首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A nonquasineutral vortex structure with a zero net current is described that arises as a result of electron drift in crossed magnetic and electric fields, the latter being produced by charge separation on a spatial scale of about the magnetic Debye radius r B = |B|/(4πen e ). In such a structure with a radius of rr B , the magnetic field is maintained by a drift current on the order of the electron Alfvén current J Ae = m e c 3/(2e) and can become as strong as B ? m e c 2/(er). Estimates show that, in a plasma with a density of n e = 1021?1023 cm?3 and with nonzero electron vorticity driven by high-power laser radiation on a time scale on the order of θ pe ?1 , magnetic fields with a strength of B ~ 108?109 G are generated on micron and submicron scales. The system with closed current that is considered in the present paper can also serve as a model of hot spots in the channel of a Z-pinch.  相似文献   

2.
Nonquasineutral electron current filaments with the azimuthal magnetic field are considered that arise due to the generation of electron vorticity in the initial (dissipative) stage of evolution of a current-carrying plasma, when the Hall number is small (σB/en e c ? 1) because of the low values of the plasma conductivity and magnetic field strength. Equilibrium filamentary structures with both zero and nonzero net currents are considered. Structures with a zero net current type form on time scales of t < t sk = (r 0ω pe /c)2 t st, where t sk is the skin time, t st is the typical time of electron-ion collisions, and r 0 is the radius of the filament. It is shown that, in nonquasineutral filaments in which the current is carried by electrons drifting in the crossed electric (E r ) and magnetic (B θ) fields, ultrarelativistic electron beams on the typical charge-separation scale r B = B/(4πen e ) (the so-called magnetic Debye radius) can be generated. It is found that, for comparable electron currents, the characteristic electron energy in filaments with a nonzero net current is significantly lower than that in zero-net-current filaments that form on typical time scales of t < t sk. This is because, in the latter type of filaments, the oppositely directed electron currents repel one another; as a result, both the density and velocity of electrons increase near the filament axis, where the velocities of relativistic electrons are maximum. Filaments with a zero net current can emit X rays with photon energies ? ω up to 10 MeV. The electron velocity distributions in filaments, the X-ray emission spectra, and the total X-ray yield per unit filament length are calculated as functions of the current and the electron number density in the filament. Analytical estimates of the characteristic lifetime of a radiating filament and the typical size of the radiating region as functions of the plasma density are obtained. The results of calculations are compared with the available experimental data.  相似文献   

3.
A previously developed method for describing vortex structures is used to construct electrostatic vortices in a plasma in an external magnetic field. An equation for the radial electric field that gives rise to azimuthal electron drift in crossed electric (E r ) and magnetic (B z ) fields is derived without allowance for the magnetic field of the electron currents. Two types of the resulting electrostatic vortex structures with a positive and a negative electric potential at the axis are analyzed. The results obtained are compared with experimental data on vortex structures.  相似文献   

4.
A study is made of the fundamental features of current filaments with a nonzero electron vorticity Ω e B − (c/e) ▿ × p ee ≠ 0 and the corresponding Lagrangian invariant I e . Such current structures can exist on spatial scales of up to ω pi −1. It is shown that the dissipative stage of the plasma evolution and the violation of Thomson’s theorem on vorticity conservation in an electron fluid are of fundamental importance for the onset of electron current structures. A key role of the screening of electric and magnetic fields at distances on the order of the magnetic Debye radius r B = B/(4πen e )—the main property of such current structures in a Hall medium with σB/(en e c) ≫ 1—is stressed. Since the minimum size of a vortex structure is the London length c pe , the structures under consideration correspond to the condition r B > c pe or B 2 > 4πn e m e c 2, which leads to strong charge separation in the filament and relativistic electron drift. It is demonstrated that the specific energy content in current structures is high at a filament current of 10–15 kA: from 100 J/cm3 at a plasma density of 1014 cm−3 (the parameters of a lightning leader) to 107 J/cm3 for a fully ionized atmospheric-pressure air. Estimates are presented showing that the Earth’s ionosphere, circumsolar space, and interstellar space are all Hall media in which current vortex structures can occur. A localized cylindrical equilibrium with a magnetic field reversal is constructed—an equilibrium that correlates with the magnetic structures observed in intergalactic space. It is shown that a magnetized plasma can be studied by using evolutionary equations for the electron and ion Lagrangian invariants I e and I i . An investigation is carried out of the evolution of a current-carrying plasma in a cylinder with a strong external magnetic field and with a longitudinal electron current turned on in the initial stage—an object that can serve as the simplest electrodynamic model of a tokamak. In this case, it is assumed that the plasma conductivity is low in the initial stage and then increases substantially with time. Based on the conservation of the integral momentum of the charged particles and electromagnetic field in a plasma cylinder within a perfectly conducting wall impenetrable by particles, arguments are presented in support of the generation of a radial electric field in a plasma cylinder and the production of drift ion fluxes along the cylinder axis. A hypothesis is proposed that the ionized intergalactic gas expands under the action of electromagnetic forces.  相似文献   

5.
Mechanisms for generating current filaments in a dense plasma under the action of focused laser pulses and in a Z-pinch configuration are discussed. The main properties of current filaments with a zero and nonzero electron vorticity Ω e =B?(c/e)?×p e that originate at magnetic fields in the range 4πn e m e c2?B2?4πn i m i c2 are investigated under the conditions of Coulomb explosion at currents below the ion Alfvén current. A study is made of the equilibrium configurations of nonquasineutral current filaments in a purely longitudinal (Bz) and a purely azimuthal (Bθ) magnetic field and also in a more general case of a helical magnetic field, having two components, under conditions such that the charge separation occurs on a spatial scale on the order of the magnetic Debye radius rB ? |B|/(4πene. It is shown that strong electric fields generated in the current filaments are comparable in magnitude to the atomic field and are capable of accelerating ions to energies of several tens of megaelectronvolts. The ion dynamics in strong electric fields of the filaments is calculated numerically and is shown to lead to the formation of collisionless shock waves on time scales on the order of several inverse ion plasma frequencies ω pi ?1 . The possible formation of current filaments on different spatiotemporal scales is considered.  相似文献   

6.
Electron dynamics and acceleration in an electromagnetic field configuration modeling the current sheet configuration of the Earth’s magnetotail region is investigated. A focus is made on the role of the dawn?dusk magnetic field component By in the convection electron heating by an electric field Ey. For numerical integration of a large number of test particle trajectories over long time intervals, the equations of motion written in the guiding center approximation are used. It is shown that the presence of a By ≠ 0 magnetic field significantly changes the electron heating and allows electrons with small pitch angles to gain energy much more efficiently than the equatorial electrons. As a result, the convection heating in the current sheet with By ≠ 0 leads to the formation of an accelerated anisotropic population of particles with energies higher than a few hundred electronvolts. The obtained results and spacecraft observations in the Earth’s magnetotail are compared, and possible limitations in the proposed model approaches are discussed.  相似文献   

7.
A study is made of nonquasineutral vortex structures in a plasma with a magnetic field B z in which the charges separate on a spatial scale equal to the magnetic Debye radius r B=B z/4πen e. The electric field arising due to charge separation leads to radial expansion of the ions, thereby destroying the initial electron vortex. It is shown that the ion pressure gradient stops ion expansion in a nonquasineutral electron vortex and gives rise to a steady structure with a characteristic scale on the order of r B. With the electron inertia taken into account in the hydrodynamic approximation, the magnetic vortex structure in a hot plas mamanifests itself in the appearance of a “hole” in the plasma density.  相似文献   

8.
The influence of magnetic configurations with magnetic hills or wells on the parameters of a plasma column and turbulence characteristics were studied in experiments in which the plasma was created and heated by a microwave beam at the second harmonic of the electron cyclotron frequency. Calculations show that, for 〈β〉=(1.5?2)×10?, a configuration with a magnetic well takes place and the Mercier criterion for stability of the ideal MHD modes is satisfied. It is shown that the compensation of the Shafranov shift of the plasma column by a transverse (vertical) field (B v /B 0 =5×10?3) leads to a configuration with a magnetic hill in which the Mercier stability criterion is violated in the central region of the plasma column. It is experimentally shown that the stored plasma energy in the magnetic-hill configuration is reduced by one-half in comparison with the magnetic-well configuration. In the case of a magnetic hill, the energy of fluctuations increases both in the plasma core and near the separatrix, and the quasi-regular components of the wavelet spectra grow. When the Shafranov shift is compensated only partially (B v/B 0~3×10?3) and the system is near the instability threshold, the stored plasma energy and the central electron temperature are somewhat higher, and the radiation power of fast electrons from non-Maxwellian tails at the second harmonic of the electron gyrofrequency decreases. It is found that the wavelet spectra of fluctuations change, the coherence coefficient for spectral components increases, and the radial electric field near the separatrix decreases.  相似文献   

9.
A method is developed for specifying the boundary equilibrium magnetic surface in an axially symmetric torus by using the absolute values of the magnetic field B = B s (θ) and the gradient of the poloidal flux ||?Ψ| = |?Ψ| s (θ) in a special flux coordinate system. By setting two surface constants (e.g., the safety factor q and dp/dΨ) and matching the absolute values of the magnetic field and the flux gradient on a closed magnetic surface, it is possible to find all equilibrium magnetic functions (including n · ? ln B and the local shear s) and all constants (including the toroidal current J and the shear dμ/dΨ) on this surface. Such a non-traditional formulation of the boundary conditions in solving the stability problem in an axisymmetric torus allows one to impose intentional conditions on plasma confinement and MHD stability at the periphery of the system.  相似文献   

10.
Abtract The effect of the radial electric field E r on the results of measurements of the poloidal rotation of a tokamak plasma by charge exchange recombination spectroscopy is considered. It is shown that the emission line shift arising from the finite lifetime of the excited state of the ions is proportional to E r. For helium ions, the maximum shift corresponds to the poloidal rotation velocity, which is about one-third of the drift velocity in the crossed radial electric (E r) and toroidal magnetic (B t) fields. __________ Translated from Fizika Plazmy, Vol. 27, No. 11, 2001, pp. 1050–1052. Original Russian ? 2001 by Romannikov, Chernobai.  相似文献   

11.
Although extremely low frequency (ELF) magnetic fields (<300 Hz) appear to exert a variety of biological effects, the magnetic field sensing/transduction mechanism(s) remains to be established. Here, using the inhibitory effects of magnetic fields on endogenous opioid peptide-mediated “analgaesic” response of the land snail. Cepaea nemoralis, we addressed the mechanism(s) of action of ELF magnetic fields. Indirect mechanisms involving both induced electric fields and direct magnetic field detection mechanisms (e.g., magnetite, parametric resonance) were evaluated. Snails were exposed to a static magnetic field (BDC=78±1 μT) and to a 60 Hz magnetic field (BAC=299±1 μT peak) with the angle between the static and 60 Hz magnetic fields varied in eight steps between 0° and 90°. At 0° and 90°, the magnetic field reduced opioid-induced analgaesia by approximately 20%, and this inhibition was increased to a maximum of 50% when the angle was between 50° and 70°. Because BAC was fixed in amplitude, direction, and frequency, any induced electric currents would be constant independent of the BAC/BDC angle. Also, an energy transduction mechanism involving magnetite should show greatest sensitivity at 90°. Therefore, the energy transduction mechanism probably does not involve induced electric currents or magnetite. Rather, our results suggest a direct magnetic field detection mechanism consistent with the parametric resonance model proposed by Lednev. © 1996 Wiley-Liss, Inc.  相似文献   

12.
Results are presented from experimental studies of the influence of the stellarator magnetic field structure on the plasma behavior in electron-cyclotron resonance regimes with a high heating power per electron. The magnetic field structure was changed by varying the induction current I p from ?14 to +14 kA. The plasma electrons were heated at the second harmonic of the electron gyrofrequency by an X-mode microwave beam with a power of P ~ 200 kW, the average plasma density being in the range n e = (0.5–2) × 1013 cm?3. At I p = 0, the rotational transform varies from $\rlap{--} \iota $ (0) = 0.2 on the magnetic axis to 0.8 at the plasma boundary. At a positive current of I p = 13.5 kA, the rotational transform was $\rlap{--} \iota $ (0) = 0.8 on the axis and $\rlap{--} \iota $ (a p) = 0.9 at the plasma boundary. Experiments with a positive current have shown that the radiative temperature first increases with current. When the current increases to I p = 11–14 kA, strong modulation appears in the electron cyclotron emission signals received from all the plasma radii, the emission spectrum changes, and the emission intensity decreases. At a negative current of I p = ?(6.5–13.5) kA, the rotational transform vanishes at r/a p = 0.4–0.6. In this regime, the number of suprathermal electrons is reduced substantially and the emission intensity decreases at both low and high plasma densities.  相似文献   

13.
A fundamentally new approach is proposed for describing Z-pinches when the pinch current is gov-erned to a large extent by strong charge separation, which gives rise to a radial electric field in the nonquasineutral core of the pinch. In the central pinch region with a characteristic radius of about $r_0 \sim \sqrt {J_0 /en_e c}$ , part of the total pinch current J 0<J, is carried by the drifting electrons and the remaining current is carried by ions moving at the velocity v iz c(2eZJ/m i c 3) in the peripheral region with a radial size of cpi. In the nonquasineutral core of a Z-pinch, the radial ion “temperature” is on the order of ZeJ 0/c. The time during which the non-quasineutral region exists is limited by Coulomb collisions between the ions oscillating in the radial direction and the electrons. Since the magnetic field is not frozen in the ions, no sausage instability can occur in the non-quasineutral core of the Z-pinch. In the equilibrium state under discussion, the ratio of the radial charge-separation electric field E 0 to the atomic field E a may be as large as $E_0 /E_a \sim 137^2 (a_0 \omega _{pe} /c)\sqrt {J/J_{Ae} }$ , where a 0 is the Bohr radius.  相似文献   

14.
A theoretical study is made of the possibility of additional heating of a radially inhomogeneous plasma in confinement systems with a rippled magnetic field via the absorption of satellite harmonics of the surface flute modes with frequencies below the electron gyrofrequency in the local resonance region, ε1 (r 1) = [2πc/(ωL)]2, where ε1 is the diagonal element of the plasma dielectric tensor in the hydrodynamic approximation, L is the period of a constant external rippled magnetic field, and the radical coordinate r 1 determines the position of the local resonance. It is found that the high-frequency power absorbed near the local resonance is proportional to the square of the ripple amplitude of the external magnetic field. The mechanism proposed is shown to ensure the absorption of the energy of surface flute modes and, thereby, the heating of a radially inhomogeneous plasma.  相似文献   

15.
The potential importance of electron cyclotron (EC) emission in the local electron power balance in the steady-state regimes of ITER operation with high temperatures, as well as in the DEMO reactor, requires accurate calculation of the one-dimensional (over magnetic surfaces) distribution of the net radiated power density, P EC(ρ). When the central electron temperature increases to ∼30 keV, the local EC radiative loss comprises a substantial fraction of the heating power from fusion alphas and is close to the total auxiliary NBI heating power, P EC(0) ≃ 0.3P α(0) ≃ P aux(0). In the present paper, the model of EC radiative transport in an axisymmetric toroidal plasma is extended to the case of an inhomogeneous magnetic field B(R, Z). The impact of such inhomogeneity on local and total power losses is analyzed in the framework of this model by using the CYNEQ code. It is shown that, for the magnetic field B, temperature T e , density n e , and wall reflection coefficient R w expected in ITER and DEMO, accurate simulations of the EC radiative loss require self-consistent 1.5D transport analysis (i.e., one-dimensional simulations of plasma transport and two-dimensional simulations of plasma equilibrium). It is shown that EC radiative transport can be described with good accuracy in the 1D approximation with the surface-averaged magnetic field, B(ρ) =B(R, Z)〉 ms . This makes it possible to substantially reduce the computational time required for time-dependent self-consistent 1.5D transport analysis. Benchmarking of the CYNEQ results with available results of the RAYTEC, EXACTEC, and CYTRAN codes is performed for various approximations of the magnetic field.  相似文献   

16.
Golding GB  Strobeck C 《Genetics》1980,94(3):777-789
The linkage disequilibrium expected in a finite, partially selfing population is analyzed, assuming the infinite allele model. Formulas for the expected sum of squares of the linkage disequilibria and the squared standard linkage disequilibrium are derived from the equilibrium values of sixteen inbreeding coefficients required to describe the behavior of the system. These formulas are identical to those obtained with random mating if the effective population size Ne = (1-½S)N and the effective recombination value re = (1-S)r/(1-½S), where S is the proportion of selfing, are substituted for the population size and the recombination value. Therefore, the effect of partial selfing at equilibrium is to reduce the population size by a factor 1-½S and the recombination value by a factor (1-S)/(1-½S).  相似文献   

17.
Results are presented from experimental studies of the spatial electron density distribution in current sheets formed in three-dimensional magnetic configurations with X-lines. The electron density is measured by using two-exposure holographic interferometry. It is shown that plasma sheets can form in a magnetic configuration with an X-line in the presence of a sufficiently strong longitudinal magnetic-field component B when the electric current is excited along the X-line. As the longitudinal magnetic-field component increases, the electron density decreases and the plasma sheet thickness increases; i.e., the plasma is compressed into a sheet less efficiently.  相似文献   

18.
In experiments on lower hybrid current drive (LHCD) carried out at the FT-2 tokamak, a substantial increase in the central electron temperature T e (r = 0 cm) from 550 to 700 eV was observed. A complex simulation procedure is used to explain a fairly high LHCD efficiency and the observed additional heating, which can be attributed to a transition into the improved core confinement (ICC) mode. For numerical simulations, data obtained in experiments with deuterium plasma at 〈n e 〉 = 1.6 × 1019 m–3 were used. Simulations by the GRILL3D, FRTC, and ASTRA codes have shown that the increase in the density and central temperature is apparently caused by a significant suppression of heat transport in the electron component. The mechanism for transition into the improved confinement mode at r < 3 cm can be associated with the broadening of the plasma current channel due to the lower hybrid drive of the current carried by superthermal and runaway electrons. In this case, the magnetic shear s = (r/q)(dq/dr) in the axial region of the plasma column almost vanishes during the RF pulse. In this study, the effect of lower hybrid waves on the plasma parameters, resulting in a transition into the ICC mode, is considered. New experimental and calculated data are presented that evidence in favor of such a transition. Special attention is paid to the existence of a threshold for the transition into the ICC mode in deuterium plasma.  相似文献   

19.
The mechanism for the formation of the inverse electron distribution function is proposed and realized experimentally in a nitrogen plasma of a hollow-cathode glow discharge. It is shown theoretically and experimentally that, for a broad range of the parameters of an N2 discharge, it is possible to form a significant dip in the profile of the electron distribution function in the energy range ε=2–4 eV and, accordingly, to produce the inverse distribution with df(ε)/d?>0. The formation of a dip is associated with both the vibrational excitation of N2 molecules and the characteristic features of a hollow-cathode glow discharge. In such a discharge, the applied voltage drops preferentially across a narrow cathode sheath. In the main discharge region, the electric field E is weak (E<0.1 V/cm at a pressure of about p~0.1 torr) and does not heat the discharge plasma. The gas is ionized and the ionization-produced electrons are heated by a beam of fast electrons (with an energy of about 400 eV) emitted from the cathode. A high-energy electron beam plays an important role in the formation of a dip in the profile of the electron distribution function in the energy range in which the cross section for the vibrational excitation of nitrogen molecules is maximum. A plasma with an inverted electron distribution function can be used to create a population inversion in which more impurity molecules and atoms will exist in electronically excited states.  相似文献   

20.
A classical hydrodynamic model is methodologically formulated to see the equilibrium properties of a planar plasma sheath in two-component magnetized bounded plasma. It incorporates the weak but finite electron inertia instead of asymptotically inertialess electrons. The effects of the externally applied oblique (relative to the bulk plasma flow) magnetic field are judiciously accented. It is, for the sake of simplicity, assumed that the relevant physical parameters (plasma density, electrostatic potential, and flow velocity) vary only in a direction normal to the confining wall boundary. It is noticed for the first time that the derived Bohm condition for sheath formation is modified conjointly by the electron inertia, magnetic field, and field orientation. It is manifested that the electron inertia in the presence of plasma gyrokinetic effects slightly enhances the ion Mach threshold value (typically, M i0 ≥ 1.139) toward the sheath entrance. This flow supercriticality is in contrast with the heuristic formalism (M i0 ≥ 1) for the zero-inertia electrons. A numerical illustrative scheme on the parametric sheath features on diverse nontrivial apposite arguments is constructed alongside ameliorative scope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号