首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dopamine (DA), a major neurotransmitter used in the striatum, is involved in movement disorders such as Parkinson's disease and Huntington's chorea. With the loss of neurons in the striatum of patients with Huntington's disease (HD), there is an associated downregulation of DA receptors, which may alter DA-mediated responses. In the present study, DA-mediated electrophysiological depression was studied in animals with quinolinic acid (QA)-induced experimental HD. QA was directly applied to the right striatum of adult female Sprague-Dawley rats. Animals receiving QA developed ipsilateral rotation after the application of apomorphine. Fetal striatal tissue transplants grafted 1 month after lesioning attenuated apomorphine-induced rotation. Six months after lesioning, the animals were anesthetized with urethane for electrophysiological study. DA, applied directly to neurons by pressure microejection, inhibited spontaneous single-unit activity in the striatal neurons of nonlesioned, lesioned and lesioned/grafted rats. QA lesioning reduced responses to DA in the striatal neurons. The dose of DA required to inhibit striatal neuron activity in the lesioned rats was significantly increased compared to that in the nonlesioned rats. Transplantation of fetal striatal tissue restored the electrophysiological sensitivity to DA in the lesioned striatum. The dose of DA used to suppress striatal neuron activity was reduced after grafting. Immunohistostaining showed survival of gamma-aminobutyric acid neurons at the graft site. Tyrosine hydroxylase-positive terminals were found innervating the striatal grafts. In conclusion, our data demonstrate that fetal striatal transplants restore electrophysiological sensitivity to DA in the lesioned striatum of animals with experimental HD.  相似文献   

2.
The effects of grafted embryonic striatum tissue on the state of benzodiazepine system (BDS) (assessed by the level of3H-diazepam binding with synaptic membranes) and on behavior of animals with lesioned left amygdala in open field have been studied in rats. The injury of amygdala by either kainic acid application or saline injection produced a disbalance between inhibitory and excitatory transmitters. As a result, the level of3H-diazepam binding decreased as compared with that in intact animals, thus demonstrating attenuation of GABA-ergic inhibitory transmission by the BDS. Rats with lesioned amygdala showed disturbance in some behavioral functions. Transplantation normalized the behavior and increased the level of3H-diazepam binding.  相似文献   

3.
The activity of ammoniagenesis from guanine nucleotides was found to increase significantly in rat brain after infusion of kainic acid into the striatum. Among the enzymes involved in degrading guanine nucleotides, nucleoside diphosphatase was markedly increased in the lesioned striatum. The enzyme activity began to increase 2 days after the infusion, and reached the maximum on the 13th day, the level being 4 times as high as that of the intact contralateral region. The increased activity was due to Type L enzyme, judging from its substrate specificity. Puromycin and cycloheximide inhibited this increase, indicating that the increased activity resulted from an increase in the net synthesis of the enzyme. These findings suggest that Type L NDPase might play some important roles in gliosis after neuronal lesion.  相似文献   

4.
An in vitro model of anoxia-induced brain damage was utilized to help elucidate the biochemical basis of cell damage due to reduced oxygen availability. Previous studies suggest that anoxia-induced damage may vary presynaptically, post-synaptically or in the cell body. Thus, the consequences of an anoxic treatment incubation were examined with hippocampal slices, which contain cholinergic nerve terminals but not cell bodies, and with slices from whole striatum or its subregions, which contain both cholinergic cell bodies and nerve terminals. Slices were preincubated with either oxygen or nitrogen (treatment incubation) and the persistent effects of this treatment on [14C]acetylcholine and14CO2 production from [U-14C]glucose were assessed in a subsequent incubation under optimal conditions (test incubation). An anoxic treatment incubation reduced the subsequent test incubation production of CO2 about 40% in the hippocampus and striatum, The anoxic treatment incubation diminished ACh production by 46% in the striatum, but only minimally affected that in the hippocampus. Anoxic treatment incubations of synaptosomes did not alter test-incubation ACh synthesis or CO2 production. Omission of calcium from the anoxic treatment incubation increased striatal ACh synthesis by 88% and CO2 production in both regions. These results suggest that anoxia produces persistent changes in postsynaptic processes or cell bodies (in this model cholinergic ones) that differ from those in nerve terminals and that calcium is important in the production of these deficits.  相似文献   

5.
The present study was undertaken in order to investigate the muscarinic (M(1)), dopaminergic (D(1) and D(2)) and serotonergic (5-HT(2)) receptors densities in hippocampus and striatum of Wistar rats after status epilepticus (SE) induced by pilocarpine. The control group was treated with 0.9% saline. An other group of rats received pilocarpine (400 mg/kg, s.c.) and both groups were sacrificed 1 h after treatment. The results have shown that pilocarpine administration and resulting SE produced a downregulation of M(1) receptor in hippocampus (41%) and striatum (51%) and an increase in the dissociation constant (K(d)) values in striatum (42%) alone. In both areas the 5-HT(2) receptor density remained unaltered, but a reduction (50%) and an increase (15%) in the K(d) values were detected in striatum and hippocampus, respectively. D(1) and D(2) receptor densities in hippocampus and striatum remained unaltered meanwhile K(d) values for D(1) receptor declined significantly, 33% in hippocampus and 26% in striatum. Similarly, K(d) values for D(2) decreased 55% in hippocampus and 52% in striatum. From the preceding results, it is clear that there is a possible relation between alterations in muscarinic receptor density and others systems studied as well as they suggest that changes in dissociation constant can be responsible for the establishment of pilocarpine-induced SE by altering the affinity of neurotransmitters such as acetylcholine, dopamine and serotonine.  相似文献   

6.
7.
The local cerebral bloodflow (LCBF) was studied by the hydrogen clearance technique in the dorsal hippocampus (DH) of rats with a deep stage of the informational pathology of behavior (IPB). The IPB was produced by the chronic negative emotional stress developed during the long period of testing delayed reactions (indirect variant: delay in 2-3 s) under conditions of time deficit between the signals (30 c) and high motivation level. A significant decrease in the LCBF level was demonstrated in the experimental group in comparison with the control animals. It is suggested that: (1) the decrease in the LCBF in the DH may be of a secondary character as a result of suppression of the functional activity of the DH by exposure to the chronic negative emotional stress; (2) it is not inconceivable that the LCBF decrease in the DH is of a primary character and may account for the dysfunction of this structure facilitating the emotional stress and its acquisition of pathogenic properties, thus being an important factor of the IPB formation.  相似文献   

8.
9.
Two key features of sensorimotor prediction are preprogramming and adjusting of performance based on previous experience. Oculomotor tracking of alternating visual targets provides a simple paradigm to study this behavior in the motor system; subjects make predictive eye movements (saccades) at fast target pacing rates (>0.5 Hz). In addition, the initiation errors (latencies) during predictive tracking are correlated over a small temporal window (correlation window) suggesting that tracking performance within this time range is used in the feedback process of the timing behavior. In this paper, we propose a closed-loop model of this predictive timing. In this model, the timing between movements is based on an internal estimation of stimulus timing (an internal clock), which is represented by a (noisy) signal integrated to a threshold. The threshold of the integrate-to-fire mechanism is determined by the timing between movements made within the correlation window of previous performance and adjusted by feedback of recent and projected initiation error. The correlation window size increases with repeated tracking and was estimated by two independent experiments. We apply the model to several experimental paradigms and show that it produces data specific to predictive tracking: a gradual shift from reaction to prediction on initial tracking, phase transition and hysteresis as pacing frequency changes, scalar property, continuation of predictive tracking despite perturbations, and intertrial correlations of a specific form. These results suggest that the process underlying repetitive predictive motor timing is adjusted by the performance and the corresponding errors accrued over a limited time range and that this range increases with continued confidence in previous performance.  相似文献   

10.
The present studies were carried out to examine a possible role of hippocampal dopamine in the hyperactivity induced by methamphetamine. For this purpose, 6-hydroxydopamine (6-OHDA) lesion of the dorsal hippocampus (D-HPC) was made in desmethylimipramine pretreated rats in order to specifically destroy dopamine neurons. D-HPC lesions produced a large (96%) and selective depletion of content of dopamine in the D-HPC. This lesion did not change spontaneous locomotion and rearing behavior. The 6-OHDA lesioned rat produced a blockade of the increase in locomotor activity induced by 1.0 and 2.0 mg/kg of methamphetamine. In contrast, the 6-OHDA lesion of the D-HPC failed to influence the methamphetamine-induced rearing activity. These results indicate that dopamine neurons in the D-HPC may have some role in methamphetamine-induced locomotion, but not in methamphetamine-induced rearing.  相似文献   

11.
Two stages of alcohol intoxication were detected in an experiment on 21 rats during formation of addiction to alcohol. It has been shown that the emotiogenic hypothalamic zones may play the part of trigger mechanisms with infolvement of limbic and neocortical apparatuses. At the same time a different type of integration of addiction to alcohol food is possible, in which the emotiogenic zones do not play the principal part. The late stages of formation of addiction to alcohol are characterized by EEG hypersynchronia with a qualitatively different structure in the periods of abstinence and "saturation" with alcohol. A close connection has been recorded between the mechanisms of emotion, hypersynchronia and behavioral epileptic phenomena.  相似文献   

12.
TBA-reactive products were measured in the brain, liver, and heart of Wistar rats in control conditions and after 24 h immobilization. Animals were subjected to the open field test before and after the immobilization. Behavior patterns, gastric mucosa alterations and MDA accumulation in organs suggested that immobilization as well as food and water deprivation were all strong stressor stimuli. Initial open field behavior characteristics were significantly correlated with MDA contents in various tissues under emotional stress.  相似文献   

13.
Electromagnetic radiation (EMR) of cellular phones may affect biological systems by increasing free radicals and changing the antioxidant defense systems of tissues, eventually leading to oxidative stress. Green tea has recently attracted significant attention due to its health benefits in a variety of disorders, ranging from cancer to weight loss. Thus, the aim of the present study was to investigate the effect of EMR (frequency 900 MHz modulated at 217 Hz, power density 0.02 mW/cm2, SAR 1.245 W/kg) on different oxidative stress parameters in the hippocampus and striatum of adult rats. This study also extends to evaluate the therapeutic effect of green tea mega EGCG on the previous parameters in animals exposed to EMR after and during EMR exposure. The experimental animals were divided into four groups: EMR-exposed animals, animals treated with green tea mega EGCG after 2 months of EMR exposure, animals treated with green tea mega EGCG during EMR exposure and control animals. EMR exposure resulted in oxidative stress in the hippocampus and striatum as evident from the disturbances in oxidant and antioxidant parameters. Co-administration of green tea mega EGCG at the beginning of EMR exposure for 2 and 3 months had more beneficial effect against EMR-induced oxidative stress than oral administration of green tea mega EGCG after 2 months of exposure. This recommends the use of green tea before any stressor to attenuate the state of oxidative stress and stimulate the antioxidant mechanism of the brain.  相似文献   

14.
In experiments on 250 Wistar female rats the influence was studied of a single maximum and submaximum physical loads on the emotional behaviour and the state of conditioned activity. It has been established, that as a result of maximum possible run of the animals depression takes place of orienting investigatory activity in conditions of the "open field" and disturbance of elaboration and reproduction of the conditioned reflex of two-way avoidance. Normalization of these parameters took place in 48 hours after the maximum load action. Analogous effect was observed in the period of aftereffect of the submaximum physical load, characterized by lowering of the level of behavioural activity in the "open field", disturbance of the elaboration of two-way avoidance as a result of presumable increase of functional tonus of the brain inhibitory systems.  相似文献   

15.
Intrastriatal kainic acid (2 μg/μl) administration gave rise to significant increase in activities of glutamine synthetase and arginase along with a significant decrease in the activity of glutaminase in the lesioned striatal tissue 7 days after the administration of kainic acid. The increase in the activity of glutamine synthetase was attributed to the gliosis occurring in such lesions. The decrease in the activity of glutaminase was thought to be due to the loss of GABAergic neurons. The increase in arginase activity might be occurring in glial cells or in nerve endings. Although the earlier results indicated a low specific activity of arginase in glial cells, the observed increase in its activity might be partly due to its increase in proliferating glial cells, liberating ornithine for the formation of polyamines. However, it was also thought that a substantial increase may be occurring in the arginase present in the intact glutamatergic (corticostriate pathway) nerve endings, since it was earlier found that the synaptosomes of the rat brain had appreciably high activity of arginase. These results were discussed in relation to the probable roles of arginine and glutamine as the precursors for neurotransmitter pools of glutamate in striatum.  相似文献   

16.
Functional magnetic resonance imaging (fMRI) was used to investigate the cerebral correlates of motor sequence memory consolidation. Participants were scanned while training on an implicit oculomotor sequence learning task and during a single testing session taking place 30 min, 5 hr, or 24 hr later. During training, responses observed in hippocampus and striatum were linearly related to the gain in performance observed overnight, but not over the day. Responses in both structures were significantly larger at 24 hr than at 30 min or 5 hr. Additionally, the competitive interaction observed between these structures during training became cooperative overnight. These results stress the importance of both hippocampus and striatum in procedural memory consolidation. Responses in these areas during training seem to condition the overnight memory processing that is associated with a change in their functional interactions. These results show that both structures interact during motor sequence consolidation to optimize subsequent behavior.  相似文献   

17.
Gao YQ  Gao H  Zhou ZY  Lu SD  Sun FY 《生理学报》2004,56(2):153-157
实验在大鼠大脑中动脉阻塞性脑缺血(middle cerebral arterv occlusion,MCAO)模型上采用Western Blot方法检测脑缺血再灌注不同时程(6h、12h、1d、3d)脑组织中瞬时受体电位通道蛋白4(transient receptor potential channel4,TRPC4)的表达情况,并与正常对照组相比,结果显示,12 h、1 d、3 d组纹状体、海马区域TRPC4含量明显高于正常组(P<0.05)。采用免疫组织化学定位检测,显示TRPC4主要表达在神经元细胞膜上;免疫组化阳性细胞统计分析显示,在不同时程缺血组中纹状体、海马区域TRPC4的表达与正常组相比有所增加,其中纹状体、海马区缺血再灌注1 d、3 d组缺血同侧1RPC4阳性细胞升高显著(P<0.05)。脑缺血再灌注损伤后TRPC4相对含量增加,提示TRPC4可能参与脑缺血引起的急性和迟发性神经元损伤。  相似文献   

18.
Some biochemical and histological studies of Parkinson’s disease patients’ brains and 6-OHDA-lesioned rats suggest that dopaminergic dennervation of the striatum leads to the nitrergic system hypofunction in this structure. Hence, recently the modulation of nitric oxide (NO)– soluble guanylyl cyclase–cyclic GMP signaling is considered to be a new target for the treatment of Parkinson’s disease. The aim of our study was to examine the impact of chronic combined treatment with low doses of the NO donor molsidomine (2 and 4 mg/kg) and L-DOPA (12.5 and 25 mg/kg) on rotational behavior and monoamine metabolism in the striatum (STR) and substantia nigra (SN) of unilaterally 6-OHDA-lesioned rats.  相似文献   

19.
In hippocampectomised rats or in rats subjected to hippocampectomy combined with destruction of the hypothalamic suprachiasmatic nuclei, time conditioning could not be elaborated. The lesion of the suprachiasmatic nucleus alone, however, accelerated elaboration of the conditioned reflex. In denucleated rats, the hippocampectomy did not affect the time of a previous conditioning recovery.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号