首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The insulin receptor and type I IGF receptor are closely related in structure and function. The receptors are heterotetrameric glycoproteins, of structure αββα, which are widely distributed in mammalian tissues. A third member of this receptor family has been described, the insulin receptor-related receptor, for which a ligand has still to be identified. It has also been demonstrated that the insulin receptor and IGF receptor form αββ′α′ hybrids in cells expressing both receptors.The key elements in the function of any receptor are recognition of ligand and transmission of an intracellular signal. In the insulin and IGF receptors, determinants of binding specificity are contained within amino-terminal and cysteine-rich domains of the extracellular α-subunit. Intracellular signalling is dependent on ligand activated tyrosine kinase activity in the transmembrane β-subunit, which phosphorylates both the receptor itself and the specific substrate insulin receptor substrate-1 (IRS-1). Phosphorylated IRS-1 binds the enzyme phosphatidylinositol 3-kinase and may act as a multivalent docking site for SH2 domains of other proteins involved in signalling. The possibility that some signalling molecules interact directly with the receptors has not been ruled out.The specificity of action of insulin and IGFs in vivo depends on differences between the respective receptors in tissue distribution, ligand binding specificity and intrinsic signalling capacity. However, the detailed aspects of gene and receptor structure which underly these functional differences are still poorly understood. Moreover, the issue of specificity is complicated by the existence of hybrid and atypical receptors, which in principle could bind and respond to both insulin and IGF-I, although the physiological significance of these receptor subtypes is at present unclear.  相似文献   

2.
The IR (insulin receptor) and IGFR (type I insulin-like growth factor receptor) are found as homodimers, but the respective pro-receptors can also heterodimerize to form insulin-IGF hybrid receptors. There are conflicting data on the ligand affinity of hybrids, and especially on the influence of different IR isoforms. To investigate further the contribution of individual ligand binding epitopes to affinity and specificity in the IR/IGFR family, we generated hybrids incorporating both IR isoforms (A and B) and IR/IGFR domain-swap chimaeras, by ectopic co-expression of receptor constructs in Chinese hamster ovary cells, and studied ligand binding using both radioligand competition and bioluminescence resonance energy transfer assays. We found that IR-A-IGFR and IR-B-IGFR hybrids bound insulin with similar relatively low affinity, which was intermediate between that of homodimeric IR and homodimeric IGFR. However, both IR-A-IGFR and IR-B-IGFR hybrids bound IGF-I and IGF-II with high affinity, at a level comparable with homodimeric IGFR. Incorporation of a significant fraction of either IR-A or IR-B into hybrids resulted in abrogation of insulin- but not IGF-I-stimulated autophosphorylation. We conclude that the sequence of 12 amino acids encoded by exon 11 of the IR gene has little or no effect on ligand binding and activation of IR-IGFR hybrids, and that hybrid receptors bind IGFs but not insulin at physiological concentrations regardless of the IR isoform they contained. To reconstitute high affinity insulin binding within a hybrid receptor, chimaeras in which the IGFR L1 or L2 domains had been replaced by equivalent IR domains were co-expressed with full-length IR-A or IR-B. In the context of an IR-A-IGFR hybrid, replacement of IR residues 325-524 (containing the L2 domain and part of the first fibronectin domain) with the corresponding IGFR sequence increased the affinity for insulin by 20-fold. We conclude that the L2 and/or first fibronectin domains of IR contribute in trans with the L1 domain to create a high affinity insulin-binding site within a dimeric receptor.  相似文献   

3.
Insulin binding to its receptor is characterized by high affinity, curvilinear Scatchard plots, and negative cooperativity. These properties may be the consequence of binding of insulin to two receptor binding sites. The N-terminal L1 domain and the C-terminus of the alpha subunit contain one binding site. To locate a second site, we examined the binding properties of chimeric receptors in which the L1 and L2 domains and the first Fibronectin Type III repeat of the insulin-like growth factor-I receptor were replaced by corresponding regions of the insulin receptor. Substitutions of the L2 domain and the first Fibronectin Type III repeat together with the L1 domain produced 80- and 300-fold increases in affinity for insulin. Fusion of these domains to human immunoglobulin Fc fragment produced a protein which bound insulin with a K(d) of 2.9 nM. These data strongly suggest that these domains contain an insulin binding site.  相似文献   

4.
To define the structures within the insulin receptor (IR) that are required for high affinity ligand binding, we have used IR fragments consisting of four amino-terminal domains (L1, cysteine-rich, L2, first fibronectin type III domain) fused to sequences encoded by exon 10 (including the carboxyl terminus of the alpha-subunit). The fragments contained one or both cysteine residues (amino acids 524 and 682) that form disulfides between alpha-subunits in native IR. A dimeric fragment designated IR593.CT (amino acids 1-593 and 704-719) bound (125)I-insulin with high affinity comparable to detergent-solubilized wild type IR and mIR.Fn0/Ex10 (amino acids 1-601 and 650-719) and greater than that of dimeric mIR.Fn0 (amino acids 1-601 and 704-719) and monomeric IR473.CT (amino acids 1-473 and 704-719). However, neither IR593.CT nor mIR.Fn0 exhibited negative cooperativity (a feature characteristic of the native insulin receptor and mIR.Fn0/Ex10), as shown by failure of unlabeled insulin to accelerate dissociation of bound (125)I-insulin. Anti-receptor monoclonal antibodies that recognize epitopes in the first fibronectin type III domain (amino acids 471-593) and inhibit insulin binding to wild type IR inhibited insulin binding to mIR.Fn0/Ex10 but not IR593.CT or mIR.Fn0. We conclude the following: 1) precise positioning of the carboxyl-terminal sequence can be a critical determinant of binding affinity; 2) dimerization via the first fibronectin domain alone can contribute to high affinity ligand binding; and 3) the second dimerization domain encoded by exon 10 is required for ligand cooperativity and modulation by antibodies.  相似文献   

5.
The interaction between insulin and insulin-like growth factor I (IGF I) receptors was examined by determining the ability of each receptor type to phosphorylate tyrosine residues on the other receptor in intact L6 skeletal muscle cells. This was made possible through a sequential immunoprecipitation method with two different antibodies that effectively separated the phosphorylated insulin and IGF I receptors. After incubation of intact L6 cells with various concentrations of insulin or IGF I in the presence of [32P]orthophosphate, insulin receptors were precipitated with one of two human polyclonal anti-insulin receptor antibodies (B2 or B9). Phosphorylated IGF I receptors remained in solution and were subsequently precipitated by anti-phosphotyrosine antibodies. The identities of the insulin and IGF I receptor beta-subunits in the two immunoprecipitates were confirmed by binding affinity, by phosphopeptide mapping after trypsin digestion, and by the distinct patterns of expression of the two receptors during differentiation. Stimulated phosphorylation of the beta-subunit of the insulin receptor correlated with occupancy of the beta-subunit of the insulin receptor by either insulin or IGF I as determined by affinity cross-linking. Similarly, stimulation of phosphorylation of the beta-subunit of the IGF I receptor by IGF I correlated with IGF I receptor occupancy. In contrast, insulin stimulated phosphorylation of the beta-subunit of the IGF I receptor at hormone concentrations that were associated with significant occupancy of the insulin receptor but negligible IGF I receptor occupancy. These findings indicate that the IGF I receptor can be a substrate for the hormone-activated insulin receptor tyrosine kinase activity in intact L6 skeletal muscle cells.  相似文献   

6.
To clarify the role of protein tyrosine phosphatase containing Src homology 2 (SH2) regions on insulin signaling, we investigated the interactions among the insulin receptor, a pair of SH2 domains of SH-PTP2 coupled to glutathione-S-transferase (GST) and insulin receptor substrate-1 (IRS-1)-GST fusion proteins (amino-portion, IRS-1N; carboxyl portion, IRS-1C). GST-SH2 protein of SH-PTP2 bound to the wild type insulin receptor, but not to that with a carboxyl-terminal mutation (Y/F2). Furthermore, even though Y/F2 receptors were used, the SH2 protein was also co-immunoprecipitated with IRS-1C, but not with IRS-1N. These results indicate that SH2 domains of SH-PTP2 can directly associate with the Y1322TXM motif on the carboxyl terminus of insulin receptors and also may bind to the carboxyl portion of IRS-1, possibly via the V1172IDL motif in vitro.  相似文献   

7.
We obtained 20 mouse monoclonal antibodies specific for human type I insulin-like growth factor (IGF) receptors, using transfected cells expressing high levels of receptors (IGF-1R/3T3 cells) as immunogen. The antibodies immunoprecipitated receptor.125I-IGF-I complexes and biosynthetically labeled receptors from IGF-1R/3T3 cells but did not react with human insulin receptors or rat type I IGF receptors. Several antibodies stimulated DNA synthesis in IGF-1R/3T3 cells, but the maximum stimulation was only 25% of that produced by IGF-I. The antibodies fell into seven groups recognizing distinct epitopes and with different effects on receptor function. All the antibodies reacted with the extracellular portion of the receptor, and epitopes were localized to specific domains by investigating their reaction with a series of chimeric IGF/insulin receptor constructs. Binding of IGF-I was inhibited up to 90% by antibody 24-60 reacting in the region 184-283, and by antibody 24-57 reacting in the region 440-586. IGF-I binding was stimulated up to 2.5-fold by antibodies 4-52 and 16-13 reacting in the region 62-184, and by antibody 26-3 reacting downstream of 283. The latter two groups of antibodies also dramatically stimulated insulin binding to intact IGF-1R/3T3 cells (by up to 50-fold), and potentiated insulin stimulation of DNA synthesis. Scatchard analysis indicated that in the presence of these antibodies, the affinity of the type I IGF receptor for insulin was comparable with that of the insulin receptor. These data indicate that regions both within and outside the cysteine-rich domain of the receptor alpha-subunit are important in determining the affinity and specificity of ligand binding. These antibodies promise to be valuable tools in resolving issues of IGF-I receptor heterogeneity and in studying the structure and function of classical type I receptors and insulin/IGF receptor hybrids.  相似文献   

8.
The two mannose 6-phosphate (Man-6-P) binding domains of the insulin-like growth factor II/mannose 6-phosphate receptor (Man-6-P/IGF2R), located in extracytoplasmic repeats 1-3 and 7-9, are capable of binding Man-6-P with low affinity and glycoproteins that contain more than one Man-6-P residue with high affinity. High affinity multivalent ligand binding sites could be formed through two possible mechanisms: the interaction of two Man-6-P binding domains within one Man-6-P/IGF2R molecule or by receptor oligomerization. To discriminate between these mechanisms, truncated FLAG epitope-tagged Man-6-P/IGF2R constructs, containing one or both of the Man-6-P binding domains, were expressed in 293T cells, and characterized for binding of pentamannose phosphate-bovine serum albumin (PMP-BSA), a pseudoglycoprotein bearing multiple Man-6-P residues. A construct containing all 15 repeats of the Man-6-P/IGF2R extracytoplasmic domain bound PMP-BSA with the same affinity as the full-length receptor (K(d) = 0.54 nm) with a curvilinear Scatchard plot. The presence of excess unlabeled PMP-BSA increased the dissociation rate of pre-formed (125)I-PMP-BSA/receptor complexes, suggesting negative cooperativity in multivalent ligand binding and affirming the role of multiple Man-6-P/IGF2R binding domains in forming high affinity binding sites. Truncated receptors containing only one Man-6-P binding domain and mutant receptor constructs, containing an Arg(1325) --> Ala mutation that eliminates binding to the repeats 7-9 binding domain, formed high affinity PMP-BSA binding, but with reduced stoichiometries. Collectively, these observations suggest that alignment of Man-6-P binding domains of separate Man-6-P/IGF2R molecules is responsible for the formation of high affinity Man-6-P binding sites and provide functional evidence for Man-6-P/IGF2R oligomerization.  相似文献   

9.
The insulin receptor (IR), the insulin-like growth factor 1 receptor (IGF1R) and the insulin receptor-related receptor (IRR) are covalently-linked homodimers made up of several structural domains. The molecular mechanism of ligand binding to the ectodomain of these receptors and the resulting activation of their tyrosine kinase domain is still not well understood. We have carried out an amino acid residue conservation analysis in order to reconstruct the phylogeny of the IR Family. We have confirmed the location of ligand binding site 1 of the IGF1R and IR. Importantly, we have also predicted the likely location of the insulin binding site 2 on the surface of the fibronectin type III domains of the IR. An evolutionary conserved surface on the second leucine-rich domain that may interact with the ligand could not be detected. We suggest a possible mechanical trigger of the activation of the IR that involves a slight 'twist' rotation of the last two fibronectin type III domains in order to face the likely location of insulin. Finally, a strong selective pressure was found amongst the IRR orthologous sequences, suggesting that this orphan receptor has a yet unknown physiological role which may be conserved from amphibians to mammals.  相似文献   

10.
We compared the effectiveness of insulin receptor (IR) and type I insulin-like growth factor (IGF) receptor (IGFR) cytoplasmic domains in mediating anti-apoptotic effects in 3T3-L1 preadipocytes and adipocytes. We used TrkC/IR and TrkC/IGFR chimeras, stably expressed in these cells and stimulated with neurotrophin-3 (NT-3), so as to avoid interference from endogenous receptors. After 24-h serum deprivation, 10% of preadipocytes and 2% of adipocytes appeared apoptotic as determined by fluorescence-activated cell sorter (FACS) analysis of cells stained with propidium iodide (PI) and Annexin V. When NT-3 was added, the two chimeras inhibited apoptosis to the same extent by 80% in preadipocytes and 50% in adipocytes. Mutation of juxtamembrane tyrosines (IR Y960F, IGFR Y950F) abrogated these anti-apoptotic effects. Qualitatively similar results were obtained by determination of viable rather than apoptotic cells. We conclude that IR and IGFR have equal potential to inhibit apoptosis in cell backgrounds, which are normally responsive to either IGF-I or insulin.  相似文献   

11.
The insulin-like growth factors (IGFs) have paradoxical effects on skeletal myoblast differentiation. While low concentrations of IGF stimulate myoblast differentiation, high concentrations of IGF induce a progressive decrease in myoblast differentiation. The mechanism of this inhibition is unknown. Using a retroviral expression vector, we developed a subline of mouse P2 mouse myoblasts (P2-LISN) which expressed 7.5 times higher levels of type-1 IGF receptors than control (P2-LNL6) myoblasts, which were infected with a virus lacking the type-1 IGF receptor sequence. Overexpression of the type-1 IGF receptor caused the IGF dose-response curves of stimulation and progressive inhibition of differentiation to shift to the left. Additionally, at high insulin and IGF-I concentrations, complete inhibition of P2-LISN myoblast differentiation occurred. These results suggest that inhibition of differentiation at high ligand concentrations was not due to the primary involvement of other species of receptors for IGF. Type-1 IGF receptor downregulation as a mechanism for inhibition of differentiation was also ruled out since P2-LISN myoblasts constitutively expressed high levels of type-1 IGF receptors. Additionally, inhibition of differentiation at high concentrations of IGF-I was not correlated with overt stimulation of proliferation or with IGF binding protein (IGF-BP) release into the culture medium. These results indicate that the type-1 IGF receptor mediates two conflicting signal pathways in myogenic cells, differentiation-inducing and differentiation-inhibitory, which predominate at different ligand concentrations. © 1993 Wiley-Liss, Inc.  相似文献   

12.
The specificity of the human IGF-2 receptor   总被引:2,自引:0,他引:2  
The specificity of the type 2 insulinlike growth factor (IGF) receptor is evaluated in human placenta membranes and the human cell line K562. K562 cells have type 2 but not type 1 IGF receptors. Native IGF-2 isolated from human plasma and synthetic IGF-2 were equipotent in competing with labeled IGF-2 in both systems. Pure IGF-1 isolated from plasma, synthetic IGF-1 and recombinant IGF-1 could not crossreact with the type 2 IGF receptor in concentrations up to 1 microgram/ml in both systems. Studies on placenta membrane were done in the presence of 300 ug/ml insulin to block the type 1 IGF receptors. It is concluded that IGF-1, as well as insulin, cannot crossreact with the human type 2 IGF receptor.  相似文献   

13.
Fully functional chimeric receptors, consisting of major epidermal growth factor and insulin receptor domains, were co-expressed with kinase-negative epidermal growth factor and insulin receptor mutants in human kidney fibroblasts. Under these conditions, homologous extracellular and cytoplasmic domains mediated association of receptors and their precursors. The significance of receptor-receptor interaction was confirmed by transphosphorylation of kinase-negative receptors by ligand-activated chimeric receptors, which was observed between receptors sharing the same cytoplasmic domain as well as between receptors bearing only the same extracellular domain and containing heterologous kinases. Furthermore, the impaired ligand internalization capacity of a kinase-deficient insulin receptor was partially restored by transphosphorylation. Our experiments suggest interreceptor transphosphorylation and transactivation as a possible mechanism for signal amplification.  相似文献   

14.
Cell migration is one of the fundamental cellular responses governing development, homeostasis and disorders of the body. Therefore, artificial control of cell migration holds great promise for the treatment of many diseases. In this study, we developed an artificial cell migration system based on chimeric receptors that can respond to an artificial ligand that is quite different from natural chemoattractants. Chimeric receptors consisting of an anti-fluorescein single-chain Fv tethered to the extracellular D2 domain of erythropoietin receptor (EpoR) and the transmembrane/cytoplasmic domains of EpoR, gp130, interleukin-2 receptor, c-Kit, c-Fms, epidermal growth factor receptor (EGFR) or insulin receptor were expressed in the murine Ba/F3 pro-B cell line. Migration assays revealed that chimeric receptors containing the cytoplasmic domain of c-Kit, c-Fms or EGFR transduced migration signals in response to fluorescein-conjugated bovine serum albumin (BSA-FL). Furthermore, based on the cell migration in response to BSA-FL, we successfully selected genetically modified cells from mixtures of gene-transduced and untransduced cells. This study represents the first demonstration of cell migration in response to an artificial ligand that is quite different from natural chemoattractants, suggesting its potential application to immunotherapies and tissue engineering.  相似文献   

15.
Oligomerization of the mannose 6-phosphate/insulin-like growth factor?II receptor (M6P/IGF2R) is important for optimal ligand binding and internalization. M6P/IGF2R is a tumor suppressor gene that exhibits loss of heterozygosity and is mutated in several cancers. We tested the potential dominant-negative effects of two cancer-associated mutations that truncate M6P/IGF2R in ectodomain repeats 9 and 14. Our hypothesis was that co-expression of the truncated receptors with the wild-type/endogenous full-length M6P/IGF2R would interfere with M6P/IGF2R function by heterodimer interference. Immunoprecipitation confirmed formation of heterodimeric complexes between full-length M6P/IGF2Rs and the truncated receptors, termed Rep9F and Rep14F. Remarkably, increasing expression of either Rep9F or Rep14F provoked decreased levels of full-length M6P/IGF2Rs in both cell lysates and plasma membranes, indicating a dominant-negative effect on receptor availability. Loss of full-length M6P/IGF2R was not due to increased proteasomal or lysosomal degradation, but instead arose from increased proteolytic cleavage of cell-surface M6P/IGF2Rs, resulting in ectodomain release, by a mechanism that was inhibited by metal ion chelators. These data suggest that M6P/IGF2R truncation mutants may contribute to the cancer phenotype by decreasing the availability of full-length M6P/IGF2Rs to perform tumor-suppressive functions such as binding/internalization of receptor ligands such as insulin-like growth factor II.  相似文献   

16.
The insulin-like growth factor II/mannose 6-phosphate receptor (IGF2R) interacts with lysosomal enzymes through two binding domains in its extracytoplasmic domain. We report in the accompanying article (Byrd, J. C., and MacDonald, R. G. (2000) J. Biol. Chem. 275, 18638-18646) that only one of the two extracytoplasmic mannose 6-phosphate (Man-6-P) binding domains is necessary for high affinity Man-6-P ligand binding, suggesting that, like the cation-dependent Man-6-P receptor, oligomerization of the IGF2R contributes to high affinity interaction with lysosomal enzymes. In the present study, we have directly characterized both naturally occurring and engineered forms of the IGF2R for their ability to form oligomeric structures. Whereas gel filtration chromatography suggested that purified bovine IGF2R species exist in a monomeric form, native gel electrophoresis allowed for the separation of dimeric and monomeric forms of the receptors with distinct phosphomannosyl ligand binding characteristics. The ability of the IGF2R to form oligomeric complexes was confirmed and localized to the extracytoplasmic domain through the use of epitope-tagged soluble IGF2R constructs bearing deletions of the transmembrane and cytoplasmic domains. Finally, chimeric receptors were engineered containing the extracytoplasmic and transmembrane domains of the IGF2R fused to the cytoplasmic domain of the epidermal growth factor receptor with which dimerization of the chimeras could be monitored by measuring autophosphorylation. Collectively, these results show that the IGF2R is capable of forming oligomeric complexes, most likely dimers, in the absence of Man-6-P ligands.  相似文献   

17.
Protein synthesis in rat L6 myoblasts is stimulated and protein breakdown inhibited in a co-ordinate manner by insulin-like growth factors (IGF) or insulin. For both processes, bovine IGF-1 was somewhat more potent than human IGF-1, which was effective at a tenth the concentration of insulin, rat IGF-2 or human IGF-2. A similar order of potency is noted when DNA synthesis or protein accumulation is monitored over a 24 h period, but between 20- and 50-fold higher concentrations of each growth factor are required than those needed to produce effects in the 4 h protein-synthesis or -breakdown measurements. Binding experiments with labelled human or bovine IGF-1 as ligand demonstrated competition at concentrations of IGF-2, especially human IGF-2, lower than that of either IGF-1 preparation. This pattern was much more pronounced when the radioligand was either human IGF-2 or rat IGF-2. Insulin competed 10-15% for the binding of labelled IGF-1, but not at all with labelled IGF-2. Ligand-receptor cross-linking experiments showed that labelled bovine IGF-1 bound approximately equally to the type 1 IGF receptor (Mr 130000 after reduction) and to the type 2 IGF receptor (Mr 270000 after reduction), and that unlabelled IGF-1 competed equally with radioligand binding to both receptors. On the other hand, rat IGF-2 competed more effectively for binding to the type-2 receptor, and insulin competed only for binding to the type-1 receptor. Further cross-linking experiments with rat IGF-2 as radioligand demonstrated binding only to the type-2 receptor and to proteins with Mr values after reduction of 230000 and 200000. This binding was prevented by high rat IGF-2 concentrations, less effectively by bovine IGF-1 and not at all by insulin. The apparently conflicting biological potencies and receptor binding of the different growth factors can be explained if all the biological actions are mediated via the type-1 IGF receptor, rather than through the abundant type-2 receptor.  相似文献   

18.
Insulin-like growth factor binding proteins (IGFBP) can inhibit or accentuate the mitogenic activities of insulin-like growth factor 1 (IGF-1) depending upon the experimental model employed. Inhibitory effects may be attributed to sequestration of IGF-1 onto IGFBP rather than the type I IGF receptor. We have demonstrated that the presence of IGFBP in a simple equilibrium binding assay significantly reduces the total amount of IGF-1 bound to the type I IGF receptor and increases the IC50 for IGF-1 binding. On the basis of such an experiment, performed at equilibrium, IGFBP should reduce the mitogenic activity of IGF-1. Recent work has demonstrated an inverse correlation between the dissociation rate of insulin-like molecules from their receptors and their mitogenic activity. It has also been suggested that the increased rate of dissociation of insulin and IGF-1 from their receptors at increased ligand concentrations serves as a ‘dampening’ mechanism to decrease mitogenic signalling. We have demonstrated increased rates of dissociation of IGF-1 from the type I IGF receptor with increasing concentrations of IGF-1. Furthermore, IGFBP-3 inhibits the acceleration of dissociation rates due to increased IGF-1 levels. Thus, under receptor saturating conditions IGFBP-3 may act to increase mitogenesis by increasing the residence time of individual molecules of IGF-1 upon the type I IGF receptor.  相似文献   

19.
The insulin receptor is a homodimer composed of two alphabeta half receptors. Scanning mutagenesis studies have identified key residues important for insulin binding in the L1 domain (amino acids 1-150) and C-terminal region (amino acids 704-719) of the alpha subunit. However, it has not been shown whether insulin interacts with these two sites within the same alpha chain or whether it cross-links a site from each alpha subunit in the dimer to achieve high affinity binding. Here we have tested the contralateral binding mechanism by analyzing truncated insulin receptor dimers (midi-hIRs) that contain complementary mutations in each alpha subunit. Midi-hIRs containing Ala(14), Ala(64), or Gly(714) mutations were fused with Myc or FLAG epitopes at the C terminus and were expressed separately by transient transfection. Immunoblots showed that R14A+FLAG, F64A+FLAG, and F714G+Myc mutant midi-hIRs were expressed in the medium but insulin binding activity was not detected. However, after co-transfection with R14A+FLAG/F714G+Myc or F64A+FLAG/F714G+Myc, hybrid dimers were obtained with a marked increase in insulin binding activity. Competitive displacement assays revealed that the hybrid mutant receptors bound insulin with the same affinity as wild type and also displayed curvilinear Scatchard plots. In addition, when hybrid mutant midi-hIR was covalently cross-linked with (125)I(A14)-insulin and reduced, radiolabeled monomer was immunoprecipitated only with anti-FLAG, demonstrating that insulin was bound asymmetrically. These results demonstrate that a single insulin molecule can contact both alpha subunits in the insulin receptor dimer during high affinity binding and this property may be an important feature for receptor signaling.  相似文献   

20.
IGF I receptor is a tyrosine kinase capable of phosphorylating the receptor itself and other substrates. A high degree of homology does exist in tyrosine kinase domain among receptors for several polypeptide growth factor receptors and this enzymic activity has been indicated as a possible mediator of biological action. Nevertheless growth factor receptors possess peculiar specificities both in their functions and tissue distribution. A human polyclonal IgG (pIgG), previously characterized as anti insulin receptor antibody, able to inhibit insulin receptor kinase activity, was used to further investigate subunit homologies and differences in antigenicity and functional regulation between IGF I and insulin receptors, IGF I receptor tyrosine kinase was stimulated by a IGF I analog (aIGF I), produced by DNA recombinant technology, pIgG was able to inhibit IGF I receptor kinase activity, thus revealing antigenic homologies between the kinase domains of insulin and IGF I receptors. However the more pronounced inhibition of IGF I receptor-compared with insulin receptor kinase activity by pIgG suggests the existence of different regulatory mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号