced preterm labor and the premature decrease of Igfbp6 gene expression. Igfbp2 gene expression was transiently upregulated during the contractile phase of gestation (Days 21-23) solely in the gravid horn of unilaterally pregnant rats, but it was not affected in P4- or RU486-treated animals, supporting a role for mechanical stretch imposed by the growing fetuses. Igfbp5 gene was induced during postpartum involution. Our results suggest the importance of the IGF system in phenotypic and functional changes of myometrial SMCs throughout gestation in preparation for labor.  相似文献   

2.
Myometrial quiescence during pregnancy is maintained by progesterone, which suppresses the expression of labor-associated genes such as connexin 43 (Cx43) and the oxytocin receptor (OTR). Parathyroid hormone-related protein (PTHrP) is a smooth muscle relaxant that inhibits myometrial contractions and therefore may act in synergy with progesterone to maintain myometrial quiescence during late pregnancy. We investigated the possibility that PTHrP, like progesterone, could act to suppress the expression of labor-associated genes. Pregnant rats were treated starting on Day 19 with daily i.p. injections of 100 microg/kg PTHrP (human synthetic fragment 1-34). On Day 22 of gestation, there was a significant reduction in the expression of Cx43 (mRNA and protein) and OTR (mRNA) in the myometrium of PTHrP-treated animals, whereas on Day 23 (labor) the expression of both Cx43 and OTR was unchanged by PTHrP treatment. Treatment of pregnant rats with PTHrP did not affect the time of delivery, concentrations of progesterone in maternal plasma, or levels of c-fos, fra-2, or parathyroid hormone/PTHrP receptor mRNA on any gestational day. Because PTHrP treatment delayed the dramatic increase in the expression of Cx43 and OTR, it may be an important factor in the maintenance of the quiescent state of the myometrium at a time when the concentrations of progesterone in maternal circulation decrease. PTHrP treatment did not prevent the increase in Cx43 and OTR gene expression on Day 23 or the timing of labor, suggesting that the effects of PTHrP signaling are overridden with the onset of labor.  相似文献   

3.
In order to study how adipose conversion affects the extracellular environment, levels of extracellular matrix (ECM) proteins during differentiation were analyzed by 125I-labeled antibody binding to each specific primary antibody. When confluent bovine intramuscular preadipocytes (BIP) were stimulated with adipogenic medium, there was a significant accretion on the cell surface of type I-VI collagens, laminin and fibronectin, compared with undifferentiated cells. The deposition amount of ECM proteins had reached near maximal levels at an early stage of differentiation and lasted throughout the culture. However, the increasing manners were not all the same in these eight proteins. Type V and type VI collagen tended to show a transient decline after the rapid rise at the beginning of stimulation, and fibronectin instead, subsequently decreased. Further analysis by immunocytochemical staining showed that remodeling occurred in type V and VI collagen matrices during this period; extensive fibrillar networks seen at 10 d after stimulation were quite unlike that formed earlier. These specific increases and development of matrix during adipocyte differentiation imply some significance for organizing fat lobules in each ECM proteins, especially type V and VI collagens.  相似文献   

4.
5.
The body wall of hydra (a member of the phylum Cnidaria) is structurally reduced to an epithelial bilayer with an intervening extracellular matrix (ECM). Previous studies have established that cell-ECM interactions are important for morphogenesis and cell differentiation in this simple metazoan. The ECM of hydra is particularly interesting because it represents a primordial form of matrix. Despite progress in our understanding of hydra ECM, we still know little about the nature of hydra collagens. In the current study we provide a molecular, biochemical and functional analysis of a hydra fibrillar collagen that has similarity to vertebrate type I and type II collagens. This fibrillar collagen has been named hydra collagen-I (Hcol-I) because of its structure and because it is the first ECM collagen to be identified in hydra. It represents a novel member of the collagen family. Similar to vertebrate type I and II collagens, Hcol-I contains an N-terminal propeptide-like domain, a triple helical domain containing typical Gly-X-Y repeats and a C-terminal propeptide domain. The overall identity to vertebrate fibrillar collagens is about 30%, while the identity of the C-terminal propeptide domain is 50%. Because the N-terminal propeptide domain is retained after post-translational processing, Hcol-I does not form thick fibers as seen in vertebrates. This was confirmed using transmission electron microscopy to study rotary shadow images of purified Hcol-I. In addition, absence of crucial lysine residues and an overall reduction in proline content, results in reduced crosslinking of fibrils and increased flexibility of the molecule, respectively. These structural changes in Hcol-I help to explain the flexible properties of hydra ECM. Immunocytochemical studies indicate that Hcol-I forms the 10 nm fibrils that comprise the majority of molecules in the central fibrous zone of hydra ECM. The central fibrous zone resides between the two subepithelial zones where hydra laminin is localized. While previous studies have shown that basal lamina components like laminin are expressed by the endoderm, in situ hybridisation studies show that Hcol-I mRNA expression is restricted to the ectoderm. Hcol-I expression is upregulated during head regeneration, and antisense studies using thio-oligonucleotides demonstrated that blocking the translation of Hcol-I leads to a reversible inhibition of head morphogenesis during this regenerative process. Taken in total, the data presented in this study indicate that Hcol-I is required for morphogensis in hydra and represents a novel fibrillar collagen whose structural characteristics help to explain the unique biophysical properties of hydra ECM. Interestingly, the structure of Hcol-I mimics what is seen in Ehlers-Danlos syndrome type VII in humans; an inherited pathological condition that leads to joint and skin abnormalities. Hcol-I therefore illustrates an adaptive trait in which the normal physiological situation in hydra translates into a pathological condition in humans.  相似文献   

6.
Changes in epithelial substrate have been related to the cellular capacity for proliferation and to changes in cellular behavior. The effect of TGF beta 1 on the expression of the basement membrane genes, fibronectin, laminin B1, and collagen alpha 1 (IV), was examined. Northern analysis revealed that treatment of normal human epidermal keratinocytes with 100 pM TGF beta 1 increased the expression of each extracellular matrix (ECM) gene within 4 h of treatment. Maximal induction was reached within 24 h after treatment. The induction of ECM mRNA expression was dose dependent and was observed at doses as low as 1-3 pM TGF beta 1. Incremental doses of TGF beta 1 also increased cellular levels of fibronectin protein in undifferentiated keratinocytes and resulted in increased secretion of fibronectin. Squamous-differentiated cultures of keratinocytes expressed lower levels of the extracellular matrix RNAs than did undifferentiated cells. Treatment of these differentiated cells with TGF beta 1 induced the expression of fibronectin mRNA to levels seen in TGF beta-treated, undifferentiated keratinocytes but only marginally increased the expression of collagen alpha 1 (IV) and laminin B1 mRNA. The increased fibronectin mRNA expression in the differentiated keratinocytes was also reflected by increased accumulation of cellular and secreted fibronectin protein. The inclusion of cycloheximide in the protocol indicated that TGF beta induction of collagen alpha 1 (IV) mRNA was signaled by proteins already present in the cells but that TGF beta required the synthesis of a protein(s) to fully induce expression of fibronectin and laminin B1 mRNA. The differential regulation of these genes in differentiated cells may be important to TGF beta action in regulating reepithelialization.  相似文献   

7.
The heart-forming regions of the early embryo are composed of splanchnic mesoderm, endoderm, and the associated ECM. The ECM of the heart-forming regions in stage 7-9 chicken embryos was examined using immunofluorescence. Affinity purified antibodies to chicken collagens type I and IV, chicken fibronectin, and mouse laminin were used as probes. We report that (1) the basement membrane of the endoderm contains immunoreactive laminin and collagen IV; (2) the nascent basement membrane of the heart splanchnic mesoderm contains immunoreactive laminin, but not type IV collagen, and (3) the prominent ECM between the splanchnic mesoderm and the endoderm (the primitive-heart ECM) contains collagen IV, collagen I, fibronectin, but not laminin. In addition, we describe microscopic observations on the spatial relationship of cardiogenic cells to the primitive-heart ECM and the endodermal basement membrane.  相似文献   

8.
Among the structural components of extracellular matrices (ECM) fibrillar collagens play a critical role, and single amino acid substitutions in these proteins lead to pathological changes in tissues in which they are expressed. Employing a biologically relevant experimental model consisting of cells expressing R75C, R519C, R789C, and G853E procollagen II mutants, we found that the R789C mutation causing a decrease in the thermostability of collagen not only alters individual collagen molecules and collagen fibrils, but also has a negative impact on fibronectin. We propose that thermolabile collagen molecules are able to bind to fibronectin, thereby altering intracellular and extracellular processes in which fibronectin takes part, and we postulate that such an atypical interaction could change the architecture of the ECM of affected tissues in patients harboring mutations in genes encoding fibrillar collagens.  相似文献   

9.
Summary Scanning electron microscopy (SEM) observation showed that fully differentiated spherical adipocytes were embraced by a network of collagens and fibroblastic preadipocytes. The properties of both the collagen networks and the preadipocytes allow the adipocytes to be interconnected, forming a fat-cell cluster, which can anchor to the bottom of a culture dish. In this network structure, collagen fibrils and fibrillar bundles were closely arranged and stratified. We found that immunostained collagens appeared to form extracellular network structures, which can be observed by SEM. The extracellular network of fibronectin was the first to develop among the extracellular matrix (ECM) components, though it became degraded with the progress of adipocyte differentiation. The type I collagen network was the last to develop and remained well organized through the late stage of adipocyte differentiation. The extracellular networks of type III, V, and VI collagen developed by the mid-stage and remained in the late stage of adipocyte differentiation. The network structures of type IV collagen and laminin became degraded during the differentiation process and localized at the surface of spherical cells. In addition to these basement membrane components, types III, V, and VI collagens also showed pericellular spherical staining patterns. These results demonstrated that the constitution and distribution of the ECM are altered during adipocyte differentiation, suggesting that the organization of each ECM component into a suitable structure is a requirement for the differentiation and maintenance of unilocular adipocytes.  相似文献   

10.
The expression of laminin, a major constituent of endometrial cell basement membranes, is increased during differentiation of human endometrial stromal cells (decidualization). To determine whether laminin plays a role in decidualization, we studied the effects of laminin substrate on the synthesis and release of prolactin (PRL) and insulin-like growth factor binding protein-1 (IGFBP-1), two major secretory proteins of decidualized stromal cells. Endometrial stromal cells were plated on laminin as well as several other extracellular matrix (ECM) proteins (types 1 and IV collagen or fibronectin) and on plastic, and cultured in media containing medroxyprogesterone acetate (MPA) and estradiol. Cells cultured on plastic or ECM proteins displayed similar morphological changes indicative of decidualization. However, the release of PRL and IGFBP-1 from cells cultured on plastic and ECM proteins (types 1 and IV collagen and fibronection) was approximately 2.1-fold and 2.8-fold greater respectively, than from cells cultured on laminin. The decrease in PRL and IGFBP-1 expression in cells cultured on laminin was not due to differences in initial cell attachment efficiency or final DNA content. In addition, laminin had no effect on the content of laminin protein or fibronectin mRNA levels, indicating that the effects of laminin on PRL and IGFBP-1 were specific. PGE2 stimulated the release of PRL and IGFBP-1 from cells cultured on laminin to levels comparable to those from cells cultured on plastic or other ECM proteins. This indicates that the decrease in PRL and IGFBP-1 release by laminin was not due to a generalized unresponsiveness. In contrast to the effects of laminin during decidualization, PRL expression was not altered by laminin in terminally differentiated decidual cells isolated at term. Our results support a role for laminin in selectively regulating PRL and IGFBP-1 gene expression during in vitro decidualization of human endometrial stromal cells. © 1995 Wiley-Liss, Inc.  相似文献   

11.
Streptococcus suis serotype 2 binding to extracellular matrix proteins   总被引:4,自引:0,他引:4  
Streptococcus suis serotype 2 is a major swine and human pathogen that causes septicemia and meningitis. The ability of S. suis serotype 2 to bind to different extracellular matrix (ECM) proteins was evaluated by ELISA. All 23 strains tested bound to plasma and cellular fibronectin and collagen types I, III, and V, some to fibrin, vitronectin, and laminin, and none to the other ECM proteins tested. An unencapsulated isogenic mutant bound to ECM proteins better than its parental encapsulated strain, suggesting that the polysaccharide capsule interfered with binding. Cross-inhibition was observed between soluble plasma fibronectin and collagens in the ECM adherence assay, indicating that binding domains for both proteins exist on the same or nearby bacterial surface molecules. On the other hand, pre-incubation with plasma fibronectin increased binding to collagen IV, suggesting that S. suis might use fibronectin as a bridging molecule. The results of heat treatment and proteolytic digestion suggest that adhesins for these ECM proteins are proteinaceous in nature.  相似文献   

12.
Previously, we have shown that the embryonic corneal epithelium is capable of interacting with exogenous collagen, laminin, and fibronectin in soluble form, each of which causes isolated epithelium cultured on Millipore filter to stop blebbing, reorganize the basal cytoskeleton, and flatten. Here we examine the involvement of endogenously derived extracellular matrix (ECM) molecules in the interaction of the basal epithelial cell surface with the added ECM molecules. We demonstrate here that the isolated avian corneal epithelium cultured on Millipore filter is capable of synthesizing collagens and laminin, but not fibronectin. To examine whether the epithelium is capable of interacting directly with exogenous ECM components or if there is the necessity for production of a linker molecule, epithelial protein synthesis was inhibited with cycloheximide (CHX). The blebbing epithelium in the presence of CHX was then confronted with soluble ECM molecules added to the medium under the filter; such epithelia are able to interact with, and flatten in response to, both collagen and laminin. However, such inhibited epithelia continue to bled in the presence of fibronectin. We next used l-azetidine-4-carboxylic acid (LACA) to interfere with collagen secretion. Epithelia exposed to LACA are still capable of interacting with collagen and laminin, but not fibronectin, indicating a dependence on collagen secretion. These results suggest that fibronectin requires a linker protein, probably collagen, to interact with the basal epithelial surface, whereas both collagen and laminin may interact directly with the cell surface to transform the basal cytoskeleton into the cortical mat typical of differentiating corneal epithelium in situ.  相似文献   

13.
The underlying mechanisms controlling uterine contractions during labor are still poorly understood. Integrins are heterodimeric, transmembrane receptors composed of alpha and beta subunits that can be found in focal adhesions. Because these structures play an important role in the regulation of smooth muscle contractility and cell adhesion, we hypothesized that alpha5 integrin mRNA (Itga5) and protein (ITGA5) expression would be induced in the rat myometrium during late pregnancy and labor. Itga5 mRNA expression was significantly increased (P < 0.05) from Day 17 to labor, noticeably decreasing 1 day postpartum (PP). Immunoblot analysis illustrated a continual increase in ITGA5 levels during pregnancy, labor, and PP, with levels reaching significance at labor (P < 0.05). Analysis of ITGA5 expression by immunocytochemistry demonstrated that it is primarily localized to myometrial cell membranes in the longitudinal muscle layer of the myometrium from before pregnancy to Day 6, and in both the longitudinal and circular muscle layers from Day 15 to PP. Treatment of late-pregnant rats with progesterone blocked labor and resulted in sustained expression of Itga5 mRNA expression to Day 24. In addition, immunocytochemistry experiments showed ITGA5 was detectable at higher levels in cell membranes of both myometrial layers in progesterone-treated animals on Days 23 and 24, compared with vehicle controls. We propose that ITGA5, with its sole known partner, ITGB1, may be important in promoting cellular cohesion during late pregnancy. This process may aid the development of a mechanical syncytium for efficient force transduction during the sustained, coordinated, and powerful contractions of labor.  相似文献   

14.
The platelet-activating factor (PAF) concentration of the uterus spontaneously increased during pregnancy. When 17alpha-ethynylestradiol (0.25 mg/kg) was administered subcutaneously to pregnant rats for 3 days starting on Day 17 of pregnancy, some rats delivered prematurely on Day 20. However, none of the vehicle-treated (80% dimethylsulfoxide and 20% ethanol) pregnant rats delivered prematurely. The PAF concentration of the uterus in pregnant rats treated with 17alpha-ethynylestradiol was significantly higher than in those treated with vehicle on Days 19 and 20. On the other hand, the specific activity of uterine PAF-acetylhydrolase (PAF-AH) in pregnant rats treated with 17alpha-ethynylestradiol was significantly lower than in those treated with vehicle on Days 19 and 20, and the plasma PAF-AH activity in pregnant rats treated with estrogen was also significantly lower than in treated with vehicle on Days 18, 19, and 20. These findings indicate that estrogen increases PAF concentrations in the rat uterus, and this was correlated with a decrease in PAF-AH in the uterus and plasma. The increase in PAF concentrations in the uterus may be related to premature delivery and labor caused by PAF's known effect on myometrial contraction.  相似文献   

15.
To determine whether gestation-related changes in responsiveness of the rat uterus to beta-adrenergic agonists are mediated at the level of adenylyl cyclase, we measured myometrial adenylyl cyclase activity and protein quantities during pregnancy and labor. In rat myometrial membranes, basal adenylyl cyclase activity increased from the nonpregnant state to mid (Days 12-14) and then late (Days 18-20) gestation and then decreased intrapartum (Day 22). Stimulated adenylyl cyclase activity, at the level of the beta-adrenergic receptor (isoproterenol, 10(-4) M), the G protein (GTP, 10(-5) M), or the adenylyl cyclase enzyme (MnCl(2), 20 mM), was similarly altered during gestation. Total adenylyl cyclase protein was quantified by [(3)H]forskolin binding assay in myometrial membranes from nonpregnant and pregnant (Day 14, Day 20, Day 21, and intrapartum Day 22) rats. Adenylyl cyclase protein increased progressively from nonpregnant rats to pregnant rats at mid (Day 14) and late (Day 20) gestation, but it decreased abruptly to nonpregnant levels on Day 21, the day before parturition, and remained at similar levels on Day 22 (intrapartum). The gestation-related increase in expression of myometrial adenylyl cyclase protein may facilitate uterine quiescence during pregnancy, and the abrupt decrease of adenylyl cyclase protein on the last day of pregnancy may be a contributing mechanism for the initiation of labor.  相似文献   

16.
The integrin and extracellular matrix protein (ECM)-mediated adhesion and invasion of the receptive maternal uterine endometrium by trophoblasts is a critical event in the complex physiological process of pregnancy. Although the process has been largely characterized in mice, the relevant mechanism in primates remains unclear. We investigated the expression patterns and dynamic alterations of integrin subunits (alpha1, alpha5, alpha6, beta1, and beta4) and their ECM ligands, such as laminin (LN), type IV collagen (Col IV), and fibronectin (FN), at the maternal-fetal interface during Gestational Days 15, 25, 50, and 100 and at full term in 20 pregnant rhesus monkeys. Immunohistochemistry and in situ hybridization revealed that a relatively high expression of integrins occurred in trophoblast cells at Gestational Day 15, with the peak level occurring at Day 25. The expression level decreased from Day 50 to term. Along the invasive pathway, expression levels of integrin alpha1, alpha5, and beta1 subunits were gradually elevated from the proximal to distal column, reaching peak level in the trophoblast shell, but were reduced in those invasive extravillous cytotrophoblast (EVCT) cells in contact with the decidua. Integrin alpha1, alpha5, beta1, and beta4 subunits were also highly expressed in decidual stromal cells and moderately expressed in the maternal epithelium and endothelium. Immunoreactive FN, LN, and Col IV were distributed in EVCT and decidual stromal cells and part of the uterine epithelial and endothelial cells. These data suggest that the correlated expression of integrins and their ECM ligands at the maternal-fetal interface might be involved in regulation of cell proliferation and differentiation and the counterbalanced invasion-accelerating and invasion-restraining processes in trophoblast cells during the early stage of pregnancy.  相似文献   

17.
We studied expression of laminin, fibronectin, and Type IV collagen in the testis by means of immunofluorescence and immunoblot analysis and also examined gene expression of fibronectin using the ribonuclease protection assay. By immunofluorescence on sections from 20-day-old rats, laminin, fibronectin, and Type IV collagen were found in the basement membrane of the seminiferous tubules and in the interstitial regions of the testis. No localization of any extracellular matrix components was found inside the sectioned cells. However, when Sertoli cells were cultured on glass coverslips, laminin and Type IV collagen were both found inside the cells, suggesting new synthesis. In cultured peritubular cells, Type IV collagen, laminin, and fibronectin were found within the cells. When examined by immunoblot analysis, freshly isolated Sertoli and peritubular cells from 20-day-old rats did not demonstrate production of laminin or fibronectin. After 5 days in culture, peritubular cells produced both laminin and fibronectin, whereas cultured Sertoli cells produced only laminin. In contrast, freshly isolated and cultured Sertoli and peritubular cells all produced Type IV collagen. Moreover, the ribonuclease protection assay indicated that the bulk of fibronectin gene expression occurs within the first 10 days of postnatal development, with lower maintenance levels occurring thereafter. These results indicate that in the testis the highest levels of expression of laminin and fibronectin occur during development and in primary cell culture, whereas expression of Type IV collagen is higher at later stages.  相似文献   

18.
19.
20.
The body wall of Hydra is organized as an epithelial bilayer (ectoderm and endoderm) with an intervening extracellular matrix (ECM), termed mesoglea by early biologists. Morphological studies have determined that Hydra ECM is composed of two basal lamina layers positioned at the base of each epithelial layer with an intervening interstitial matrix. Molecular and biochemical analyses of Hydra ECM have established that it contains components similar to those seen in more complicated vertebrate species. These components include such macromolecules as laminin, type IV collagen, and various fibrillar collagens. These components are synthesized in a complicated manner involving cross-talk between the epithelial bilayer. Any perturbation to ECM biogenesis leads to a blockage in Hydra morphogenesis. Blockage in ECM/cell interactions in the adult polyp also leads to problems in epithelial transdifferentiation processes. In terms of biophysical parameters, Hydra ECM is highly flexible; a property that facilitates continuous movements along the organism's longitudinal and radial axis. This is in contrast to the more rigid matrices often found in vertebrates. The flexible nature of Hydra ECM can in part now be explained by the unique structure of the organism's type IV collagen and fibrillar collagens. This review will focus on Hydra ECM in regard to: 1) its general structure, 2) its molecular composition, 3) the biophysical basis for the flexible nature of Hydra's ECM, 4) the relationship of the biogenesis of Hydra ECM to regeneration of body form, and 5) the functional role of Hydra ECM during pattern formation and cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号