首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
STUDIES OF AMINES IN THE STRIATUM IN MONKEYS WITH NIGRAL LESIONS   总被引:2,自引:0,他引:2  
The effects of ventromedial tegmental lesions on the biosynthesis and disposition of biogenic amines in the striatum of monkeys were investigated. The concentrations of endogenous dopamine and of the intraventricularly injected [3H]dopamine were distinctly lower in the striatum on the lesion side than on the intact side. The storage of [3H]dopamine in the caudate nucleus was impaired to a much greater extent than the storage of the newly synthesized [3H]norepinephrine. The concentrations of endogenous serotonin and of the intraventricularly injected [14C]serotonin were lower in the striatum on the lesion side than on the intact side. However following MAO inhibition, the concentration of [14C]serotonin did not differ significantly on the two sides of the caudate nucleus. The in vivo biosynthesis of dopamine from tyrosine was significantly reduced in the striatum on the lesion side. Tyrosine hydroxylase and DOPA decarboxylase activities were decreased on the lesion side of the striatum as compared with the intact side. Thus, the ventromedial tegmental lesions affect the storage and the synthesis of dopamine and serotonin in the ipsilateral striatum.  相似文献   

2.
This study compared the effects of the disruption of the two main presumably glutamatergic striatal inputs, the corticostriatal and thalamostriatal pathways, on GLT1 expression in the rat striatum, using in situ hybridization and immunohistochemistry. Unilateral ibotenate-induced thalamic lesion produced no significant changes in striatal GLT1 mRNA labeling and immunostaining as assessed at 5 and 12 days postlesion. In contrast, significant increases in both parameters were measured after bilateral cortical lesion by superficial thermocoagulation. GLT1 mRNA levels increased predominantly in the dorsolateral part of the striatum; there, the increases were significant at 5 (+84%), 12 (+101%), and 21 (+45%) but not at 35 days postlesion. GLT1 immunostaining increased significantly and homogeneously by 17-26% at 12 and 21 days postlesion. The increase in GLT1 expression at 12 days postlesion was further confirmed by western blot analysis; in contrast, a 36% decrease in glutamate uptake activity was measured at the same time point. These data indicate that striatal GLT1 expression depends on corticostriatal but not thalamostriatal innervation. Comparison of our results with previous data showing that cortical lesion by aspiration downregulates striatal GLT1 expression further suggests that differential changes in GLT1 expression, and thus presumably in glial cell function, may occur in the target striatum depending on the way the cortical neurons degenerate.  相似文献   

3.
A complete unilateral lesion of the nigrostriatal pathway by 6-hydroxydopamine injection in the substantia nigra induced a drastic increase in striatal dopaminergic binding sites labelled by 3H-spiperone, 30 days after the lesion. This increase (75% over controls) was time restricted: it was only 39% and 34% over control values at respectively 25 and 35 days after the lesion. Furthermore, 45 days after the destruction of the substantia nigra, the density of labelled sites returned close to the homolateral control values, but remained higher than the contralateral ones, according to the right-left difference found in control animals. Quite later (2 years after the lesion), there was a decrease in the density of labelled sites as compared to the respective homolateral control levels. However, such binding sites tend to remain higher in the striatum of the lesioned side than in the striatum of the intact one, although such a difference was not statistically significant, being very close to the right-left asymmetry observed in control animals. Contrary to our previous results with 3H-Haloperidol, the apparent dissociation constant did not vary significantly, whatever the considered delay after the lesion. These results are discussed in the light of previous results obtained by others and by us.  相似文献   

4.
Lesioning of the rat striatum with kainic acid may provide a useful animal model with which to study Huntington's Disease since, in both situations, changes in several neurochemical parameters appear similar. In this study, we examined the time course of dopaminergic (DA) and muscarinic cholinergic (MCHOL) receptor alterations after kainic acid injection into the rat striatum. As early as two days after unilateral, intrastriatal injection of kainic acid, most striatal perikaya in the injected area had been destroyed as seen by histological examination. A progressive decrease in the DA and MCHOL receptors continued which was not due to changes in their affinity for their respective receptors. By 48 days after injection, there was about 75% decrease in DA receptors and about a 65% decrease in MCHOL receptors. The DA receptor loss is similar in extent to the reported loss in activity of striatal, dopamine-stimulated adenylate cyclase after kainic acid lesion. The DA and MCHOLreceptor loss is similar to the reported loss of neostriatal DA and MCHOL receptors in Huntington's Disease.  相似文献   

5.
In normal rats, globus pallidus neurons are excited by the systemic administration of postsynaptically active doses of apomorphine. The role of the striatum in mediating this phenomenon was examined by investigating the effects of apomorphine on neuronal activity in the globus pallidus and on turning behavior in rats with unilateral quinolinic acid lesions of the striatum. The lesion markedly reduced striatal choline acetyltransferase activity and GABA content and significantly attenuated apomorphine's effect on the activity of pallidal neurons. Both the extent of attenuation of the electrophysiological response of pallidal neurons in lesioned animals and the neurotoxin-induced decreases in choline acetyltransferase activity and GABA content in the caudal striatum were correlated with the degree of apomorphine-induced turning. The data indicate that striatopallidal neurons contribute to apomorphine's excitatory effect on the activity of pallidal neurons in normal animals.  相似文献   

6.
The localization and proliferative response of optic tectum matrix cells has been studied in adult newt following an experimental lesion on an optic lobe. The results show that 15 days after the lesion the cells in division, autoradiographically labelled, are located in the periventricular layer. Thirty days after the lesion the labelled cells are also found in the innermost grey layers; at 90 days the injured optic tectum regains the cytoarchitecture characteristic of this centre, with labelled cells, whether in the external or in the internal pyriform layers. In all the stages the labelled cells are also found in the periventricular layers of the controlateral optic tectum, in the dorsal pallium and in the striatum. The quantitative data exhibit the existence of a direct relationship between the number of proliferating cells in the injured optic lobe and the extent of the lesion. These data show the possibility of active cellular proliferation for the reconstruction of the lesioned nervous area and for restoration of the characteristic histological structure.  相似文献   

7.

Background

Although the striatum is in position to regulate motor function, the role of the structure in locomotor behaviour is poorly understood. Therefore, a detailed analysis of locomotion- and obstacle avoidance-related parameters was performed after unilateral lesion of the striatum in rats.

Methods and Results

Using the three dimensional motion capture technology, kinematics of walking and clearing obstacles, head and body orientation were analyzed before and up to 60 days after the lesion. Recordings were performed in treadmill running rats with or without obstacles attached to the treadmill belt. The lesion, which was induced by the direct injection of the mitochondrial toxin malonate into the left caudoputamen resulted in the complete destruction of the dorsal striatum. During the first three days following the lesion, rats were unable to run on the treadmill. Thereafter, rats showed normal looking locomotion, yet the contralesional limbs exhibited changes in length and timing parameters, and were overflexed. Moreover, the head of lesioned rats was orientated towards the side of the lesion, and their postural vertical shifted towards the contralesional side. During obstructed running, the contralesional limbs when they were leading the crossing manoeuvre stepped on the obstacle rather than to overcome obstacle without touching it, yet more frequently with the forelimb than the hindlimb. Unsuccessful crossings appeared to be due to a paw placement farther away from the front of the obstacles, and not to an inappropriate limb elevation. Importantly, deficit in locomotor behaviour did not regress over the time.

Conclusion

Our results argue that the striatum of one hemisphere controls kinematics of contralateral limbs during stereotyped locomotion and plays a prominent role in the selection of the right motor program so that these limbs successfully cross over obstacle.  相似文献   

8.
The striatum of the lizard Tupinambis nigropunctatus lies in the lateral wall of the telencephalon and consists of two major subdivisions: the dorsal striatum and the ventral striatum. Electrolytic lesions were placed in all parts of the striatal complex and in adjacent areas and the subsequent anterograde degeneration was studied using the Nauta-Gygax and Fink-Heimer techniques. Lesions in the dorsal striatum cause terminal degeneration in the ventral striatum both ipsi- and contralaterally. In addition, projections have been found to the lateral amygdaloid nucleus and to parts of the dorsal striatum not affected by the lesion. Following lesions in the ventral striatum fiber degeneration could always be observed in the ventral peduncle of the lateral forebrain bundle. Corresponding terminal degeneration was found in the anterior and posterior entopeduncular nuclei, the tegmentum mesencephali, the substantia nigra, the prerubral area, the mesencephalic central grey and the lateral cerebellar nucleus. When the large celled part of the ventral striatum was involved in the lesion additional degeneration could be traced to the nucleus rotundus via the dorsal peduncle of the lateral forebrain bundle.  相似文献   

9.
Jang S  Kim D  Lee Y  Moon S  Oh S 《Neurochemical research》2011,36(2):258-267
Stress causes endocrinological changes and leads to induce anxiety. It was determined the anxiety and stress-related endocrinological changes through the observation of the level of glucocorticoid and sphingolipid metabolites in serum after stress. Immobilized stress and electric shock was applied to rats for 7 days. This study investigated the induction of anxiety, changes of TH and pERK expression in cortex and amygdala after stress. Also it was determined the changes of glucocorticoid and anxiety when the rats were given stress after amygdala lesion. The stress-given rats spent a lesser percentage of time significantly in the open arm than the control rats. The elevated level of glucocorticoid after stress was suppressed in amygdala lesion group. The expression of TH in the amygdala was decreased, but the expression of TH was not changed in the cortex after stress. To investigate the changes in sphingolipid metabolites after stress, the levels of sphingosine and the phosphate form of sphingolipid (So-1-P) were analyzed in serum. The level of So-1-P was elevated after stress and anxiety was observed after the So-1-P infusion (100 pmol/10 μl/h, i.c.v., for 7 days). Continuous infusion of So-1-P for 7 days led to the significant decrease of TH expression in the amygdala. In conclusion, the results of this study indicate that the lesion of amygdala suppressed the stress-induced anxiety and elevation of glucocorticoid in serum. It was also observed that expression of TH in amygdala as well as increased levels of glucocorticoid in serum might be responsible biomarker, at least in part, of chronic stress. These results suggest that the elevation of So-1-P might be involved in induction of anxiety during stress by the modulation of dopaminergic system in amygdala.  相似文献   

10.
Summary. The influence of nitric oxide synthase (NOS) activity on the KCl-evoked amino acid concentrations was investigated by in vivo microdialysis in the striatum in a rat model of excitotoxic lesion. Basal microdialysate levels of amino acids decreased during the quinolinic acid-induced neurodegeneration process, except for glutamine that increased initially and returned to control values 30 days after quinolinic acid exposure. KCl-evoked increase of extracellular amino acid concentration was reduced due to NOS activity in the striatum of both controls and lesioned animals, except for 120 days after quinolinic acid injection. These changes of amino acid concentrations in microdialysates correlated with the known biochemistry of the consecutive domineered cell types during the lesion process as revealed by histochemistry for NOS, NADPH-diaphorase, GFAP and isolectin B4. The present data provide direct evidence that NOS activity can modulate extracellular amino acid concentrations in the striatum not only under physiological conditions, but also during a pharmacologically induced lesion process and, thus, suggests that nitric oxide affects neurodegeneration via this pathway. Received October 20, 1999; Accepted February 25, 2000  相似文献   

11.
Albino (Wistar) rats were used to investigate whether unilateral labyrinthectomy (UL) modified the concentration of norepinephrine (NE) as well as of dopamine (DA) and the corresponding metabolite 3, 4-dihydroxyphenylacetic acid (DOPAC) in different areas of the cerebral and the cerebellar cortex and the striatum. The results obtained in 38 rats submitted to UL were compared to those of 18 rats submitted to sham-operation. The animals were operated under sodium pentobarbital anesthesia and sacrificed 1.5, 3 and 6 h after surgery. All rats submitted to UL showed phenomena of deficit (1.5-3 h after the lesion) followed by partial vestibular compensation (3-6 h after the lesion). Significant changes in the content of NE were neither found in different areas of the cerebral and the cerebellar cortex, nor in the striatum of rats sacrificed 1.5 h after UL. Three h after the lesion a bilateral increase in the NE content occurred in all the explored areas of the cerebral cortex (i.e., frontal, parieto-temporal and occipital) and the cerebellar cortex (i.e., the vermis and flocculus), as well as in the striatum. This increase, however, was more prominent in the parieto-temporal areas of the neocortex of the intact side, in all the explored areas of the cerebellar cortex of that side, as well as in the striatum of the lesioned side. This asymmetric increase in NE content could not be attributed, at least exclusively, to a generalized activation of the noradrenergic LC nuclei of both sides, due to waking and/or stress which may occur after UL, but did rather depend on asymmetric changes in unit discharge of the vestibular nuclei projecting to the LC of both sides, following UL. In particular, the increased discharge of the vestibular nuclei of the intact side would lead to activation of noradrenergic neurons projecting particularly to the parieto-temporal cortex and the cerebellar cortex of the intact side, as well as to the striatum of the lesioned side. A bilateral increase in NE content was still observed in different areas of the cerebral and cerebellar cortex of rats sacrificed 6 h after UL. This increase, however, was of smaller entity than that observed in the same areas 3 h after UL and quite symmetric. The content of DA and its metabolite DOPAC decreased bilaterally in the striatum of rats sacrificed 1.5 h after UL. This effect was attributed to a reduced synthesis and release of DA, which probably resulted from a reduced facilitatory influence that the deafferented vestibular nuclei exert on the dopaminergic, nigrostriatal system of both sides, although mainly on the intact side. The corresponding values, however, bilaterally recovered to slightly increase with respect to the control values in rats sacrificed 3 and 6 h after UL. In these experiments the content of both DA and DOPAC remained symmetric on both sides after UL, in contrast with the bilateral but asymmetric increase in NE concentration observed in the same structure 3 h the lesion. The present results integrate and extend those of previous experiments showing that: 1) albino rats sacrificed 6 h after UL displayed an increased synthesis of NE, which affected particularly the LC of the intact side as well as the medial vestibular nuclei of both sides (21); and 2) the structures which showed an increased content of NE at given time intervals after UL also displayed an increase in the expression of the immediate early gene c-fos (cf. 16 for ref.). These findings suggest that bilateral but asymmetric activation of the noradrenergic LC neurons following UL may lead to an asymmetric increase in c-fos expression in several target structures, thus contributing to the plastic changes responsible for vestibular compensation. In conclusion, it appears that UL induces in several brain structures of albino rats a short-term increase in synthesis and release of NE. (ABSTRACT TRUNCATED)  相似文献   

12.
The influence of deprivation of the neurotransmitter dopamine (DA) on the development of [Met5]-enkephalin (ME) and substance P (SP) neuropeptide systems of the striatum was investigated in Sprague-Dawley rats. The neurotoxin 6-hydroxydopamine (6-OHDA) was used to induce DA deficiency on postnatal day 3 in rats, and the animals were killed at different postnatal time points until 35 days of age. The levels of ME and SP were determined by radioimmunoassay, and the abundance of preproenkephalin (PPE) and preprotachykinin (PPT) mRNA in the striatum was assessed by Northern blot hybridization analysis. The concentrations of DA, 5-hydroxytryptamine (5-HT), and their acid metabolites were determined by HPLC with electrochemical detection. The postnatal development of the PPE-derived peptide ME and the PPT-derived peptide SP closely paralleled the appearance of the respective mRNAs coding for these peptides. The dopaminergic lesion with 6-OHDA led to a marked depletion of DA and its metabolites but produced an increase in content of 5-HT and its metabolite in the striatum. The lesion did not affect the ME and PPE mRNA levels in the striatum up to 25 days but increased the levels at 35 days. In contrast, a decreased developmental expression in SP and PPT mRNA was observed throughout the observation period. The lesion failed to influence the development of the mRNA coding for the structural protein beta-actin. The results indicate that the normal development of enkephalin, tachykinin, and 5-HT systems of the striatum is dependent on the availability of DA, the integrity of dopaminergic neurons, or both. The studies provide evidence for an interrelationship and interdependence between the development of neurotransmitter and neuropeptide systems. It is suggested that an early developmental abnormality in the DA system could permanently alter the neuropeptide systems, which in turn could influence the progression and expression of the DA-deficiency state parkinsonism, Lesch-Nyhan disease, or both.  相似文献   

13.
人羊膜上皮细胞移植及基因治疗帕金森病大鼠   总被引:3,自引:0,他引:3  
观察人羊膜上皮细胞(human amniotic epithelial cell,HAEC及)人脑源性神经营养因子(brain-derived neurotrophic factor,BDNF基)因修饰的HAEC在帕金森病(Parkinson’sdisease,PD)模型大鼠脑内的长期存活和对旋转行为的治疗效果。用包装BDNFcDNA的慢病毒转染原代HAEC(HAEC/BDNF),HAEC/BDNF与HAEC分别植入6-羟基多巴胺损伤的PD模型大鼠纹状体内,观察动物的旋转行为,用免疫组织化学方法鉴定移植物在体内的存活。结果表明,治疗组PD大鼠的旋转行为改善明显达14周,HAEC/BDNF组能使恢复时间提前。免疫组织化学方法发现移植细胞在14周后仍有少量存活且部分表达BDNF、酪氨酸羟化酶,纹状体内星形胶质细胞增生。实验结果说明,HAEC和BDNF基因修饰的HAEC移植对PD模型大鼠的行为有一定改善,HAEC可以作为一种治疗PD的供体细胞。  相似文献   

14.
目的:应用直流电核团毁损术毁损帕金森病(PD)大鼠模型的内侧苍白球(GPi),记录其手术前后脑电生理活动的变化,以探讨内苍白球射频毁损术治疗PD的可能机制。方法:成年SD大鼠随机分为GP毁损组、假手术组及正常组。对PD毁损组和假手术组大鼠采用6-羟基多巴胺(6-OHDA)右侧黑质致密部(SNc)、中脑腹侧被盖区(VTA)两点注射法建立PD大鼠模型,并经腹腔注射阿扑吗啡(APO)诱发旋转以对模型建立进行评价。通过多导联宏电极在体脑电生理记录技术对各组大鼠进行右侧(注射侧)大脑皮层M1、M2区脑电及纹状体场电位的连续24小时记录,同时进行视频录像。对GP毁损组大鼠行直流电GPi毁损术,术后4天对各组大鼠均行阿扑吗啡诱导旋转行为检验,继续记录脑电活动,记录数据经频率谱分析及相干分析以揭示各记录位点信号的频率成分以及不同位点神经元集群间的功能连接和同步性。结果:对GP毁损组大鼠毁损术前后在清醒静息状态下的皮层脑电和纹状体场电位有明显改变,术后HVSs(High Voltage Spindles)在持续时间上明显缩短发作次数明显减少;对各组大鼠术后在静息状态下的脑电信号进行对比,GP毁损组大鼠较假手术组的HVSs持续时间和发作频率均减少并接近正常组大鼠水平,相干性分析显示GP毁损组大鼠术后在HVSs频段(5-13Hz)上的相干程度显著小于假手术组。结论:在清醒静息状态下6-OHDA建立的PD大鼠皮层-基底节环路上HVSs持续时间延长发生频率增高,经GP毁损术后其时间缩短发作次数减少同步性降低并接近正常水平,从而改善PD症状,该现象可能解释临床采用苍白球射频毁损术治疗PD的治疗机制。  相似文献   

15.
AimsTo investigate dynamic changes and roles of melatonin (MLT) in the striata of 6-hydroxydopamine (6-OHDA)-treated rats.Main methodsA Parkinson's disease (PD) rat was established by a unilateral injection of 6-OHDA into the right substantia nigra pars compacta (SNc) and the right medial forebrain bundle (MFB) to achieve a complete lesion of the ipsilateral nigrostriatal DA system. Dialysates were collected in the lesioned striatum at different time intervals by in vivo microdialysis. In addition, both contralateral and ipsilateral striatum tissues were collected at two time intervals (10:00 and 22:00 h) at 3 and 6 weeks after lesioning. The levels of DA, 3, 4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the dialysates, as well as MLT in the dialysates and tissues were determined using HPLC.Key findingsThe dialysate contents of DA, DOPAC and HVA in the lesioned striatum were significantly decreased (P < 0.001) in comparison with those in the controls or in the unlesioned side 3 weeks after lesioning while the extracellular level of MLT in the lesioned striatum in these corresponding time intervals distinctly increased when compared with those in the controls (P < 0.05). The tissue MLT contents increased in the bilateral striata in different degrees at 6 weeks post-lesion (P < 0.05). Moreover, increased MLT levels correlate well with rotations or DA changes in the lesioned striatum.SignificanceThese data suggest that 6-OHDA lesion manipulates the MLT secretion pattern. Increased striatal MLT level by a unilateral intracerebral injection of 6-OHDA may play dual roles in the progression of PD in rats.  相似文献   

16.
Electrically evoked dopamine release as measured by voltammetry in the rat striatum is heterogeneous in both amplitude and temporal profile. Previous studies have attributed this heterogeneity to variations in the density of dopamine (DA) terminals at the recording site. We reach the alternate conclusion that the heterogeneity of evoked DA release derives from variations in the extent to which DA terminals are autoinhibited. We demonstrate that low-amplitude, slow evoked DA responses occur even though recording electrodes are close to DA terminals. Moreover, the D2 agonist and antagonist, quinpirole and raclopride, respectively, affect the slow responses in a manner consistent with the known functions of pre-synaptic D2 autoreceptors. Recording sites that exhibit autoinhibited responses are prevalent in the dorsal striatum. Autoinhibition preceded electrical stimulation, which is consistent with our prior reports that the striatum contains a tonic pool of extracellular DA at basal concentrations that exceed the affinity of D2 receptors. We conclude that the striatum contains DA terminals operating on multiple time courses, determined at least in part by the local variation in autoinhibition. Thus, we provide direct, real-time observations of the functional consequence of tonic and phasic DAergic signaling in vivo .  相似文献   

17.
18.
Although the involvement of oxidative mechanisms in the cytotoxicity of excitatory amino acids has been well documented, it is not known whether the intrastriatal injection of quinolinic acid (QA) induces changes in glutathione (GSH) metabolism. In this work, the activities of the enzymes GSH reductase (GRD), GSH peroxidase (GPX), and GSH S-transferase (GST), as well as the GSH content, were studied in the striatum, hippocampus, and frontal cortex of rats 1 and 6 weeks following the intrastriatal injection of QA (225 nmol). One group of animals remained untreated. This lesion resulted in a 20% decrease in striatal GRD activity at both the 1- and 6-week postlesion times, whereas GST exhibited a 30% activity increase in the lesioned striatum observable only 6 weeks after the lesion. GPX activity remained unchanged. In addition, the QA injection elicited a 30% fall in GSH level at the 1-week postlesion time. GSH related enzyme activities and GSH content from other areas outside the lesioned striatum were not affected. GST activation could represent a beneficial compensatory response to neutralize some of the oxidant agents generated by the lesion. However, this effect together with the reduction in GRD activity could be the cause or a contributing factor to the observed QA-induced deficit in GSH availability and, consequently, further disrupt the oxidant homeostasis of the injured striatal tissue. Therefore, these results provide evidence that the in vivo excitotoxic injury to the brain might affect oxidant/antioxidant equilibrium by eliciting changes in glutathione metabolism.  相似文献   

19.
In addition to an altered dopaminergic input, the striatum of the weaver mutant mouse (wv/wv) has increased serotonin tissue content and uptake compared to the wild-type mouse (+/+). To gain information regarding the functional status of serotonergic inputs to thewv/wv striatum, endogenous serotonin release fromwv/wv and +/+ striatum was measured under basal conditions as well as in the presence of fenfluramine or elevated concentrations of potassium (K+). Fractional basal release of serotonin from the +/+ striatum was significantly greater than that from thewv/wv striatum. In the presence of K+, evoked release (stimulated release minus basal release) was greater from the +/+ striatum than from thewv/wv striatum. In the presence of fenfluramine, evoked serotonin release was greater from thewv/wv striatum compared to the +/+ striatum. These data are consistent with the involvement of an additional transmitter(s) in modulating serotonin release to a greater extent in thewv/wv than the +/+ striatum. The data on fenfluramine-stimulated serotonin release suggest that the additional serotonin content found in thewv/wv striatum is in a releasable pool but that striatal serotonin release might be attenuated more inwv/wv than in +/+ mice.  相似文献   

20.
Unilateral 6-hydroxydopamine lesion of the substantia nigra reduced the volume of striatal necrosis and suppressed the increase in extracellular glutamate concentration in the striatum induced by middle cerebral artery occlusion in rats. These results indicate that the dopaminergic nigrostriatal pathway is highly involved in the vulnerability of the striatum to ischemia and suggest that glutamate-dopamine interactions may play a key role in the striatal ischemic insult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号