首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mevalonate kinase catalyzes the phosphorylation of mevalonic acid to form mevalonate 5-phosphate, which plays a key role in regulating cholesterol biosynthesis in animal cells. Deficiency of mevalonate kinase activity in the human body has been linked to mevalonic aciduria and hyperimmunoglobulinemia D/periodic fever syndrome (HIDS). We cloned the gene of rat mevalonate kinase into a bacterial expression vector pLM1 with six continuous histidine codons attached to the 5(') of the gene. The cloned gene was overexpressed in Escherichia coli and the soluble protein was purified with a nickel HiTrap chelating metal affinity column in 90% yield to apparent homogeneity. The purified rat mevalonate kinase had a dimeric structure composed of identical subunits. Based on SDS-PAGE, the subunit was 42 kDa. The specific activity of the purified His-tagged rat mevalonate kinase was 32.7 micromol/min/mg and the optimal pH was found to be 7.0-8.0 in phosphate buffer. The Michaelis constant K(M) was 35 microM for (RS)-mevalonate and 953 microM for ATP, respectively. The V(max) was determined to be 38.7 micromol/min/mg. The overexpression of rat mevalonate kinase in E. coli and one-step purification of the highly active rat mevalonate kinase will facilitate further our investigation of this enzyme through site-directed mutagenesis and enzyme-catalyzed reactions with substrate analogs.  相似文献   

2.
The murine adipocyte lipid binding protein (ALBP) has been cloned into Escherichia coli, purified from expressing cultures, and its ligand binding and phosphorylation properties studied. In the cloning strategy, the recombinant, pT7-5 rALBP, was transformed into E. coli strain K38 harboring plasmid pGP1-2 which directs the synthesis of T7 RNA polymerase. Upon shifting the temperature from 30 to 42 degrees C to induce T7 RNA polymerase expression, the 14.6-kDa recombinant ALBP (rALBP) was expressed for approximately 2 h and accumulated to about 1% of total E. coli protein. The recombinant ALBP was soluble in E. coli extracts and resistant to bacterial proteolysis. A procedure for purifying rALBP was developed utilizing immuno-chemical detection based upon reactivity with anti-murine ALBP antiserum. A combination of acidic ammonium sulfate fractionation, gel permeation chromatography, and carboxymethyl ion-exchange high performance liquid chromatography separation was used to prepare homogeneous rALBP. Sequence analysis of rALBP indicated that the initiating methionine residue had been removed and the amino-terminal cysteine residue was not blocked. Purified rALBP exhibited stoichiometric, saturable binding of oleic acid (n = 1.0, K0.5 approximately 100 microM) and retinoic acid (n = 1.0, K0.5 approximately 170 microM). Incubation of rALBP with wheat germ agglutinin-purified insulin receptor, ATP, and 100 nM insulin resulted in a 5-fold stimulation of rALBP phosphorylation above the basal state. Kinetic analysis of rALBP phosphorylation by the 3T3-L1 insulin receptor kinase yielded a Michaelis constant (Km) of 50 microM and a maximal velocity of 1 mol of rALBP phosphorylated/min/mol insulin binding sites. Phosphoamino acid analysis indicated that phosphorylation occurred upon tyrosine. These results indicate that murine ALBP has been cloned and expressed in E. coli, purified to homogeneity, and is a substrate for the insulin receptor tyrosyl kinase in vitro.  相似文献   

3.
4.
Dehydroepiandrosterone sulfate is the most abundant sulfated steroid transformed in human tissues and serves as a precursor for steroid hormones. Recombinant human dehydroepiandrosterone sulfotransferase (DHEA-ST) expressed in glutathione sulfotransferase fusion form in E. coli was purified using glutathione sepharose 4B affinity adsorption chromatography, a Factor Xa cleavage step, and Q-sepharose fast flow column chromatography. The homogeneous preparation had an activity toward dehydroepiandrosterone (DHEA) of 150+/-40 nmol/min per mg of protein under the assay conditions at an overall yield of 38.4%. The recombinant human DHEA-ST was shown to have a subunit mass of 34 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis, while having a molecular mass of 67.2 kDa by Superose-12 gel filtration. Our results indicate that the active recombinant enzyme expressed in E. coli is a homodimer.Biochemical properties for purified DHEA-ST were studied using DHEA as a substrate. The optimum pH ranged from pH 7 to 8, and the optimum temperature 40-45 degrees C. Ninety percent of basal DHEA-ST activity remained even after the enzyme was treated at 45 degrees C for 15 min. The 50% inactivation concentration of NaCl for DHEA-ST activity was determined to be around 500 mM. The K(m) value for DHEA was 1.9+/-0.3 microM and V(max)=190+/-18 nmol/min per mg of protein at 37 degrees C, pH 7.5.  相似文献   

5.
It has been proposed that isoprenoid biosynthesis in several gram-positive cocci depends on the mevalonate pathway for conversion of acetyl coenzyme A to isopentenyl diphosphate. Mevalonate kinase catalyzes a key reaction in this pathway. In this study the enzyme from Staphylococcus aureus was expressed in Escherichia coli, isolated in a highly purified form, and characterized. The overall amino acid sequence of this enzyme was very heterologous compared with the sequences of eukaryotic mevalonate kinases. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and analytical gel filtration chromatography suggested that the native enzyme is a monomer with a molecular mass of approximately 33 kDa. The specific activity was 12 U/mg, and the pH optimum was 7.0 to 8.5. The apparent K(m) values for R,S-mevalonate and ATP were 41 and 339 micro M, respectively. There was substantial substrate inhibition at millimolar levels of mevalonate. The sensitivity to feedback inhibition by farnesyl diphosphate and its sulfur-containing analog, farnesyl thiodiphosphate, was characterized. These compounds were competitive inhibitors with respect to ATP; the K(i) values were 46 and 45 micro M for farnesyl diphosphate and its thio analog, respectively. Parallel measurements with heterologous eukaryotic mevalonate kinases indicated that S. aureus mevalonate kinase is much less sensitive to feedback inhibition (K(i) difference, 3 orders of magnitude) than the human enzyme. In contrast, both enzymes tightly bound trinitrophenyl-ATP, a fluorescent substrate analog, suggesting that there are similarities in structural features that are important for catalytic function.  相似文献   

6.
Pyruvate kinase (ATP: pyruvate 2-0-phosphotransferase, EC 2. 7. 1. 40) from bovine adrenal cortex was purified 243 fold. The whole purification procedure included ammonium sulphate fractionation, heat treatment, Sephadex HW-55 chromatography and phosphocellulose chromatography. The specific activity of the preparation is 15.6 U/mg at 30 degrees C, the yield--36%. Pyruvate kinase showed only one protein band as judged by sodium dodecyl sulphate acrylamide gel electrophoresis. The enzyme displayed a hyperbolic saturation curve with respect to P-enolpyruvate. The apparent Km for this substrate was 0.55 X 10(-4) M, pH optimum--6.8-7.0. K+ concentrations above 0.1 M inhibit the enzyme.  相似文献   

7.
In addition to the ubiquitous mevalonate pathway, Streptomyces sp. strain CL190 utilizes the nonmevalonate pathway for isopentenyl diphosphate biosynthesis. The initial step of this nonmevalonate pathway is the formation of 1-deoxy-D-xylulose 5-phosphate (DXP) by condensation of pyruvate and glyceraldehyde 3-phosphate catalyzed by DXP synthase. The corresponding gene, dxs, was cloned from CL190 by using PCR with two oligonucleotide primers synthesized on the basis of two highly conserved regions among dxs homologs from six genera. The dxs gene of CL190 encodes 631 amino acid residues with a predicted molecular mass of 68 kDa. The recombinant enzyme overexpressed in Escherichia coli was purified as a soluble protein and characterized. The molecular mass of the enzyme was estimated to be 70 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 130 kDa by gel filtration chromatography, suggesting that the enzyme is most likely to be a dimer. The enzyme showed a pH optimum of 9.0, with a V(max) of 370 U per mg of protein and K(m)s of 65 microM for pyruvate and 120 microM for D-glyceraldehyde 3-phosphate. The purified enzyme catalyzed the formation of 1-deoxyxylulose by condensation of pyruvate and glyceraldehyde as well, with a K(m) value of 35 mM for D-glyceraldehyde. To compare the enzymatic properties of CL190 and E. coli DXP synthases, the latter enzyme was also overexpressed and purified. Although these two enzymes had different origins, they showed the same enzymatic properties.  相似文献   

8.
Extracellular secretion of lignin peroxidase from Pycnoporus sanguineus MTCC-137 in the liquid culture growth medium amended with lignin containing natural sources has been shown. The maximum secretion of lignin peroxidase has been found in the presence of saw dust. The enzyme has been purified to homogeneity from the culture filtrate of the fungus using ultrafiltration and anion exchange chromatography on DEAE-cellulose. The purified lignin peroxidase gave a single protein band in sodium dodecylsulphate polyacrylamide gel electrophoresis corresponding to the molecular mass 40 kDa. The K(m)(, kcat) and k(cat)/K(m) values of the enzyme using veratryl alcohol and H2O2 as the substrate were 61 microM, 2.13 s(-1), 3.5 x 10(4) M(-1) s(-1) and 71 microM, 2.13 s(-1), 3.0 x 10(4) M(-1) s(-1) respectively at the optimum pH of 2.5. The temperature optimum of the enzyme was 25 degrees C.  相似文献   

9.
Mevalonate kinase was purified to homogeneity from Catharanthus roseus (L.) G. Don suspension-cultured cells. The purified enzyme had an M(r) of 104,600 and a subunit size of about 41,500. Kinetic studies indicated an ordered sequential mechanism of action, in which mevalonate was the first substrate to bind and ADP was the last product to leave the enzyme. True values for the kinetic constants were determined for mevalonate, with K(ma) = 76 microM and K(ia) = 74 microM, and for ATP, with K(mb) = 0.13 mM and K(ib) = 0. 13 mM; the true V(max) was calculated to be 138.7 nkat/mg of protein. Product inhibition was only detectable at rather high concentrations: above 0.7 mM for 5-phosphomevalonate and above 2 mM for ADP, with an ADP/ATP ratio of at least 1. Mevalonate kinase activity was shown to be strongly inhibited by farnesyl diphosphate. Farnesyl diphosphate acted as a competitive inhibitor toward ATP, with a K(i) value of 0.1 microM. Mevalonate kinase activity was dependent on the presence of divalent ions. At a concentration of 2 mM, Mg(2+) and Mn(2+) were best and equally effective in sustaining activity; compared to Mg(2+) and Mn(2+), relative activities of 35, 30, 16, 4.8, and 3.4% were detected at equimolar concentrations of Zn(2+), Fe(2+), Co(2+), Ca(2+), and Ni(2+), respectively. The pH-dependent activity profile of mevalonate kinase showed a broad pH optimum between pH 7 and 10, with a maximum at about pH 8.9.  相似文献   

10.
Recombinant varicella zoster virus (VZV) thymidine kinase (TK) was isolated in a fast and gentle two-step procedure from Escherichia coli. The TK was expressed as a PreScission-cleavable fusion protein and purified by glutathione and ATP affinity chromatography, yielding homogeneous, highly pure VZV TK. The purified enzyme displays enzymatic activities with K(m) values of 0.3 +/- 0.06 microM for the natural substrate thymidine and 11.6 +/- 3.2 microM for ATP, indicating the biochemical equivalence with the viral VZV TK expressed in infected cells. Determinations of the native molecular weight by size exclusion chromatography and native polyacrylamide gel electrophoresis revealed that the pure enzyme is biologically active as a homodimer.  相似文献   

11.
Yeast protein Yol066 (encoded by YOL066 ORF, also known as Rib2) possesses two distinct sequence domains: C-terminal deaminase domain and N-terminal part related to RNA:pseudouridine (psi)-synthases. The deaminase domain is implicated in the riboflavine biosynthesis, while the exact function of the RNA:Psi-synthase domain remains obscure. Here we report the optimisation of growth conditions and purification scheme for recombinant His(6)-tagged Yol066 expressed in E. coli BL21(DE3) using pET28 plasmid. Production of soluble Yol066 protein is best at low temperature (18 degrees C) and IPTG concentration (50 micro M) and Yol066 purification was achieved using metal-affinity and ion-exchange chromatography. This optimised protocol yields about 10 mg of highly purified recombinant Yol066 from 3 l of E. coli culture.  相似文献   

12.
The gene (hmgA) for 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (EC 1.1.1.34) from the thermophilic archaeon Sulfolobus solfataricus P2 was cloned and sequenced. S. solfataricus HMG-CoA reductase exhibited a high degree of sequence identity (47%) to the HMG-CoA reductase of the halophilic archaeon Haloferax volcanii. Phylogenetic analyses of HMG-CoA reductase protein sequences suggested that the two archaeal genes are distant homologs of eukaryotic genes. The only known bacterial HMG-CoA reductase, a strictly biodegradative enzyme from Pseudomonas mevalonii, is highly diverged from archaeal and eukaryotic HMG-CoA reductases. The S. solfataricus hmgA gene encodes a true biosynthetic HMG-CoA reductase. Expression of hmgA in Escherichia coli generated a protein that both converted HMG-CoA to mevalonate and cross-reacted with antibodies raised against rat liver HMG-CoA reductase. S. solfataricus HMG-CoA reductase was purified in 40% yield to a specific activity of 17.5 microU per mg at 50 degrees C by a sequence of steps that included heat treatment, ion-exchange chromatography, hydrophobic interaction chromatography, and affinity chromatography. The final product was homogeneous, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The substrate was (S)- not (R)-HMG-CoA; the reductant was NADPH not NADH. The Km values for HMG-CoA (17 microM) and NADPH (23 microM) were similar in magnitude to those of other biosynthetic HMG-CoA reductases. Unlike other HMG-CoA reductases, the enzyme was stable at 90 degrees C and was optimally active at pH 5.5 and 85 degrees C.  相似文献   

13.
14.
A growth factor-stimulated protein kinase activity that phosphorylates the epidermal growth factor (EGF) receptor at Thr669 has been described (Countaway, J. L., Northwood, I. C., and Davis, R. J. (1989) J. Biol. Chem. 264, 10828-10835). Anion-exchange chromatography demonstrated that this protein kinase activity was accounted for by two enzymes. The first peak of activity eluted from the column corresponded to the microtubule-associated protein 2 (MAP2) kinase. However, the second peak of activity was found to be a distinct enzyme. We present here the purification of this enzyme from human tumor KB cells by sequential ion-exchange chromatography. The isolated protein kinase was identified as a 46-kDa protein by polyacrylamide gel electrophoresis and silver staining. Gel filtration chromatography demonstrated that the enzyme was functional in a monomeric state. A kinetic analysis of the purified enzyme was performed at 22 degrees C using a synthetic peptide substrate based on the primary sequence of the EGF receptor (KREL VEPLT669PSGEAPNQALLR). The Km(app) for ATP was 40 +/- 5 microM (mean +/- S.D., n = 3). GTP was not found to be a substrate for the purified enzyme. The Km(app) for the synthetic peptide substrate was 260 +/- 40 microM (mean +/- S.D., n = 3). The Vmax(app) for the isolated protein kinase was determined to be 400-900 nmol/mg/min. The purified enzyme was designated EGF receptor Thr669 (ERT) kinase. It is likely that the MAP2 and ERT kinases account for the phosphorylation of the EGF receptor at Thr669 observed in cultured cells. The marked stimulation of protein kinase activity caused by growth factors indicates that these enzymes may have an important function during signal transduction.  相似文献   

15.
16.
An Escherichia coli virus T1-induced DNA methyltransferase was identified by activity gel analysis in homogenates of infected E. coli DNA-adenine-methylation-deficient strains. Although the Mr of this protein (31,000) is in the same range as that of the E. coli DNA adenine methyltransferase, the two proteins are not closely related; the E. coli dam gene does not hybridize with T1 DNA. Selective conditions for measurement of the T1 activity were developed, and the enzyme was purified to functional homogeneity, as shown by activity analysis in polyacrylamide gels. Requirements for optimal activity of the viral enzyme were determined to be pH 6.9, ionic strengths below 0.1 M KCl, and a temperature between 40 and 43 degrees C. The Km for S-adenosyl-L-methionine is 4.9 microM. The purified T1 DNA methyltransferase is capable of methylating adenine in 5'-GATC-3' sites in vitro.  相似文献   

17.
An open reading frame of the hyperthermophilic archaeon Aeropyrum pernix K1 APE2325, which composed of 474 bases, was cloned and expressed in Escherichia coli BL21 (DE3) Codon Plus-RIL. The recombinant protein was purified by Ni-chelation affinity chromatography. It showed a single band with a molecular mass of 18kDa in SDS-PAGE. The purified enzyme exhibited both phospholipase A(2) and esterase activities with the optimal catalytic temperature at 90 degrees C. The enzyme activity was Ca(2+)-independent. Kinetic analysis revealed its Km, k cat, and Vm for the p-nitrophenyl propionate substrate were 103microM, 39s(-1), and 249micromol/min/mg, respectively. The recombinant protein was thermostable and its half-life at 100 degrees C was about 1h.  相似文献   

18.
A new procedure for the large-scale purification of the recombinant thermostable chitinase (Chi40) cloned from Streptomyces thermoviolaceus in various expression vectors in Escherichia coli is described. Chi40 was overproduced in the cytosolic and secreted forms. The cytosolic form (Chi40c) was highly overproduced and purified by metal-affinity and ion-exchange chromatography in large amounts. The protein was highly active and thermostable but not homogeneous, since a considerable proportion of the Chi40c protein was not correctly folded as determined by native polyacrylamide gel electrophoresis. The Chi40 protein secreted into the culture medium (Chi40s) was purified by hydrophobic interaction and ion-exchange chromatography and high amounts of correctly folded and active Chi40 protein could be recovered in a short time. The enzymatic activity of Chi40s on a synthetic and on its natural substrate, chitin, was studied. Thermostability measurements showed that Chi40 has a T(m) of 60.7 degrees C at neutral pH. (13)C-(15)N double-labeled recombinant Chi40s was also produced and purified from the pECHChi40-9 construct introduced into BL21trxB(DE3) cells grown in minimal medium in the presence of the paramagnetic elements [(13)C]glucose and (15)NH(4)Cl. The presented data open the possibility of an extensive structural study on Chi40s by X-ray crystallography and on enzyme-substrate interaction by NMR spectroscopy.  相似文献   

19.
The fructose-1,6-bisphosphate aldolase gene from the thermophilic bacterium, Anoxybacillus gonensis G2, was cloned and sequenced. Nucleotide sequence analysis revealed an open reading frame coding for a 30.9 kDa protein of 286 amino acids. The amino acid sequence shared approximately 80-90% similarity to the Bacillus sp. class II aldolases. The motifs that are responsible for the binding of a divalent metal ion and catalytic activity completely conserved. The gene encoding aldolase was overexpressed under T7 promoter control in Escherichia coli and the recombinant protein purified by nickel affinity chromatography. Kinetic characterization of the enzyme was performed at 60 degrees C, and K(m) and V(max) were found to be 576 microM and 2.4 microM min(-1) mg protein(-1), respectively. Enzyme exhibits maximal activity at pH 8.5. The activity of enzyme was completely inhibited by EDTA.  相似文献   

20.
Enterococcus faecalis mevalonate kinase   总被引:1,自引:0,他引:1  
Gram-positive pathogens synthesize isopentenyl diphosphate, the five-carbon precursor of isoprenoids, via the mevalonate pathway. The enzymes of this pathway are essential for the survival of these organisms, and thus may represent possible targets for drug design. To extend our investigation of the mevalonate pathway in Enterococcus faecalis, we PCR-amplified and cloned into pET-28b the mvaK1 gene thought to encode mevalonate kinase, the fourth enzyme of the pathway. Following transformation of the construct EFK1-pET28b into Escherichia coli BL21(DE3) cells, the expressed C-terminally hexahistidine-tagged protein was purified on a nickel affinity support to apparent homogeneity. The purified protein catalyzed the divalent ion-dependent phosphorylation of mevalonate to mevalonate 5-phosphate. The specific activity of the purified kinase was 24 micromole/min/mg protein. Based on sedimentation velocity data, E. faecalis mevalonate kinase exists in solution primarily as a monomer with a mass of 32.2 kD. Optimal activity occurred at pH 10 and at 37 degrees C. Delta H(a) was 22 kcal/mole. Kinetic analysis suggested that the reaction proceeds via a sequential mechanism. K(m) values were 0.33 mM (mevalonate), 1.1 mM (ATP), and 3.3 mM (Mg(2+)). Unlike mammalian mevalonate kinases, E. faecalis mevalonate kinase utilized all tested nucleoside triphosphates as phosphoryl donors. ADP, but not AMP, inhibited the reaction with a K(i) of 2.7 mM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号