首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: An enzymic lipid peroxidation system has been demonstrated in the microsomal fraction of rat brain and the requirements and optimal conditions for assay determined. The involvement of NADPH-cytochrome c reductase was demonstrated in vesicles reconstituted with lipids extracted from the brain microsomal fraction. Further characterization of the system made use of substances shown to inhibit the liver microsomal system. α-Tocopherol was shown to be an effective inhibitor of lipid peroxidation in the brain microsomal system, whereas Na2SO3 had no effect, which is indicative that free radical transfer occurs only in the hydrophobic regions. Neither superoxide dismutase nor catalase inhibited lipid peroxidation. The implications of an NADPH-cytochrome c reductase-dependent lipid peroxidation system that is not linked to a drug hydroxylation system and appears to differ from the liver microsomal system in a number of other ways are discussed.  相似文献   

2.
1. Formation of peroxides by benxoyl peroxide (BPO) and CuCl2 was examined in the human red blood cell ghost. 2. Amounts of peroxides formed increased with the amount of the ghost solution added. 3. Of all the cations tested only manganese ion inhibited the formation of peroxides in BPO-CuCl2 reaction system. 4. The formation of peroxides was inhibited approx. 50% with 0.4 microM manganese. 5. The inhibitory manner of manganese was non-competitive against copper.  相似文献   

3.
Benzoyl peroxide (BPO) is a commonly used drug in the treatment of acne vulgaris, but it induces unwanted side effects related to stratum corneum (SC) function. Since it has been recently shown to oxidize SC antioxidants, it was hypothesized that antioxidant supplementation may mitigate the BPO-induced SC changes. To test this, 11 subjects were selected to be topically supplemented with alpha-tocotrienol (5% w/vol) for 7 d on defined regions of the upper back, while the contralateral region was used for vehicle-only controls. Starting on day 8, all test sites were also treated with BPO (10%) for 7 d; the alpha-tocotrienol supplementation was continued throughout the study. A single dose of BPO depleted 93.2% of the total vitamin E. While continuing the BPO exposure for 7 d further depleted vitamin E in both vehicle-only and alpha-tocotrienol-treated sites, significantly more vitamin E remained in the alpha-tocotrienol-treated areas. Seven BPO applications increased lipid peroxidation. Alpha-tocotrienol supplementation significantly mitigated the BPO-induced lipid peroxidation. The transepidermal water loss was increased 1.9-fold by seven BPO applications, while there was no difference between alpha-tocotrienol treatment and controls. The data suggest that alpha-tocotrienol supplementation counteracts the lipid peroxidation but not the barrier perturbation in the SC induced by 10% BPO.  相似文献   

4.
Two nitrofuran compounds, nifurtimox and nitrofurantoin, inhibited in a concentration-dependent manner the NADPH-, iron-induced lipid peroxidation in rat liver microsomes, as shown by the decreased rate of MDA accumulation. Other nitro compounds (benznidazole and chloramphenicol) were relatively inactive. Nifurtimox inhibition affected polyenoic fatty acids and cytochrome P-450 degradation that follows lipid peroxidation. The ascorbate- or tert-butyl hydroperoxide-dependent lipid peroxidations were much less inhibited than the NADPH-dependent one. Nifurtimox and nitrofurantoin, but not benznidazole and chloramphenicol, strongly stimulated the microsomal NADPH-oxidase activity, thus supporting electron diversion, as the main cause of the inhibition of peroxidation initiation.  相似文献   

5.
1. GSH efficiently inhibited the ascorbate-stimulated lipid peroxidation of the unsaturated fatty acids in the fresh microsomal fraction and mitochondria of rat liver, whereas the peroxidation in heat-denatured particles was little inhibited. 2. Cysteamine and diethyldithiocarbamate inhibited the peroxidation in both fresh and boiled particles. Thioglycollate and 2-mercaptoethanol had no inhibiting effect. Cysteine and homocysteine both stimulated the lipid peroxidation even in the absence of ascorbate. 3. The added GSH disappeared at nearly the same rate in the presence of fresh and of boiled particles to which ascorbate had been added, although considerably more malonaldehyde was formed in the boiled particles. In the absence of ascorbate little GSH disappeared. 4. It is suggested that the protective effect of GSH against lipid peroxidation depends on the preservation of heat-labile structures in the microsomal fraction and mitochondria.  相似文献   

6.
Rat and rabbit liver microsomes catalyze an NADPH-cytochrome P-450 reductase-dependent peroxidation of endogenous lipid in the presence of the chelate, ADP-Fe3+. Although liver microsomes from both species contain comparable levels of NADPH-cytochrome P-450 reductase and cytochrome P-450, the rate of lipid peroxidation (assayed by malondialdehyde and lipid hydroperoxide formation) catalyzed by rabbit liver microsomes is only about 40% of that catalyzed by rat liver microsomes. Microsomal lipid peroxidation was reconstituted with liposomes made from extracted microsomal lipid and purified protease-solubilized NADPH-cytochrome P-450 reductase from both rat and rabbit liver microsomes. The results demonstrated that the lower rates of lipid peroxidation catalyzed by rabbit liver microsomes could not be attributed to the specific activity of the reductase. Microsomal lipid from rabbit liver was found to be much less susceptible to lipid peroxidation. This was due to the lower polyunsaturated fatty acid content rather than the presence of antioxidants in rabbit liver microsomal lipid. Gas-liquid chromatographic analysis of fatty acids lost during microsomal lipid peroxidation revealed that the degree of fatty acid unsaturation correlated well with rates of lipid peroxidation.  相似文献   

7.
8.
In the presence of Fe3+ and complexing anions, the peroxidation of unsaturated liver microsomal lipid in both intact microsomes and in a model system containing extracted microsomal lipid can be promoted by either NADPH and NADPH : cytochrome c reductase or by xanthine and xanthine oxidase. Erythrocuprein effectively inhibits the activity promoted by xanthine and xanthine oxidase but produces much less inhibition of NADPH-dependent peroxidation. The singlet-oxygen trapping agent, 1,3-diphenylisobenzofuran, had no effect on NADPH-dependent peroxidation but strongly inhibited the peroxidation promoted by xanthine and xanthine oxidase. NADPH-dependent lipid peroxidation was also shown to be unaffected by hydroxyl radical scavengers.. The addition of catalase had no effect on NADPH-dependent lipid peroxidation, but it significantly increased the rate of malondialdehyde formation in the reaction promoted by xanthine and xanthine oxidase. These results demonstrate that NADPH-dependent lipid peroxidation is promoted by a reaction mechanism which does not involve either superoxide, singlet oxygen, HOOH, or the hydroxyl radical. It is concluded that NADPH-dependent lipid peroxidation is initiated by the reduction of Fe3+ followed by the decomposition of hydroperoxides to generate alkoxyl radicals. The initiation reaction may involve some form of the perferryl ion or other metal ion species generated during oxidation of Fe2+ by oxygen.  相似文献   

9.
Summary

Lipid peroxidation and subsequent oxidative modification of low-density lipoprotein (LDL) have been implicated as causal events in atherosclerosis. Cu2+ may play an important role in LDL oxidation by binding to histidine residues of apolipoprotein B-100 (apo B) and initiating and propagating lipid peroxidation. To investigate the role of histidine residues, we used diethylpyrocarbonate (DEPC), a lipid-soluble histidine-specific modifying reagent. When LDL (0.1 mg protein/ml, or 0.2 µM) was incubated with DEPC (1 mM), at least 76 ± 7% of the histidine residues in apo B were modified. Treatment of LDL with DEPC led to an increase in the rate of Cu2+-induced initiation of lipid peroxidation (Ri), but a significant decrease in the rate of propagation. These changes resulted in an overall increased resistance of LDL to oxidation, with a significantly increased lag phase preceding the propagation phase of lipid peroxidation. In contrast to DEPC, ascorbate completely prevented the initiation of LDL oxidation (Ri = 0). Our data indicate that there are two types of copper/histidine binding sites on apo B: those facing the lipid core of the LDL particle, which mediate the propagation of lipid peroxidation and are modified by DEPC; and those found on the surface of the LDL particle exposed to the aqueous environment, which are responsible for mediating the initiation of lipid peroxidation and are modifiable by ascorbate in the presence of Cu2+.  相似文献   

10.
11.
12.
Lactoperoxidase, in the presence of H2O2, I?, and rat liver microsomes, will peroxidize membrane lipids, as evidence by malondialdehyde formation. Fe3+ assists in the formation of malondialdehyde. Fe3+ can be added at the end of the reaction period as well as at the beginning with equal effectiveness, suggesting that it only acts to assist in the conversion of lipid peroxides, previously formed by lactoperoxidase, to malondialdehyde. The addition of EDTA to the microsomal reaction mixture results in a 40% decrease in malondialdehyde formation. The antioxidant butylated hydroxytoluene will completely block the formation of malondialdehyde. Malondialdehyde formation is not dependent upon the production of superoxide, singlet oxygen, or hydroxyl radicals. Peroxidation of membrane lipids by this system is equally effective in both intact microsomes and in liposomes, indicating that iodination of microsomal protein is not required for lipid peroxidation to occur.  相似文献   

13.
In the presence of Fe-3+ and complexing anions, the peroxidation of unsaturated liver microsomal lipid in both intact microsomes and in a model system containing extracted microsomal lipid can be promoted by either NADPH and NADPH : cytochrome c reductase or by xanthine and xanthine oxidase. Erythrocuprein effectively inhibits the activity promoted by xanthine and xanthine oxidase but produces much less inhibition of NADPH-dependent peroxidation. The singlet-oxygen trapping agent, 1, 3-diphenylisobenzofuran, had no effect on NADPH-dependent peroxidation but strongly inhibited the peroxidation promoted by xanthine and xanthine oxidase. NADPH-dependent lipid peroxidation was also shown to be unaffected by hydroxyl radical scavengers.. The addition of catalase had no effect on NADPH-dependent lipid peroxidation, but it significantly increased the rate of malondialdehyde formation in the reaction promoted by xanthine and xanthine oxidase. The results demonstrate that NADPH-dependent lipid peroxidation is promoted by a reaction mechanism which does not involve either superoxide, singlet oxygen, HOOH, or the hydroxyl radical. It is concluded that NADPH-dependent lipid peroxidation is initiated by the reduction of Fe-3+ followed by the decomposition of hydroperoxides to generate alkoxyl radicals. The initiation reaction may involve some form of the perferryl ion or other metal ion species generated during oxidation of Fe-2+ by oxygen.  相似文献   

14.
Incubation of guinea pig adrenal microsomes with 10?6 M ferrous (Fe2+) ion and adrenal cytosol initiated high levels of lipid peroxidation as measured by the production of malonaldehyde. Cytosol or Fe2+ alone had little effect on microsomal malonaldehyde formation. When microsomes were incubated in the presence of Fe2+ and cytosol, malonaldehyde levels continued to increase for at least 60 min. Accompanying the lipid peroxidation was a decline in adrenal microsomal monooxygenase activities. The rates of metabolism of xenobiotics (benzphetamine demethylase, benzo[α]pyrene hydroxylase) as well as steroids (21-hydroxylation) decreased as malonaldehyde levels increased. In addition, cytochrome P-450 levels, NADPH- and NADH-cytochrome c reductase activities, and substrate interactions with cytochrome(s) P-450 decreased as lipid peroxidation progressed. Inhibition of lipid peroxidation by increasing microsomal protein concentrations during the incubation period prevented the changes in microsomal metabolism. Malonaldehyde had no direct effects on adrenal microsomal enzyme activities. The results indicate that lipid peroxidation may have significant effects on adrenocortical function, diminishing the capacity for both xenobiotic and steroid metabolism.  相似文献   

15.
Microsomal NADPH-dependent lipid peroxidation catalyzed by ADP-Fe3+ was inhibited by the addition of caeruloplasmin. The antioxidant effect of caeruloplasmin was independent of the superoxide anion (O?2 scavenging activity. Since caeruloplasmin enhanced the function of ADP-Fe3+ acting as electron acceptor for microsomal electron transport system, the antioxidant effect of caeruloplasmin is considered to depend on the ferroxidase activity.  相似文献   

16.
Adriamycin (25 μM) stimulated NADPH-dependent microsomal lipid peroxidation about fourfold over control values. The tested antioxidants, zinc, superoxide dismutase, vitamin E, and desferrioxamine (Desferal) inhibited Adriamycin-enhanced lipid peroxidation to varying degrees. Others antioxidants, e.g., glutathione, catalase, and selenium, were found to have no effects. Our in vitro studies suggest that adriamycin effect is mediated by a complex oxyradical cascade involving superoxide, hydroxyl radical, and small amounts of iron.  相似文献   

17.
Protective capabilities were studied of carboxymethylated (1-->3)-beta-D-glucan from Saccharomyces cerevisiae cell wall against lipid peroxidation in phosphatidylcholine liposomes induced by OH radicals produced with Fenton's reagent (H2O2/Fe2+) and also by microwave radiation using absorption UV-VIS spectrophotometry. A significant decrease in the conjugated diene production, quantified as Klein oxidation index, was observed in the presence of a moderate amount of added glucan. Increase of the oxidation index was accompanied with enhanced carboxyfluorescein leakage as a result of liposome membrane destabilization. This process was markedly suppressed with glucan present in the liposome suspension. Therefore, glucan may be considered as a potent protector against microwave radiation-induced cell damage.  相似文献   

18.
The effect of lipid peroxidation on the Ca2+-accumulating and Ca2+-retaining abilities of the microsomal fraction from chicken breast muscle was investigated. At 25 degrees C, enzymic lipid peroxidation did not seriously affect either of these abilities unless ascorbic acid was present, when both were diminished. At 37 degrees C, Ca2+-concentrating ability was decreased further by the effects of heat damage to the membrane. Membrane lipid peroxidation did not affect microsomal adenosine triphosphatase activity unless the microsomal fraction was subsequently washed with albumin. This effect of albumin is possibly due to removal of lipid-breakdown products. Addition of soya-bean phospholipids to the peroxidized vesicles washed with albumin restored adenosine triphosphatase activity, demonstrating a non-specific phospholipid requirement.  相似文献   

19.
Treatment of rats with ethanol or rabbits with either imidazole or pyrazole, agents known to induce the ethanol-inducible form of liver microsomal cytochrome P-450 (P-450 LMeb), caused, compared to controls, 3-25-fold enhanced rates of CCl4-dependent lipid peroxidation or chloroform production in isolated liver microsomes. No significant differences were seen when the rate of CCl4-dependent lipid peroxidation was expressed relative to the amount of P-450 LMeb in the various types of microsomal preparations. In reconstituted membranous systems, this type of P-450 was a 100-fold more effective catalyst of CCl4 metabolism than either of the cytochromes P-450 LM2 or P-450 LM4. It is proposed that the induction of this isozyme provides the explanation on a molecular level for the synergism seen of ethanol on CCl4-dependent hepatotoxicity.  相似文献   

20.
125I-labelled triiodothyronine which binds to specific nuclear receptors induce DNA strand breaks in Chinese hamster cells. A large fraction of these breaks is left unrepaired and seems to be double strand breaks. The efficiency of inducing such breaks is as high as after incorporation into DNA of [125I-]iododeoxyuridine which is known to be very radiotoxic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号