首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
1. The effects of intravenous injection of n-butyrate, iso-butyrate, n-valerate and iso-valerate on insulin and glucagon secretion was examined in conscious sheep. 2. Each sodium salt of the short chain fatty acids increased plasma insulin and glucagon concentrations in a dose-dependent manner (312-1250 mumol/kg body wt). 3. Both butyrate and valerate isomers with branched carbon chains had larger insulin releasing activity than isomers with straight carbon chains. 4. The glucagon responses to butyrate or valerate did not differ between the isomers with straight carbon chains and those with branched carbon chains. 5. Our results suggest that the receptive mechanism to short chain fatty acids, which may involve the nervous system, differs between the A cell and the B cell in sheep in vivo.  相似文献   

2.
Hu ZH  Yu HQ  Zheng JC 《Bioresource technology》2006,97(16):2103-2109
Acidogenesis of cattail using rumen cultures was carried out to produce volatile fatty acids (VFA) in this study. The influences of pH and substrate concentration on cattail degradation, VFA yield and microbial growth were investigated by using response surface methodology (RSM). Experimental results showed that a low substrate concentration and pH of 6.9 were optimal for acidogenesis of cattail. The highest cattail degradation efficiency, VFA yield and microbial yield were 75.9%, 0.41 g/g VS and 0.110 g/g VS, respectively. Further experiments confirmed that the main VFA in the acidogenesis of cattail were acetate, propionate and butyrate, while i-butyrate, valerate and i-valerate were also produced at low levels. The results suggested that acidogenesis using rumen cultures is a promising method for cattail disposal.  相似文献   

3.
Thermodynamic analysis on the acidogenesis of lactose was performed to evaluate the different acidogenic patterns and mechanisms by using Gibbs free energy calculation. Batch acidogenesis of lactose was investigated by using an enriched culture at 37 degrees C, pH 5.5 and varied substrate levels. In addition to usual acidogenic products, i-butyrate, valerate, i-valerate, caproate, and propanol were also produced at a significant level. Thermodynamic analysis shows that valerate might be formed through the reaction requiring hydrogen as electron donor and consuming of propionate and carbon dioxide. Caproate was most likely produced directly from butyrate, hydrogen, and carbon dioxide. The minimum amount of Gibbs free energies needed to sustain isomerization of butyrate and valerate were approximately 5.7-5.8 and 4.5-4.6 kJ/mol, respectively. Propanol was produced from acetate, hydrogen, and carbon dioxide with a minimum amount of Gibbs free energy of 41.8-42.0 kJ/mol. Formation of butanol was controlled more by substrate level or population dynamics than by thermodynamics.  相似文献   

4.
The influence of hydraulic retention time (HRT) and gelatin concentration on the acidification of gelatinaceous wastewater in an upflow anaerobic reactor was investigated at pH 5.5 and 37 degrees C. The degree of gelatin degradation increased with the HRT, from 84.1% at 4 h to 89.6% at 24 h, but decreased with the increase of the gelatin concentration in the influent from 65.2% at 2 g-CODl(-1) to 51.9% at 30 g-CODl(-1). The degradation of gelatin followed the Monod kinetics with a maximum rate of 1.10 g (g-VSS x d)(-1) and a half-rate constant of 0.23 gl(-1). The overall production rate of VFA and alcohols decreased with HRT, from 0.33 g (g-VSS x d)(-1) at 4 h to 0.15 g (g-VSS x d)(-1) at 24 h, but increased with gelatin concentration in the influent, from 0.10 g (g-VSS x d)(-1) at 4 g-CODl(-1) to 0.58 g (g-VSS x d)(-1) at 30 g-CODl(-1). The key acidification products were acetate, propionate and butyrate, plus i-butyrate, valerate, i-valerate, caproate and ethanol in smaller quantities. Formate, methanol, propanol and butanol were found only in certain runs. Only 4.5-7.8% of COD in wastewater was converted to hydrogen and methane. The sludge yield was estimated as 0.320+/-0.014 g-VSS (g-COD)(-1).  相似文献   

5.
Two co-cultures, each of a coccobacillus plus a Gram-negative rod, were isolated from a cattle waste digester. The cultures were distinguished by production of methane from acetate only, or from either acetate or butyrate. 2-Methylbutyrate, added initially as a growth factor, was degraded to propionate but only during growth on acetate or butyrate. Valerate and 2- and 3-methyl valerate were not degraded.  相似文献   

6.
Enzymatic depolymerization of polysaccharides with alpha-amylase has been studied in mixed aqueous dimethylsulfoxide (DMSO)/water solvents. Polysaccharide substrate chemical compositions, configurational structures, and bonding pattersn are known to affect observed enzymatic reaction kinetics. The branching structures of polysaccharides and their effects on the kinetic mechanisms of depolymerization reactions via endo-acting hydrolyzing enzyme was studied via size exclusion chromatography coupled to low angle laser light scattering (SEC/LALLS). The glycogen branching structure is a heterogeneously distributed "cluster" structure rather than a homogeneously distributed "treelike" structure. The action pattern of alpha-amylase on glycogen, which is composed of highly branched clusters, as end-products, has a "pseudo-exo-attack" in contrast to an expected "endoattack" as seen in the hydrolysis of amylose or amylopectin substrates. These effects of branched substrates for mixed amylose/glycogen alpha-amylolysis have been predicted and demonstrated by both experimental and theoretical analysis using the kinetic model presented in this report. The "lumped" kinetic model employed, assumes that the enzyme simultaneously attacks both linear and branched substrates. In general, excellent agreement between the model predictions and the experimental observations, both qualitatively and quantitatively, was obtained. (c) 1995 John Wiley & Sons, Inc.  相似文献   

7.
Syntrophic degradation of normal- and branched-chain fatty acids with 4 to 9 carbons was investigated with a mesophilic syntrophic isobutyrate-butyrate-degrading triculture consisting of the non-spore-forming, syntrophic, fatty acid-degrading, gram-positive rod-shaped strain IB, Methanobacterium formicicum T1N, and Methanosarcina mazei T18. This triculture converted butyrate and isobutyrate to methane and converted valerate and 2-methylbutyrate to propionate and methane. This triculture also degraded caproate, 4-methylvalerate, heptanoate, 2-methylhexanoate, caprylate, and pelargoate. During the syntrophic conversion of isobutyrate and butyrate, a reversible isomerization between butyrate and isobutyrate occurred; isobutyrate and butyrate were isomerized to the other isomeric form to reach nearly equal concentrations and then their concentrations decreased at the same rates. Butyrate was an intermediate of syntrophic isobutyrate degradation. When butyrate was degraded in the presence of propionate, 2-methylbutyrate was synthesized from propionate and isobutyrate formed from butyrate. During the syntrophic degradation of valerate, isobutyrate, butyrate, and 2-methylbutyrate were formed and then degraded. During syntrophic degradation of 2-methylbutyrate, isobutyrate and butyrate were formed and then degraded.  相似文献   

8.
Dynamics of the anaerobic process: effects of volatile fatty acids   总被引:6,自引:0,他引:6  
A complex and fast dynamic response of the anaerobic biogas system was observed when the system was subjected to pulses of volatile fatty acids (VFAs). It was shown that a pulse of specific VFAs into a well-functioning continuous stirred tank reactor (CSTR) system operating on cow manure affected both CH(4) yield, pH, and gas production and that a unique reaction pattern was seen for the higher VFAs as a result of these pulses. In this study, two thermophilic laboratory reactors were equipped with a novel VFA-sensor for monitoring specific VFAs online. Pulses of VFAs were shown to have a positive effect on process yield and the levels of all VFA were shown to stabilize at a lower level after the biomass had been subjected to several pulses. The response to pulses of propionate or acetate was different from the response to butyrate, iso-butyrate, valerate, or iso-valerate. High concentrations of propionate affected the degradation of all VFAs, while a pulse of acetate affected primarily the degradation of iso-valerate or 2-methylbutyrate. Pulses of n-butyrate, iso-butyrate, and iso-valerate yielded only acetate, while degradation of n-valerate gave both propionate and acetate. Product sensitivity or inhibition was shown for the degradation of all VFAs tested. Based on the results, it was concluded that measurements of all specific VFAs are important for control purposes and increase and decrease in a specific VFA should always be evaluated in close relationship to the conversion of other VFAs and the history of the reactor process. It should be pointed out that the observed dynamics of VFA responses were based on hourly measurements, meaning that the response duration was much lower than the hydraulic retention time, which exceeds several days in anaerobic CSTR systems.  相似文献   

9.
Mutants of Escherichia coli K-12 which grow on butyrate and valerate were studied with respect to uptake of these substrates. To utilize short-chain and medium-chain fatty acids, E. coli must synthesize the beta-oxidation enzymes constitutively. In addition, growth on the C(4) and C(5) acids requires a second mutation which permits entry of these substrates. At pH 5, both in the parent and mutant strains, butyrate and valerate penetrate as the undissociated acids but appear not to be activated and thus inhibit growth. At pH 7, the parent strain is not permeable to the anions, whereas the mutant concentrates these substrates. There appear to be two components of the uptake system, a nonspecific diffusion component and an energy-linked activating enzyme. Two mutant types which take up short-chain fatty acids are described. One synthesizes the uptake system constitutively and is inhibited by 4-pentenoate when cultured on acetate. In the other, the uptake system is inducible, and the strain is pentenoate-resistant when grown on acetate but pentenoate-sensitive when cultured on butyrate or valerate.  相似文献   

10.
Intravenous administration of short-chain fatty acid (SCFA), such as propionate, butyrate, valerate and caproate, caused a transient increase in transmural potential difference (p.d.) across the small intestine of rat in vivo. There was a sigmoid relationship between the change in the p.d. and the logarithm of the dose of SCFA. The median effective dose of propionate, n-butyrate, n-valerate and n-caproate, which was calculated from the each dose-response curve obtained from the terminal ileum, 1.31, 1.43, 0.83 and 0.81 μmole, respectively. Repeated administrations of the same dose of propionate evoked progressively smaller response. The dose-response curve of propionate was shifted to the left by neostigmine and to the right by atropine, suggesting that the action of SCFA may be mediated by acetylcholine, which was released from a nerve ending.  相似文献   

11.
Two types of mesophilic methanogenic granules (R- and F-granules) were developed on different synthetic feeds containing acetate, propionate and butyrate as major carbon sources and their metabolic properties were characterized. The metabolic activities of granules on acetate, formate and H2-CO2 were related to the feed composition used for their development. These granules performed a reversible reaction between H2 production from formate and formate synthesis from H2 plus bicarbonate. Both types of granules exhibited high activity on normal and branched volatile fatty acids with three to five carbons and low activity on ethanol and glucose. The granules performed a reversible isomerization between isobutyrate and butyrate during butyrate or isobutyrate degradation. Valerate and 2-methylbutyrate were produced and consumed during propionate-butyrate degradation. The respective apparent K m (mm) for various substrates in disrupted R- and F-granules was: acetate, 0.43 and 0.41; propionate, 0.056 and 0.038; butyrate, 0.15 and 0.19; isobutyrate, 0.12 and 0.19; valerate, 0.15 and 0.098. Both granules had an optimum temperature range from 40 to 50° C for H2-CO2 and formate utilization and 40° C for acetate, propionate and butyrate utilization and a similar optimum pH. Correspondence to: J. G. Zeikus  相似文献   

12.
The acetyl CoA:butyrate CoA transferase catalyzes the translocation of butyrate in membrane vesicles prepared from a strain of Escherichia coli which is depressed for the acetoacetate degradation operon. Butyrate accumulated in the membranes as butyryl CoA. The role of the transferase in uptake is supported by the following observations: (i) uptake is stimulated by acetyl CoA; (ii) the solubilized CoA transferase and uptake exhibit KmS for butyrate, pH optima and levels inhibition by N-ethylmaleimide that are virtually identical; (iii) significant amounts of the CoA transferase are found associated with the membranes and uptake is rapidly inhibited by butyryl CoA and acetate, the products of the CoA transferase-catalyzed reaction. The fact that butyrate uptake did not exhibit saturation kinetics with increasing concentrations of acetyl CoA suggested that the transferase is not localized on the outer surface of the membrane. The level of free butyrate in the vesicles, the fact that butyrate uptake exhibited saturation kinetics with increasing concentrations of butyrate, and the observation that radioactivity was not rapidly lost from the vesicles following addition of butyryl CoA or acetate to incubation mixtures indicated that butyrate is translocated rather than trapped by the CoA transferase.  相似文献   

13.
14.
Isomerization between n-butyrate and isobutyrate in enrichment cultures   总被引:1,自引:0,他引:1  
Abstract An isobutyrate-degrading methanogenic enrichment was obtained from a mesophilic anaerobic digester. Studies with growing cells and cell suspensions showed a reversible isomerization between butyrate and isobutyrate, suggesting that butyrate is an intermediate in the anaerobic degradation of isobutyrate. NMR experiments with 13C-labelled butyrate demonstrated that this isomerization resulted from the migration of the carboxyl group.  相似文献   

15.
16.
17.
The effect of pH on the stoichiometry and kinetics of acetate uptake by phosphorus-accumulating organisms (PAOs) was studied. The stoichiometry of glycogen consumption and poly-beta-hydroxy-alkanoates (PHA) accumulation was independent of the pH over the range 6.5 to 8.0. It was again demonstrated that the amount of phosphorus released per acetate taken up (P/Hac ratio) was linearly dependent on pH, because of additional energy requirements for acetate transport at higher pH. The slope of this relationship was similar to that in previously published work, but the absolute values were different, indicating that the P/Hac ratio is the most variable stoichiometric parameter associated with the anaerobic metabolism of PAOs. A kinetic expression for acetate-uptake rate was developed and tested. It assumes a zero-order form when the polyphosphate content of the biomass is not limiting. When the polyphosphate content becomes low, the rate is significantly decreased. The expression was tested in situations in which polyphosphate was a limiting factor in the rate of acetate uptake, in which the glycogen content of the biomass became very low, and in which both glycogen and polyphosphate were present in excess. The model was able to simulate the three situations adequately. Additionally, the rate of acetate uptake was independent of the pH for the range studied (6.5 to 8.0).  相似文献   

18.
Dynamic models of metabolism are instrumental for gaining insight and predicting possible outcomes of perturbations. Current approaches start from the selection of lumped enzyme kinetics and determine the parameters within a large parametric space. However, kinetic parameters are often unknown and obtaining these parameters requires detailed characterization of enzyme kinetics. In many cases, only steady-state fluxes are measured or estimated, but these data have not been utilized to construct dynamic models. Here, we extend the previously developed Ensemble Modeling methodology by allowing various kinetic rate expressions and employing a more efficient solution method for steady states. We show that anchoring the dynamic models to the same flux reduces the allowable parameter space significantly such that sampling of high dimensional kinetic parameters becomes meaningful. The methodology enables examination of the properties of the model's structure, including multiple steady states. Screening of models based on limited steady-state fluxes or metabolite profiles reduces the parameter space further and the remaining models become increasingly predictive. We use both succinate overproduction and central carbon metabolism in Escherichia coli as examples to demonstrate these results.  相似文献   

19.
Isolated proximal cells were prepared from rabbit kidney cortex by mechanical dissociation. The intracytoplasmic pH (pHi) was measured in HCO3(-)-free media (external pH (pHe), 7.3) using the fluorescent dye 2,7-biscarboxyethyl-5,6-carboxyfluorescein (BCECF). Cells were acid-loaded by the nigericin technique. Addition of 70 mM Na+ to the cells caused a rapid pHi recovery, which was blocked by 0.5 mM amiloride. When the cells were exposed to 5 mM sodium butyrate in the presence of 1 mM amiloride, the H+ efflux was significantly increased and followed Michaelis-Menten kinetics. Increasing pHe from 6.4 to 7.6 at a constant pHi of 6.4 enhanced the butyrate activation of the H+ efflux. Increasing pHi from 6.5 to 7.2 at a constant pHe of 7.2 reduced the butyrate effect. 22Na uptake experiments in the presence of 1 mM amiloride showed that 1.5 mM butyrate increased the Na+ flux in the proximal cells (pHi 7.10). The efficiency of monocarboxylic anions in promoting a pHi recovery increased with the length of their straight chain (acetate less than propionate less than butyrate less than valerate). The data show that when the Na+/H+ antiporter is blocked, the proximal cells can regulate their pHi by a Na+-coupled absorption of butyrate followed by non-ionic diffusion of butyric acid out of the cell and probably also by OH- influx by means of the OH-/anion exchanger.  相似文献   

20.
The kinetics of adsorption of bovine serum albumin on an anion-exchange resin were measured in a batch system using a flow cell and ultraviolet absorbance, as a function of initial liquid-phase protein concentration and solid-to-liquid phase ratio. A new mathematical model for adsorption kinetics is presented that fits the experimental data to give a highly linear relationship with time, following a short transient period. Numerical integration of the differential form of the new composite nonlinear (CNL) kinetic model, containing three independent parameters, is shown to describe the dynamics of batch adsorption much better than alternative lumped parameter models. Although the new model is phenomenological rather than mechanistic, its principal parameter is shown to be a direct linear function of a physically measurable quantity. This study demonstrates that the model can accurately simulate protein concentration-time profiles using parameter estimates derived from correlations over a wide range of initial protein concentrations and phase ratios. The new CNL model is shown to be considerably superior to the Langmuir and solid-film linear kinetic models in this regard, having the additional advantage that an equilibrium isotherm for the system is not required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号