首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A backcross-self population from a cross between Gossypium hirsutum and G. barbadense was used to dissect the molecular basis of genetic variation governing 15 parameters that reflect fiber length. Applying a detailed restriction fragment length polymorphism (RFLP) map to 3,662 BC3F2 plants from 24 independently derived BC3 families, we detected 28, nine, and eight quantitative trait loci (QTLs) for fiber length, length uniformity, and short fiber content, respectively. For eight, six, and two chromosomal regions containing quantitative trait loci (QTLs) for fiber length, length uniformity, and short fiber content (respectively), two-way analysis of variance showed a significant (P<0.001) among-family genotypic effect. A total of 13, two, and four loci showed genotype × family interaction, illustrating some of the complexities that are likely to be faced in introgression of exotic germplasm into the gene pool of cultivated cotton. Co-location of many QTLs for fiber length, length uniformity, and short fiber content accounted for correlations among these traits, while the discovery of many QTLs unique to each trait suggests that maximum genetic gain will require breeding efforts that target each trait (or an index including all three). The availability of DNA markers linked to G. barbadense QTLs identified in this and other studies promise to assist breeders in transferring and maintaining valuable traits from exotic sources during cultivar development.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

2.
A series of introgression lines (ILs) were generated from repeated backcrossing between the exotic hexaploid wheat genotype Am3 and the common wheat genotype Laizhou953. Am3 was synthesized by crossing Triticum carthlicum with Aegilops tauschii and was used as the donor parent in this study, and Laizhou953 was used as the recurrent parent. Two hundred and five SSR markers showing polymorphism between the two parents were used to identify the introgressed Am3 chromosome segments in 97 BC4F3 ILs. The introgressed segments in each line and the length of the introgressed segments were estimated according to the wheat SSR consensus map. The introgressed segments from Am3 in the 97 lines covers 37.7% of the donor genome. The introgressed segments were most found on 2D, 3B, 6B, and 1D with coverage of 59.8, 59.5, 59.1, and 59% of the chromosomes, respectively. None of the 97 lines tested contained chromosome 4D segments introgressed from Am3. Introgressed segments for each of the chromosomes were mapped using the consensus wheat linkage map. Nine agronomic traits from BC4F3 lines were evaluated and the phenotype showed most lines have the tendency to be more similar to the recurrent parent. There were lines showing better agronomic traits than the recurrent parent, which indicated the introgression of favorable alleles from the exotic hexaploid wheat into the elite cultivar Laizhou953. Marker and phenotype data were used to identify quantitative trait loci (QTLs) controlling these nine traits. In total, 38, 33, and 28 putative QTLs were detected for seven of the nine traits in 2003, 2004, and 2005, respectively. Some of these agronomic important QTLs were detected in more than one season. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

3.
To increase the value of associated molecular tools and also to begin to explore the degree to which interspecific and intraspecific genetic variation in Sorghum is attributable to corresponding genetic loci, we have aligned genetic maps derived from two sorghum populations that share one common parent (Sorghum bicolor L. Moench accession BTx623) but differ in morphological and evolutionarily distant alternate parents (S. propinquum or S. bicolor accession IS3620C). A total of 106 well-distributed DNA markers provide for map alignment, revealing only six nominal differences in marker order that are readily explained by sampling variation or mapping of paralogous loci. We also report a total of 61 new QTLs detected from 17 traits in these crosses. Among eight corresponding traits (some new, some previously published) that could be directly compared between the two maps, QTLs for two (tiller height and tiller number) were found to correspond in a non-random manner (P<0.05). For several other traits, correspondence of subsets of QTLs narrowly missed statistical significance. In particular, several QTLs for leaf senescence were near loci previously mapped for ‘stay-green’ that have been implicated by others in drought tolerance. These data provide strong validation for the value of molecular tools developed in the interspecific cross for utilization in cultivated sorghum, and begin to separate QTLs that distinguish among Sorghum species from those that are informative within the cultigen (S. bicolor). Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users. K.F. Schertz: deceased  相似文献   

4.
Evidence from rodents and association analyses in humans suggest the presence on chromosome Y of one or more genes affecting blood pressure (BP). The HindIII centromeric alphoid polymorphism has been reported to be associated with BP in three independent human populations, although other studies reported null associations with this trait. Our objective was to test for association between BP and genetic variation of the Y chromosome. To this end, 2,743 unrelated Caucasian men recruited from nine UK practices were analysed for five SNPs (including the HindIII site) and two microsatellites spanning the non-recombining region of the Y chromosome. Systolic and diastolic BP were analysed both as quantitative traits and as categorical variables. Differences between locations were tested. Haplotypic and linkage disequilibrium (LD) analyses were also performed. Overall, no significant association was found between any of the loci analysed and BP, although post hoc analyses suggest a possible relation of specific Y haplogroups to BP. The HindIII polymorphism marks major structural differences in the Y centromere which could infuence mitotic loss during ageing, or other somatic events. However, this study does not support a causal effect on BP, although association of one or more Y haplogroups cannot be excluded.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

5.
Although molecular markers and DNA sequence data are now available for many crop species, our ability to identify genetic variation associated with functional or adaptive diversity is still limited. In this study, our aim was to quantify and characterize diversity in a panel of cultivated and wild sorghums (Sorghum bicolor), establish genetic relationships, and, simultaneously, identify selection signals that might be associated with sorghum domestication. We assayed 98 simple sequence repeat (SSR) loci distributed throughout the genome in a panel of 104 accessions comprising 73 landraces (i.e., cultivated lines) and 31 wild sorghums. Evaluation of SSR polymorphisms indicated that landraces retained 86% of the diversity observed in the wild sorghums. The landraces and wilds were moderately differentiated (F st=0.13), but there was little evidence of population differentiation among racial groups of cultivated sorghums (F st=0.06). Neighbor-joining analysis showed that wild sorghums generally formed a distinct group, and about half the landraces tended to cluster by race. Overall, bootstrap support was low, indicating a history of gene flow among the various cultivated types or recent common ancestry. Statistical methods (Ewens-Watterson test for allele excess, lnRH, and F st) for identifying genomic regions with patterns of variation consistent with selection gave significant results for 11 loci (approx. 15% of the SSRs used in the final analysis). Interestingly, seven of these loci mapped in or near genomic regions associated with domestication-related QTLs (i.e., shattering, seed weight, and rhizomatousness). We anticipate that such population genetics-based statistical approaches will be useful for re-evaluating extant SSR data for mining interesting genomic regions from germplasm collections.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

6.
A backcross-self population from a cross between Gossypium hirsutum and G. barbadense was used to dissect the molecular basis of genetic variation governing two parameters reflecting lint fiber fineness and to compare the precision of these two measurements. By applying a detailed restriction fragment length polymorphism (RFLP) map to 3,662 BC3F2 plants from 24 independently derived BC3 families, we were able to detect 32 and nine quantitative trait loci (QTLs) for fiber fineness and micronaire (MIC), respectively. The discovery of larger numbers of QTLs in this study than previously found in other studies based on F2 populations grown in favorable environments reflects the ability of the backcross-self design to resolve smaller QTL effects. Although the two measurements differed dramatically in the number of QTLs detected, seven of the nine MIC QTLs were also associated with fiber fineness. This supports other data in suggesting that fiber fineness more accurately reflects the underlying physical properties of cotton fibers and, consequently, is a preferable trait for selection. Negative transgression, with the majority of BC3F2 families showing average phenotypes that were poorer than that of the inferior parent, suggests that many of the new gene combinations formed by interspecific hybridization are maladaptive and may contribute to the lack of progress in utilizing G. barbadense in conventional breeding programs to improve upland cotton.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

7.
Using a High Efficiency Genome Scanning (HEGS) system and recombinant inbred (RI) lines derived from the cross of Russia 6 and H.E.S. 4, a high-density genetic map was constructed in barley. The resulting 1,595.7-cM map encompassed 1,172 loci distributed on the seven linkage groups comprising 1,134 AFLP, 34 SSR, three STS and vrs1 (kernel row type) loci. Including PCR reactions, gel electrophoresis and data processing, 6 months of work by a single person was sufficient for the whole mapping procedure under a reasonable cost. To make an appraisal of the resolution of genetic analysis for the 95 RI lines based on the constructed linkage map, we measured three agronomic traits: plant height, spike exsertion length and 1,000-kernel weight, and the analyzed quantitative trait loci (QTLs) associated with these traits. The results were compared on the number of detected QTLs and their effects between a high-density map and a skeleton map constructed by selected AFLP and anchor markers. The composite interval mapping on the high-density map detected more QTLs than the other analyses. Closely linked markers with QTLs on the high-density map could be powerful tools for marker-assisted selection in barley breeding programs and further genetic analyses including an advanced backcross analysis or a map-based cloning of QTL. Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by J.S. Heslop-Harrison  相似文献   

8.
An earlier study identified quantitative trait loci (QTLs) lb4, lb5b, and lb11b for quantitative resistance to Phytophthora infestans (late blight) in a backcross population derived from crossing susceptible cultivated tomato (Lycopersicon esculentum) with resistant L. hirsutum. The QTLs were located in intervals spanning 28–47 cM. Subsequently, near-isogenic lines (NILs) were developed for lb4, lb5b, and lb11b by marker-assisted backcrossing to L. esculentum. Sub-NILs containing overlapping L. hirsutum segments across each QTL region were selected and used to validate the QTL effects, fine-map QTLs, and evaluate potential linkage drag between resistance QTLs and QTLs for horticultural traits. The NILs and sub-NILs were evaluated for disease resistance and eight horticultural traits at three field locations. Resistance QTLs were detected in all three sets of NIL lines, confirming the BC1 mapping results. Lb4 mapped near TG609, and between TG182 and CT194, on chromosome 4, a 6.9-cM interval; lb5b mapped to an 8.8-cM interval between TG69a and TG413 on chromosome 5, with the most likely position near TG23; and lb11b mapped to a 15.1-cM interval on chromosome 11 between TG194 and TG400, with the peak centered between CT182 and TG147. Most QTLs for horticultural traits were identified in intervals adjacent to those containing the late blight resistance QTLs. Fine mapping of these QTLs permits the use of marker-assisted selection for the precise introgression of L. hirsutum segments containing late blight resistance alleles separately from those containing deleterious alleles at horticulturally important QTLs.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by D.B. Neale  相似文献   

9.
To identify novel genetic modifiers of type 2 diabetes (T2D), we performed quantitative trait loci (QTL) analysis on F2 progeny of hypoinsulinemic diabetic Akita mice, heterozygous for the Ins2 gene Cys96Tyr mutation, and nondiabetic A/J mice. We generated 625 heterozygous (F2-Hetero) and 338 wild-type (F2-Wild) mice with regard to the Ins2 mutation in F2 intercross progeny. We measured quantitative traits, including plasma glucose and insulin concentrations during the intraperitoneal glucose tolerance test (IPGTT), and body weight (BW). We observed three significant QTLs in hypoinsulinemic hyperglycemic male F2-Hetero mice, designated Dbm1, Dbm3, and Dbm4 on Chromosomes 6, 14, and 15, respectively. They showed linkage to plasma glucose concentrations, with significant maximum logarithm of odds (LOD) scores of 4.12, 4.17, and 6.17, respectively, all exceeding threshold values by permutation tests. In normoinsulinemic normoglycemic male F2-Wild mice, Dbm1 on Chromosome 6 showed linkage to both plasma insulin concentrations and BW, and Dbm2 on Chromosome 11 showed linkage to plasma glucose concentrations only, with LOD scores of 4.52 and 6.32, and 5.78, respectively. Based on these results, we concluded that Dbm1, Dbm2, Dbm3, and Dbm4 represent four major modifier QTLs specifically affecting T2D-related traits and that these diabetic modifier QTLs are conditional on the heterozygous Ins2 gene mutation and sex to exert their modifier functions. Identification of the genes responsible for these QTLs would provide new drug development targets for human T2D. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users.  相似文献   

10.
The current study is the first installment of an effort to explore the secondary gene pool for the enhancement of Upland cotton (Gossypium hirsutum L.) germplasm. We developed advanced-generation backcross populations by first crossing G. hirsutum cv. Tamcot 2111 and G. barbadense cv. Pima S6, then independently backcrossing F1 plants to the G. hirsutum parent for three cycles. Genome-wide mapping revealed introgressed alleles at an average of 7.3% of loci in each BC3F1 plant, collectively representing G. barbadense introgression over about 70% of the genome. Twenty-four BC3F1 plants were selfed to generate 24 BC3F2 families of 22–172 plants per family (totaling 2,976 plants), which were field-tested for fiber elongation and genetically mapped. One-way analysis of variance detected 22 non-overlapping quantitative trail loci (QTLs) distributed over 15 different chromosomes. The percentage of variance explained by individual loci ranged from 8% to 28%. Although the G. barbadense parent has lower fiber elongation than the G. hirsutum parent, the G. barbadense allele contributed to increased fiber elongation at 64% of the QTLs. Two-way analysis of variance detected significant (P<0.001) among-family genotype effects and genotype×family interactions in two and eight regions, respectively, suggesting that the phenotypic effects of some introgressed chromosomal segments are dependent upon the presence/absence of other chromosomal segments.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

11.
We present here the first study of linkage disequilibrium (LD) in cultivated grapevine, Vitis vinifera L. subsp. vinifera (sativa), an outcrossing highly heterozygous perennial species. Our goal was to characterize the amount and pattern of LD at the scale of a few centiMorgans (cM) between 38 microsatellite loci located on five linkage groups, in order to assess its origin and potential applications. We used a core collection of 141 cultivars representing the diversity of the cultivated compartment. LD was evaluated with both independence tests and multilocus r 2 , both on raw genotypic and reconstructed haplotypic data. Significant genotypic LD was found only within linkage groups, extending up to 16.8 cM. It appeared not to be influenced by the weak structure of the sample and seemed to be mainly of haplotypic origin. Significant haplotypic LD was found over 30 cM. Both genotypic and haplotypic r 2 values declined to around 0.1 within 5–10 cM, suggesting a rather narrow genetic base of the cultivated compartment and limited recombination since domestication events. These first results open up a few application opportunities for association mapping of QTLs and marker assisted selection. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

12.
In order to construct a saturated genetic map and facilitate marker-assisted selection (MAS) breeding, it is necessary to enhance the current reservoir of known molecular markers in Gossypium. Microsatellites or simple sequence repeats (SSRs) occur in expressed sequence tags (EST) in plants (Kantety et al., Plant Mol Biol 48:501–510, 2002). Many ESTs are publicly available now and represent a good tool in developing EST-SSRs. From 13,505 ESTs developed from our two cotton fiber/ovule cDNA libraries constructed for Upland cotton, 966 (7.15%) contained one or more SSRs and from them, 489 EST-SSR primer pairs were developed. Among the EST-SSRs, 59.1% are trinucleotides, followed by dinucleotides (30%), tetranucleotides (6.4%), pentanucleotides (1.8%), and hexanucleotides (2.7%). AT/TA (18.4%) is the most frequent repeat, followed by CTT/GAA (5.3%), AG/TC (5.1%), AGA/TCT (4.9%), AGT/TCA (4.5%), and AAG/TTC (4.5%). One hundred and thirty EST-SSR loci were produced from 114 informative EST-SSR primer pairs, which generated polymorphism between our two mapping parents. Of these, 123 were integrated on our allotetraploid cotton genetic map, based on the cross [(TM-1×Hai7124)TM-1]. EST-SSR markers were distributed over 20 chromosomes and 6 linkage groups in the map. These EST-SSR markers can be used in genetic mapping, identification of quantitative trait loci (QTLs), and comparative genomics studies of cotton. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users. Zhiguo Han and Changbiao Wang contributed equally to this work.  相似文献   

13.
This is the first phenotypic analysis of 75 new recombinant inbred (RI) strains derived from ILS and ISS progenitors. We analyzed body weight in two independent cohorts of female mice at various ages and in males at 60 days. Body weight is a complex trait which has been mapped in numerous crosses in rodents. The LXS RI strains displayed a large range of weights, transgressing those of the inbred progenitors, supporting the utility of this large panel for mapping traits not selected in the progenitors. Numerous QTLs for body weight mapped in single- and multilocus scans. We assessed replication between these and previously reported QTLs based on overlapping confidence intervals of published QTLs for body weight at 60 days and used meta-analyses to determine combined p values for three QTL regions located on Chromosomes 4, 5, and 11. Strain distribution patterns of microsatellite marker genotypes, weight, and other phenotypes are available on WebQTL () and allow genetic mapping of any heritable quantitative phenotype measured in these strains. We report one such analysis, correlating brain and body weights. Large reference panels of RI strains, such as the LXS, are invaluable for identifying genetic correlations, GXE (Gene X Environment) interactions, and replicating previously identified QTLs. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users.  相似文献   

14.
Cotton genome mapping with new microsatellites from Acala ‘Maxxa’ BAC-ends   总被引:15,自引:3,他引:12  
Fine mapping and positional cloning will eventually improve with the anchoring of additional markers derived from genomic clones such as BACs. From 2,603 new BAC-end genomic sequences from Gossypium hirsutum Acala ‘Maxxa’, 1,316 PCR primer pairs (designated as MUSB) were designed to flank microsatellite or simple sequence repeat motif sequences. Most (1164 or 88%) MUSB primer pairs successfully amplified DNA from three species of cotton with an average of three amplicons per marker and 365 markers (21%) were polymorphic between G. hirsutum and G. barbadense. An interspecific RIL population developed from the above two entries was used to map 433 marker loci and 46 linkage groups with a genetic distance of 2,126.3 cM covering approximately 45% of the cotton genome and an average distance between two loci of 4.9 cM. Based on genome-specific chromosomes identified in G. hirsutum tetraploid (A and D), 56.9% of the coverage was located on the A subgenome while 39.7% was assigned to the D subgenome in the genetic map, suggesting that the A subgenome may be more polymorphic and recombinationally active than originally thought. The linkage groups were assigned to 23 of the 26 chromosomes. This is the first genetic map in which the linkage groups A01 and A02/D03 have been assigned to specific chromosomes. In addition the MUSB-derived markers from BAC-end sequences markers allows fine genetic and QTL mapping of important traits and for the first time provides reconciliation of the genetic and physical maps. Limited QTL analyses suggested that loci on chromosomes 2, 3, 12, 15 and 18 may affect variation in fiber quality traits. The original BAC clones containing the newly mapped MUSB that tag the QTLs provide critical DNA regions for the discovery of gene sequences involved in biological processes such as fiber development and pest resistance in cotton. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

15.
F. R. Minchin  D. A. Baker 《Planta》1969,89(3):212-223
Summary The flux of water, , to the xylem of exuding root systems of Ricinus communis was controlled using a range of mannitol concentrations permitting the influence of this water flux on the potassium flux, f K, to be studied. The relationship between and f K thus obtained was investigated, for a number of external concentrations of potassium, Cm, supplied as potassium nitrate. An analysis of these data indicated the presence of a water dependent and a water independent f K both of which varied with Cm. The water dependent f K shows a parabolic relationship with Cm for Cm values <1 mM followed by a sharp inflection and decline at higher Cm values whereas the water independent f K shows an hyperbolic relationship over the same range of Cm values.Uptake of potassium by exuding root systems was measured and shown to be dependent on the solute potential of the medium. The uptake was also shown to exhibit a dual absorption isotherm the kinetics of which indicate a low Km system (system 1) and a high Km system (system 2). The Km value obtained for system 1 is very similar to that obtained for the water independent f K. It is postulated that the water independent f K is contributed by that portion of f K arriving in the stele via the cortical symplast and is directly dependent on Cm. The water dependent f K is contributed by those ions moved across the root in response to centripetal water movement through the cortical cell walls.  相似文献   

16.
A genetic study is presented for traits relating to nitrogen use in wheat. Quantitative trait loci (QTLs) were established for 21 traits relating to growth, yield and leaf nitrogen (N) assimilation during grain fill in hexaploid wheat (Triticum aestivum L.) using a mapping population from the cross Chinese Spring × SQ1. Glutamine synthetase (GS) isozymes and estimated locations of 126 genes were placed on the genetic map. QTLs for flag leaf GS activity, soluble protein, extract colour and fresh weight were found in similar regions implying shared control of leaf metabolism and leaf size. Flag leaf traits were negatively associated with days to anthesis both phenotypically and genetically, demonstrating the complex interactions of metabolism with development. One QTL cluster for GS activity co-localised with a GS2 gene mapped on chromosome 2A, and another with the mapped GSr gene on 4A. QTLs for GS activity were invariably co-localised with those for grain N, with increased activity associated with higher grain N, but with no or negative correlations with grain yield components. Peduncle N was positively correlated, and QTLs co-localised, with grain N and flag leaf N assimilatory traits, suggesting that stem N can be indicative of grain N status in wheat. A major QTL for ear number per plant was identified on chromosome 6B which was negatively co-localised with leaf fresh weight, peduncle N, grain N and grain yield. This locus is involved in processes defining the control of tiller number and consequently assimilate partitioning and deserves further examination. Electronic Supplementary Material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

17.
There is enough evidence through linkage and substitution mapping to indicate that rat chromosome 1 harbors multiple blood pressure (BP) quantitative trait loci (QTLs). Of these, BP QTL1b was previously reported from our laboratory using congenic strains derived by introgressing normotensive alleles from the LEW rat onto the genetic background of the hypertensive Dahl salt-sensitive (S) rat. The region spanned by QTL1b is quite large (20.92 Mb), thus requiring further mapping with improved resolution so as to facilitate systematic identification of the underlying genetic determinant(s). Using congenic strains containing the LEW rat chromosomal segments on the Dahl salt-sensitive (S) rat background, further iterations of congenic substrains were constructed and characterized. Collective data obtained from this new iteration of congenic substrains provided evidence for further fragmentation of QTL1b with improved resolution. At least two separate genetic determinants of blood pressure underlie QTL1b. These are within 7.40 Mb and 7.31 Mb and are known as the QTL1b1 region and the QTL1b2 region, respectively. A genetic interaction was detected between the two BP QTLs. Interestingly, five of the previously reported differentially expressed genes located within the newly mapped QTL1b1 region remained differentially expressed. The congenic strain S.LEW(D1Mco36-D1Mco101), which harbors the QTL1b1 region alone but not the QTL1b2 region, serves as a genetic tool for further dissection of the QTL1b1 region and validation of Nr2f2 as a positional candidate gene. Overall, this study represents an intermediary yet obligatory progression towards the identification of genetic elements controlling BP. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. E. J. Toland and Y. Saad contributed equally to this work.  相似文献   

18.
Microsatellite [simple-sequence repeat (SSR)] markers were developed and positioned on the genetic map of tetraploid cotton. Three hundred and ninety-two unique microsatellite sequences, all but two containing a (CA/GT) repeat, were isolated, and the deduced primers were used to screen for polymorphism between the Gossypium hirsutum and G. barbadense parents of the mapping population analyzed in our laboratory. The observed rate of polymorphism was 56%. The 204 polymorphic SSRs revealed 261 segregating bands, which ultimately gave rise to 233 mapped loci. The updated status of our genetic map is now of 1,160 loci and 5,519 cM, with an average distance between two loci of 4.8 cM. The presence of a total of 466 microsatellite loci, with an average distance of 12 cM between two SSR loci, now provides wide coverage of the genome of tetraploid cotton and thus represents a powerful means for the production of a consensus map and for the effective tracking of QTLs.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00122-004-1612-1Communicated by C. Möllers  相似文献   

19.
We have found direct DNA repeats 21–47 bp in length interspersed with nonrepetitive sequences of similar length, or clustered regularly interspaced short palindromic repeats (CRISPRs) in a wide range of diverse prokaryotes, including many Archaeal and Eubacterial species. A number of cas, CRISPR-associated genes have also been characterized in many of the same organisms. Phylogenetic analysis of these cas genes suggests that the CRISPR loci have been propagated via HGT, horizontal gene transfer. We suggest a mechanism by which this HGT has occurred, namely, that the CRISPR loci can be carried between cells on megaplasmids ≥40 kb in length. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Stuart Newfeld]  相似文献   

20.
A consensus map of barley was constructed based on three reference doubled haploid (DH) populations and three recombinant inbred line (RIL) populations. Several sets of microsatellites were used as bridge markers in the integration of those populations previously genotyped with RFLP or with AFLP markers. Another set of 61 genic microsatellites was mapped for the first time using a newly developed fluorescent labelling strategy, referred to as A/T labelling. The final map contains 3,258 markers spanning 1,081 centiMorgans (cM) with an average distance between two adjacent loci of 0.33 cM. This is the highest density of markers reported for a barley genetic map to date. The consensus map was divided into 210 BINs of about 5 cM each in which were placed 19 quantitative trait loci (QTL) contributing to the partial resistance to barley leaf rust (Puccinia hordei Otth) in five of the integrated populations. Each parental barley combination segregated for different sets of QTLs, with only few QTLs shared by any pair of cultivars. Defence gene homologues (DGH) were identified by tBlastx homology to known genes involved in the defence of plants against microbial pathogens. Sixty-three DGHs were located into the 210 BINs in order to identify candidate genes responsible for the QTL effects. Eight BINs were co-occupied by a QTL and DGH(s). The positional candidates identified are receptor-like kinase, WIR1 homologues and several defence response genes like peroxidases, superoxide dismutase and thaumatin. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号