首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of the reaction with oxygen and carbon monoxide of the homodimeric hemoglobin from the bivalve mollusc Scapharca inaequivalvis has been extensively investigated by flash and dye-laser photolysis, temperature jump relaxation, and stopped flow methods. The results indicate that cooperativity in ligand binding, already observed for oxygen at equilibrium, finds its kinetic counterpart in a large decrease of the oxygen dissociation velocity in the second step of the binding reaction. In the case of carbon monoxide, cooperativity is clearly evident in the increase of the combination velocity constant as the reaction proceeds. Therefore, the ligand-binding kinetics of this dimeric hemoglobin shows the characteristic features of the corresponding reactions of tetrameric hemoglobins. Analysis of the data in terms of the allosteric model proposed by Monod et al. (Monod, J., Wyman, J., and Changeux, J. P. (1965) J. Mol. Biol. 12, 88-118) has shown that the values of the allosteric parameters cannot be fixed uniquely for a dimeric hemoglobin. The rapid changes in absorbance observed at the isosbestic points of unliganded and liganded hemoglobin following laser photolysis provided a value of 7 X 10(4) S-1 at 20 degrees C for the rate of the ligand-free quarternary conformational change, postulated on the basis of cooperative ligand binding. Comparison of the rapid absorbance changes observed during ligand rebinding in this hemoglobin with those observed in tuna hemoglobin indicate that, at full photolysis, binding to the T state is followed by further binding and conversion to the liganded R state; at partial photolysis, population of the liganded T state occurs immediately and is followed by a decay to the liganded R state upon further ligand binding. These new results, in conjunction with previous equilibrium data on the same system, show unequivocally that the presence of two different types of chain is not an absolute prerequisite for cooperativity in hemoglobins, contrary to currently accepted ideas.  相似文献   

2.
Rujan IN  Russu IM 《Proteins》2002,49(3):413-419
The structural transition induced by ligand binding in human hemoglobin encompasses quaternary structure changes at the interfaces between the two alphabeta dimers. In contrast, the interfaces between alpha and beta subunits within the same dimer (i.e., alpha1beta1 and alpha2beta2 interfaces) are structurally invariant. Previous work from this laboratory using NMR spectroscopy has identified four sites at the intradimeric alpha1beta1 and alpha2beta2 interfaces that, although structurally invariant, experience significant changes in the rates of proton exchange upon ligand binding. These sites are Hisalpha103(G10) and Hisalpha122(H5) in each alpha subunit of the hemoglobin tetramer. In the present work, we show that the proton exchange at the Hisalpha103(G10) sites is affected by the interactions of hemoglobin with chloride ions. Increasing concentrations of chloride ions at pH 6.45 and at 37 degrees C enhance the exchange rate of the Hisalpha103(G10) N(epsilon 2) proton. The enhancement is greater in deoxygenated than in ligated hemoglobin. In the framework of the local unfolding model for proton exchange, these results suggest that the structural free energy and/or the proton transfer reactions at the Hisalpha103(G10) sites depend on the concentration of chloride ions. Therefore, the ligand-induced changes at the Hisalpha103(G10) sites are modulated by the allosteric effect of chloride ions on hemoglobin.  相似文献   

3.
K D Martin  L J Parkhurst 《Biochemistry》1990,29(24):5718-5726
The tetrameric hemoglobin from Urechis caupo is nearly ideal for studying ligation to the T-state. Our previous EXAFS study had shown that the Fe is displaced 0.35 A from the mean plane of the porphyrin in the HbCO derivative. We have carried out detailed kinetic studies of oxygen and CO ligation as a function of temperature in order to characterize both the kinetics and thermodynamics of ligation in this hemoglobin. The entropy change associated with ligation essentially corresponds to simple immobilization of the ligand and is virtually the same as that we have determined for leghemoglobin, an extreme R-state-type hemoglobin. The low ligand affinities thus derive from small enthalpies of ligation, which can be correlated with the large out of plane displacement of the Fe. Only oxygen pulse measurements revealed kinetic evidence for cooperative oxygen binding, but a direct measurement of oxygen binding gave a Hill number of 1.3. An allosteric analysis gave L = 2.6 and c = 0.048 (oxygen) and c = 0.77 (CO). The higher affinity state in this weakly cooperative hemoglobin is denoted T*, and it is for this state that thermodynamic quantities have been determined. The small differences between T and T* in CO binding were nevertheless sufficient to allow us to measure by flash photolysis the rate of the T*----T conformational change in terms of an allosteric model. The half-time for this transition was calculated to be 8-14 ms at 20 degrees C.  相似文献   

4.
The ligand bis(diphenylphosphino)aniline (dppan) has been shown to be a versatile ligand sporting different coordination modes and geometries as dictated by copper(I) and the counter ion. The molecular structures of its Cu(I) complexes were characterized by X-ray crystallography. The ligand was found in a chelating mode and monomeric complexes were formed when the ligand to copper ratio was 2:1 and the anion was non-coordinating. However, with thiocyanate as the counter anion, the ligand was found to adopt two different modes, with one ligand chelating and the other acting as a monodentate ligand. With CuX (X = Cl, Br), dppan formed a tetrameric complex when the ligand and metal were reacted in the ratio of 1:1. But reactions containing ligand and metal in the ratios of 1:2 or 2:1, resulted in the formation of a mixture of species in solution. Crystallization however, led to the isolation of the tetrameric complex. Variable temperature 31P{1H} NMR spectra of the isolated tetramers did not show the presence of chelated structures in solution. Tetra-alkylammonium salts were added to solutions of various complexes of dppan and studied by 31P{1H} NMR to probe the effect of anions on the stability of complexes in solution. The Cu-dppan complexes were robust and did not interconvert with other structures in solution unlike the bis(diphenylphosphino)isopropylamine complexes.  相似文献   

5.
Generalized binding phenomena in an allosteric macromolecule   总被引:2,自引:0,他引:2  
A general macromolecular partition function is developed in terms of chemical ligand activity, temperature and pressure for systems described by an array of species which are characterized by their state of allosteric conformation and ligand stoichiometry. The effects of chemical ligand binding, enthalpy change, and volume change are treated in a parallel manner. From a broad viewpoint all of these effects can be regarded as specific cases of generalized binding phenomena. This approach provides a general method for analyzing calorimetric and ligand binding experiments. Several applications are given: (1) Thermal scanning data for tRNAphe (P.L. Privalov and V.V. Filimonov, J. Mol. Biol. 122 (1978) 447) are shown to fit a general model with six conformational states. By application of linkage theory it is shown that sodium chloride is expelled as the molecule denatures. (2) The results of calorimetric titrations on the arabinose binding protein (H. Fukada, J.M. Sturtevant and F.A. Quiocho, J. Mol. Biol. 258 (1983) 13193) are shown to fit a simple two-state allosteric model. (3) A thermal binding curve is simulated for an unusual respiratory protein, trout I hemoglobin (B.G. Barisas and S.J. Gill, Biophys. Chem. 9 (1979) 235), in order to illustrate both the similarities and differences between enthalpy and chemical ligand binding processes.  相似文献   

6.
Theoretical calculations are presented, describing the kinetics of reaction zone formation with radial diffusion of ligands over a receptor coated surface. Calculated concentration distributions of ligands diffusing radially over a receptor-coated surface are combined with different types of receptor-ligand reactions, taking place at the surface, in order to obtain theoretical relations between the initial concentration of ligand in the source, the diameter of the receptor-ligand reaction zone and reaction time. These relations are compared to experimental data, using bovine serum albumin (BSA) as immobilized receptor and anti-BSA antibodies as diffusing ligand. The theory predicts how the diffusion constant of the ligand and the detection level of the visualization method may be determined and how to discriminate between different kinetics of the receptor-ligand reaction. The practical use of the theory in experimental studies of receptor-ligand interaction is discussed.  相似文献   

7.
The deoxygenation kinetics of isolated adult and fetal hemoglobin are measured. The results demonstrate that significant functional differences exist between the two tetrameric hemoglobins. It is pointed out that these functional differences closely parallel the differences in similar properties of beta and gamma chains. It is also shown that 2,3-diphosphoglycerate (2,3-DPG) has no significant effect on the deoxygenation rate of fetal hemoglobin. This result appears to be consistent with the reported weaker binding of 2,3-DPG to the oxygen linked groups of fetal hemoglobin.  相似文献   

8.
Biological systems often have to measure extremely low concentrations of chemicals with high precision. When dealing with such small numbers of molecules, the inevitable randomness of physical transport processes and binding reactions will limit the precision with which measurements can be made. An important question is what the lower bound on the noise would be in such measurements. Using the theory of diffusion-influenced reactions, we derive an analytical expression for the precision of concentration estimates that are obtained by monitoring the state of a receptor to which a diffusing ligand can bind. The variance in the estimate consists of two terms, one resulting from the intrinsic binding kinetics and the other from the diffusive arrival of ligand at the receptor. The latter term is identical to the fundamental limit derived by Berg and Purcell (Biophys. J., 1977), but disagrees with a more recent expression by Bialek and Setayeshgar. Comparing the theoretical predictions against results from particle-based simulations confirms the accuracy of the resulting expression and reaffirms the fundamental limit established by Berg and Purcell.  相似文献   

9.
Biological systems often have to measure extremely low concentrations of chemicals with high precision. When dealing with such small numbers of molecules, the inevitable randomness of physical transport processes and binding reactions will limit the precision with which measurements can be made. An important question is what the lower bound on the noise would be in such measurements. Using the theory of diffusion-influenced reactions, we derive an analytical expression for the precision of concentration estimates that are obtained by monitoring the state of a receptor to which a diffusing ligand can bind. The variance in the estimate consists of two terms, one resulting from the intrinsic binding kinetics and the other from the diffusive arrival of ligand at the receptor. The latter term is identical to the fundamental limit derived by Berg and Purcell (Biophys. J., 1977), but disagrees with a more recent expression by Bialek and Setayeshgar. Comparing the theoretical predictions against results from particle-based simulations confirms the accuracy of the resulting expression and reaffirms the fundamental limit established by Berg and Purcell.  相似文献   

10.
It has been established that Molpadia hemoglobin tends to dissociate into subunits as oxygen is bound. The kinetics and equilibria of carbon monoxide and ethylisocyanide binding reported here show a dependence on protein concentration that supports the conclusion that the aggregated hemoglobin has a lower ligand affinity than the dissociated subunits. This is true for the isolated D-chain as well as for the unfractionated hemolysate that contains four distinct polypeptide chains (A-D). This indicates that even homopolymers of Molpadia hemoglobin have lower ligand affinity than the dissociated subunits. At high protein concentration hemolysates of Molpadia hemoglobin show slight cooperativity. The time course of ligand binding to the deoxy D-chain also suggests cooperative interactions. The low affinity of the aggregated state may have a different molecular explanation than in human hemoglobin where tetramers of identical subunits (as in Hb H) show high oxygen affinity. The absence of tyrosine and histidine at the C-terminal of the Molpadia D-chains also suggests a different stabilization of the low affinity deoxy state. An additional functional difference between Molpadia hemoglobin and human hemoglobin is that organic phosphates do not alter the ligand affinity of the sea cucumber hemoglobin.  相似文献   

11.
The kinetics of methyl-, ethyl-, iso-propyl-, and ter-butyl-isocyanide binding to Aplysia limacina myoglobin (distal His----Lys) and the isolated beta chains from hemoglobin Zurich (distal His----Arg) have been investigated by flash photolysis at various temperatures above 0 degrees C. Sperm whale (Physter catodon) myoglobin and the isolated beta chains from normal adult hemoglobin have been used as references. In most reaction systems investigated the apparent extent of photolysis increases with temperature. For sperm whale myoglobin and the normal beta chains the increase is of the same magnitude and not correlated to the type of ligand used. On the contrary, for the two proteins lacking the distal histidine, the phenomenon is dependent on the size of the alkyl side chain of the ligand. The results, analyzed on the basis of the multibarrier model (Austin, R.H., K.W. Beeson, L. Eisenstein, H. Frauenfelder, and I.C. Gunsalus, 1975, Biochemistry, 16:5355-5373), suggest that the partition of the ligand molecules between the solvent and the heme pocket, occurring during the photolysis process, is primarily determined by interactions between the ligand and residues in the heme cavity rather than by diffusion through the protein matrix.  相似文献   

12.
The binding of various alkanes by proteins was recognized years ago. We have studied the effect of butene (C4H8), a short-chain aliphatic hydrocarbon, on the functional properties of human adult hemoglobin. Under 1 atm pressure (100 kPa) butene decreased the affinity of hemoglobin (Hb) for oxygen (p50) by 45% without altering the cooperativity of ligand binding. This effect was independent of pH (from 7.0 to 8.0) and of ionic strength. The changes in the affinity of hemoglobin for oxygen were dependent upon the partial pressure of butene and evoked a saturating mechanism of the binding site(s). Mathematical simulation of the curve relating p50 to the concentration of dissolved butene allowed us to calculate the apparent association constants for one single binding site KHb = 10.4 mmol-1 and KHbO2 = 1.53 mmol-1 to Hb and HbO2 respectively. The larger binding of butene by Hb was confirmed by a 25% decrease in K1, the first association constant of oxygen to the tetrameric hemoglobin. It is concluded that butene is an allosteric effector of human Hb which acts most likely through hydrophobic interactions. It is postulated that the oxygen-linked binding site may be located at the alpha 1 beta 2 interface.  相似文献   

13.
Human spectrin, when isolated, purified and stored in such conditions that preserve its tetrameric form, is able to associate with human hemoglobin as it is clearly shown by gel filtration. However, this hemoglobin-spectrin association does not seem to have a significant effect on hemoglobin oxygenation as indicated by equilibrium and rapid kinetics measurements.  相似文献   

14.
Hemoglobin Leiden is an abnormal human hemoglobin in which a glutamic acid residue has been deleted from the β-chain at position 6 or 7. The α-amino groups of the β-chain N-termini in tetrameric hemoglobin A are thought to be directly involved in the binding of simple anions and organic phosphates (1). The deletion of the 4th or 5th residue of the A helix in hemoglobin Leiden shortens the N-terminus of the β-chain, and the results reported here show that the anion binding site has been affected. Hemoglobin Leiden shows a decreased response to inorganic phosphate, chloride, 2,3-diphosphoglycerate, and inositol hexaphosphate, both in equilibria and kinetics of ligand binding. Although hemoglobin Leiden shows an altered response to anions, neither the cooperativity of ligand binding nor the Bohr effect are significantly altered by the deletion. The decreased effect of cofactors seems to be due to a decrease in the strength of anion binding which may be attributed to the altered geometry of the anion binding site.  相似文献   

15.
16.
Autoxidation of hemoglobin enhanced by dissociation into dimers.   总被引:2,自引:0,他引:2  
Autoxidation as a function of hemoglobin concentration indicates a 17-fold increase in the rate of autoxidation from 0.25 (%/h) to 4.3 (%/h) when tetrameric oxyhemoglobin dissociates into dimers. As a result of this large enhancement, a contribution of dissociation to the autoxidation is evident even at relatively high concentrations of hemoglobin for which it is usually considered that dissociation can be neglected. The mechanism for this phenomenon is attributed to alterations in the ligand pocket which occur when constraints due to subunit contacts within the R-state are eliminated.  相似文献   

17.
We have recently reported on the purification, subunit structure, and serological analysis of calf thymus ribonuclease H I and suggested a trimeric or tetrameric structure for the enzyme (Büsen, W., and Vogt, G. (1980) J. Biol. Chem. 255, 9434-9443). Continuation of our immunological analysis, using a protein blotting procedure for antigen detection and immunoaffinity chromatography, revealed that the native enzyme molecule is composed of polypeptides A and C with molecular weights of 31,600 and 24,800 respectively, in a molar ratio of 2 to 1. This is in accordance with a trimeric structure (A,A,C) for calf thymus ribonuclease H I. Polypeptides B and D, found in the most purified fraction, are shown to be generated during the early steps of the purification procedure, suggesting specific protein nicking which does not affect the native molecular weight of the enzyme.  相似文献   

18.
In our previous work, we demonstrated that the replacement of the "heme binding module," a segment from F1 to G5 site, in myoglobin with that of hemoglobin alpha-subunit converted the heme proximal structure of myoglobin into the alpha-subunit type (Inaba, K., Ishimori, K. and Morishima, I. (1998) J. Mol. Biol. 283, 311-327). To further examine the structural regulation by the heme binding module in hemoglobin, we synthesized the betaalpha(HBM)-subunit, in which the heme binding module (HBM) of hemoglobin beta-subunit was replaced by that of hemoglobin alpha-subunit. Based on the gel chromatography, the betaalpha(HBM)-subunit was preferentially associated with the alpha-subunit to form a heterotetramer, alpha(2)[betaalpha(HBM)(2)], just as is native beta-subunit. Deoxy-alpha(2)[betaalpha(HBM)(2)] tetramer exhibited the hyperfine-shifted NMR resonance from the proximal histidyl N(delta)H proton and the resonance Raman band from the Fe-His vibrational mode at the same positions as native hemoglobin. Also, NMR spectra of carbonmonoxy and cyanomet alpha(2)[betaalpha(HBM)(2)] tetramer were quite similar to those of native hemoglobin. Consequently, the heme environmental structure of the betaalpha(HBM)-subunit in tetrameric alpha(2)[betaalpha(HBM)(2)] was similar to that of the beta-subunit in native tetrameric Hb A, and the structural conversion by the module substitution was not clear in the hemoglobin subunits. The contrastive structural effects of the module substitution on myoglobin and hemoglobin subunits strongly suggest different regulation mechanisms of the heme proximal structure between these two globins. Whereas the heme proximal structure of monomeric myoglobin is simply determined by the amino acid sequence of the heme binding module, that of tetrameric hemoglobin appears to be closely coupled to the subunit interactions.  相似文献   

19.
We have studied the kinetics of fusion of dipalmitoylphosphatidylcholine small unilamellar vesicles at 51 degrees C which is induced by bee venom melittin at a protein-to-lipid molar ratio of 1/60. This was done by following with a stopped-flow fluorometer the reduction in the ratio of the excimer to monomer fluorescence intensities of 1-palmitoyl-2-(10-pyrenyldecanoyl)-sn-glycero-3-phosphorylcholine that accompanies fusion. At a low melittin concentration and low ionic strength, for which case the protein is monomeric, the value of the rate constant for fusion is 0.006 s-1. This is much smaller than that of 0.06 s-1 obtained for a high melittin concentration at low ionic strength, i.e. for the protein in the tetrameric form which is not induced by a high salt concentration. The value of the rate constant for fusion for a low melittin concentration in the presence of 2 M NaCl, i.e. for the protein in the tetrameric form which is induced by a high salt concentration, is 0.12 s-1. This is twice as large as that for fusion induced by the tetramer in a low ionic strength solution. These findings show that the state of aggregation of the protein in solution and, to a lesser extent, electrostatic interactions play an important role in the kinetics of melittin-induced fusion of vesicles.  相似文献   

20.
M Berjis  D Bandyopadhyay  V S Sharma 《Biochemistry》1990,29(43):10106-10113
Kinetics of the reactions of CO and methyl isocyanide with two diliganded intermediates of hemoglobin, alpha 2CO beta 2 and alpha 2 beta 2CO, have been studied by double-mixing and microperoxidase methods. The valency hybrids were prepared by high-pressure liquid chromatography. The reaction time courses of ligand combination and dissociation with both of the ligands were biphasic, and in CO combination reaction the zero-time amplitudes of the two phases were independent of the protein concentration. In the presence of 2 M urea the reaction time course was clearly dependent on protein concentration, as the zero-time amplitude of the fast phase increased at lower protein concentrations. These two observations indicate that little dissociation of tetramers into dimers occurs in the absence of urea. Consistent with this, the kinetic data for the reactions of CO best fit a reaction model consisting of two tetrameric species not in rapid equilibrium with each other. Various considerations, however, suggest that the reaction model is more appropriately described as 2D in equilibrium R in equilibrium T. The reaction of triliganded species (Hb4(CO)2Me1) with methyl isocyanide was monophasic, and the reaction model suggested a fast T in equilibrium R structural change after the binding of the third ligand. Although the precise structural nature of the two species remains undefined, it is concluded that the biphasicity in the reactions of the two hybrids is characteristic of the diliganded species only and is independent of the nature of the ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号