首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The dominant family of interspersed repetitive DNA sequences in the human genome has been termed the Alu family. We have found that more than 75% of the lambda phage in a recombinant library representing an African green monkey genome hybridize with a human Alu sequence under stringent conditions. A group of clones selected from the monkey library with probes other than the Alu sequence were analyzed for the presence and distribution of Alu family sequences. The analyses confirm the abundance of Alu sequences and demonstrate that more than one repeat unit is present in some phages. In the clones studied, the Alu units are separated by an average of 8 kilobase pairs of unrelated sequences. The nucleotide sequence of one monkey Alu sequence is reported and shown to resemble the human Alu sequences closely. Hence, the sequence, dispersion pattern, and copy number of the Alu family members are very similar in the African green monkey and human genomes. Among the clones investigated were two that contain segments of the satellite DNA term alpha-component joined to non alpha-component DNA. The experiments indicate that in the monkey genome Alu sequences can occur close to regions of alpha-component DNA.  相似文献   

2.
3.
In cloning adenovirus homologous sequences, from a human cosmid library, we identified a moderately repetitive DNA sequence family consisting of tandem arrays of 2.5 kb members. A member was sequenced and several non-adjacent, 15-20 bp G-C rich segments with homology to the left side of adenovirus were discovered. The copy number of 400 members is highly conserved among humans. Southern blots of partial digests of human DNA have verified the tandem array of the sequence family. The chromosomal location was defined by somatic cell genetics and in situ hybridization. Tandem arrays are found only on chromosomes 4 (4q31) and 19 (q13.1-q13.5). Homologous repetitive sequences are found in DNA of other primates but not in cat or mouse. Thus we have identified a new family of moderately repetitive DNA sequences, unique because of its organization in clustered tandem arrays, its length, its chromosomal location, and its lack of homology to other moderately repetitive sequence families.  相似文献   

4.
C A Fields  D L Grady  R K Moyzis 《Genomics》1992,13(2):431-436
Fifteen examples of the transposon-like human element (THE) LTR and thirteen examples of the MstII interspersed repeat are aligned to generate new consensus sequences for these human repetitive elements. The consensus sequences of these elements are very similar, indicating that they compose subfamilies of a single human interspersed repetitive sequence family. Members of this highly polymorphic repeat family have been mapped to at least 11 chromosomes. Seven examples of the THE internal sequence are also aligned to generate a new consensus sequence for this element. Estimates of the abundance of this repetitive sequence family, derived from both hybridization analysis and frequency of occurrence in GenBank, indicate that THE-LTR/MstII sequences are present every 100-3000 kb in human DNA. The widespread occurrence of members of this family makes them useful landmarks, like Alu, L1, and (GT)n repeats, for physical and genetic mapping of human DNA.  相似文献   

5.
A new class of human interspersed repeated sequences distinct from the AluI family was found by screening a human gene library with a mouse ribosomal gene non-transcribed spacer probe (rDNA NTS). A member of this sequence family was localized to a 251 bp segment between the human delta and beta globin genes: a region previously judged to be devoid of repeated DNA. The complete nucleotide sequence of this segment revealed a tandem block of 17 TG dinucleotides, a feature hypothesized by others to be a recombination hot spot responsible for gene conversion in the gamma globin locus region. When the genomes of Xenopus, pigeon, slime mold and yeast were examined, reiterated sequences homologous to both the mouse rDNA NTS and human globin repeat were found in every case. The discovery of this extraordinarily conserved repeated sequence family appears to have depended upon not using salmon sperm DNA during hybridization. The use of eucaryotic carrier DNA may bias the search for repeated sequences against any which may be highly conserved during eucaryotic evolution.  相似文献   

6.
We have determined the base sequence of several cloned Alu family members from the DNAs of a new world monkey (owl monkey) and a prosimian (galago). The three owl monkey Alu family members reported here belong to a single 300 base pair consensus sequence which closely resembles the human Alu family consensus. The galago Alu family members can best be represented as belonging to either of two related but distinct consensus sequences. One of the two galago Alu family subgroups (Type I) more accurately resembles the human consensus sequence than does the other subgroup (Type II). In this work we compare base sequences of human and galago Type I Alu family members. There are several examples of species-specific differences between the human and Type I galago sequences indicating that the Alu family members are effectively homogenized within a species.  相似文献   

7.
The strand-specific, site-specific endonuclease (nicking) activity of the Rep68 and Rep78 (Rep68/78) proteins of adeno-associated virus type 2 (AAV) is involved in AAV replication, and appears to be involved in AAV site-specific integration. Rep68/78 cuts within the inverted terminal repeats (ITRs) of the AAV genome and in the AAV preferred integration locus on human chromosome 19 (AAVS1). The known endonuclease cut sites are 11-16 bases away from the primary binding sites, known as Rep recognition sequences (RRSs). A linear, double-stranded segment of DNA, containing an RRS and a cut site, has previously been shown to function as a substrate for the Rep68/78 endonuclease activity. We show here that mutation of the Rep recognition sequence, within such a DNA segment derived from the AAV ITRs, eliminates the ability of this substrate to be cleaved detectably by Rep78. Rep78 nicks the RRS-containing site from AAVS1 about half as well as the linear ITR sequence. Eighteen other RRS-containing sequences found in the human genome, but outside AAVS1, are not cleaved by Rep78. These results may help to explain the specificity of AAV integration.  相似文献   

8.
Base sequence studies of 300 nucleotide renatured repeated human DNA clones   总被引:117,自引:0,他引:117  
A band of 300 nucleotide long duplex DNA is released by treating renatured repeated human DNA with the single strand-specific endonuclease S1. Since many of the interspersed repeated sequences in human DNA are 300 nucleotides long, this band should be enriched in such repeats. We have determined the nucleotide sequences of 15 clones constructed from these 300 nucleotide S1-resistant repeats. Ten of these cloned sequences are members of the Alu family of interspersed repeats. These ten sequences share a recognizable consensus sequence from which individual clones have an average divergence of 12.8%. The 300 nucleotide Alu family consensus sequence has a dimeric structure and was evidently formed from a head to tail duplication of an ancestral monomeric sequence. Three of the remaining clones are variations on a simple pentanucleotide sequence previously reported for human satellite III DNA. Two of the 15 clones have distinct and complex sequences and may represent other families of interspersed repeated sequences.  相似文献   

9.
A recombinant library of human DNA sequences was screened with a segment of simian virus 40 (SV40) DNA that spans the viral origin of replication. One hundred and fifty phage were isolated that hybridized to this probe. Restriction enzyme and hybridization analyses indicated that these sequences were partially homologous to one another. Direct DNA sequencing of two such SV40-hybridizing segments indicated that this was not a highly conserved family of sequences, but rather a set of DNA fragments that contained repetitive regions of high guanine plus cytosine content. These sequences were not members of the previously described Alu family of repeats and hybridized to SV40 DNA more strongly than do Alu family members. Computer analyses showed that the human DNA segments contained multiple homologies with sequences throughout the SV40 origin region, although sequences on the late side of the viral origin contained the strongest cross-hybridizing sequences. Because of the number and complexity of the matches detected, we could not determine unambiguously which of the many possible heteroduplexes between these DNAs was thermodynamically most favored. No hybridization of these human DNA sequences to any other segment of the SV40 genome was detected. In contrast, the human DNA segments isolated cross-hybridized with many sequences within the human genome. We tested for the presence of several functional domains on two of these human DNA fragments. One SV40-hybridizing fragment, SVCR29, contained a sequence which enhanced the efficiency of thymidine kinase transformation in human cells by approximately 20-fold. This effect was seen in an orientation-independent manner when the sequence was present at the 3' end of the chicken thymidine kinase gene. We propose that this segment of DNA contains a sequence analogous to the 72-base-pair repeats of SV40. The existence of such an "activator" element in cellular DNA raises the possibility that families of these sequences may exist in the mammalian genome.  相似文献   

10.
Summary I have analyzed a collection of published human Alu sequences. The compiled sequences show several unexpected features, including a uniform pattern of divergence from their consensus sequence, a mutual divergence that is not correlated with their age, and common features in the genomic DNA flanking the 5 ends of the elements. I suggest that the Alu family of sequences derives from a large pool of precursors and not from a single precursor similar to the family consensus sequence, and that new elements integrate into the genome selectively at oligo-A-rich sites.  相似文献   

11.
The synthesis of the sequence 71-86 (XIII) of human proinsulin (sequence 6-21 of human insulin-A-chain) via the fragments 71-78 (XIy1,3) and 79-86 (XII) is described. The good solubility of the protected peptide derivatives belonging to the sequences 75-78 (IXx1,2), 79-86 (X), and 71-78 (XIy1,2), and of the fragment 71-86 (XIII) itself in organic solvents allows a quick and efficient purification of these derivatives by liquid chromatography on silica-gel columns.  相似文献   

12.
A variety of animal tissues contain beta-galactoside-binding lectins with molecular masses in the range 13-17 kDa. There is evidence that these lectins may constitute a new protein family although their function in vivo is not yet clear. In this work the major part of the amino acid sequence of the 13 kDa lectin from bovine heart muscle has been determined. Comparison of this sequence with the cDNA-deduced sequence published for the chick embryo skin lectin showed 58% homology. Comparison of the bovine lectin sequence with partial sequences from two cDNA clones from a human hepatoma library and partial amino acid sequences of human lung lectin showed 70, 40 and 85% homology, respectively. The sequences of these vertebrate lectins are thus clearly related, supporting earlier results of immunological cross-reactivity within this group of proteins. Computer searching of protein sequence databases did not detect significant homologies between the bovine lectin sequence and other known proteins.  相似文献   

13.
Ubiquitin coding sequences were isolated from a human genomic library and two cDNA libraries. One human ubiquitin gene consists of 2055 nucleotides and codes for a polyprotein consisting of 685 amino acid residues. The polyprotein contains nine direct repeats of the ubiquitin amino acid sequence and the last ubiquitin sequence is extended with an additional valyl residue at the C-terminal end. No spacer sequences separate the ubiquitin repeats and the coding regions are not interrupted by intervening sequences. This particular gene is transcribed since cDNAs corresponding to the genomic sequence have been isolated. At least two more types of ubiquitin genes are encoded in the human genome, one coding for an ubiquitin monomer while another presumably codes for three or four direct repeats of the ubiquitin sequence. Human DNA contains many copies of the ubiquitin sequence. Ubiquitin is therefore encoded in the human genome as a multigene family.  相似文献   

14.
15.
Clone p82H is a human DNA sequence which hybridises in situ exclusively to the centromeric regions of all human chromosomes. It is composed of approximately 14 tandemly repeated variants of a basic 172 bp sequence, and is related to the alphoid family. The organisation of the family of cross-hybridising sequences, detected by the clone p82H, is described both in the human genome and on certain chromosomes, and its relationship to known sequence families is discussed.  相似文献   

16.
Evolution of alu family repeats since the divergence of human and chimpanzee   总被引:14,自引:0,他引:14  
Summary The DNA sequences of three members of the Alu family of repeated sequences located 5 to the chimpanzee 2 gene have been determined. The base sequences of the three corresponding human Alu family repeats have been previously determined, permitting the comparison of identical Alu family members in human and chimpanzee. Here we compare the sequences of seven pairs of chimpanzee and human Alu repeats. In each case, with the exception of minor sequence differences, the identical Alu repeat is located at identical sites in the human and chimpanzee genomes. The Alu repeats diverge at the rate expected for nonselected sequences. Sequence conversion has not replaced any of these 14 Alu family members since the divergence between chimpanzee and human.  相似文献   

17.
Summary An experimental approach towards the molecular analysis of the male fertility function, located in interval 6 of the human Y chromosome, is presented. This approach is not based on the knowledge of any gene product but on the assumption that the functional DNA structure of male fertility genes, evolutionary conserved with their position on the Y chromosome, may contain an evolutionary conserved frame structure or at least conserved sequence elements. We tested this hypothesis by using dhMiF1, a fertility gene sequence of the Y chromosome of Drosophila hydei, as a screening probe on a pool of cloned human Y-DNA sequences. We were able to select 10 human Y-DNA sequences of which 7 could be mapped to Y interval 6 (the pY6H sequence family). Since the only fertility gene of the human Y chromosome is mapped to the same Y interval, our working hypothesis seems to be strongly supported. Most interesting in this respect is the isolation of the Y-specific repetitive pY6H65 sequence. The pY6H65 locus extends to a length of at least 300 kb in Y interval 6 and has a locus-specific repetitive sequence organization, reminiscent of the functional DNA structure of Y chromosomal fertility genes of Drosophila. We identified the simple sequence family (CA)n as one sequence element conserved between the Drosophila dhMiFi fertility gene sequence and the homologous human Y-DNA sequences.  相似文献   

18.
The gene for a murine macrophage inflammatory cytokine, MIP-1 alpha, belongs to a newly recognized superfamily encoding small, inducible peptides shown to be up-regulated in association with cellular activation or transformation (tentatively designated the scy, or small cytokine, gene family). Secreted scy family peptides as a group, and MIP-1 alpha in particular, have inflammatory and mitogenic activities, and the family has been divided into CXC and CC subfamilies according to the spacing of conserved cysteine residues in the primary amino acid sequences. We have isolated and characterized a genomic clone encoding the CC subfamily member MIP-1 alpha. The organization of the murine MIP-1 alpha gene into three exons interrupted by two introns is identical to that found for other members of the CC subfamily (e.g., huLD78, muJE, huJE/MCP-1, muTCA3, and hul-309), which has been taken as evidence of evolution from a common ancestral gene. With the exception of the ratPF4 gene, which shares the two-intron/three-exon pattern typical of the CC subfamily, sequenced genes encoding CXC subfamily peptides (e.g., hulL-8 and hulP-10) include an additional intervening sequence that creates a fourth exon. Genomic nucleotide sequences 5' of the MIP-1 alpha cap site are highly homologous to corresponding regions of the human gene encoding a CC peptide variously designated as LD78/GOS19/pAT464, including consensus regulatory motifs in common, reinforcing the contention that MIP-1 alpha and LD78 may be interspecies homologs.  相似文献   

19.
A new tandemly repetitive sequence family, having the 170 bp basic repeat characteristic of alphoid sequences, has been identified in the human genome. Its organization in the whole genome and on chromosome 21 is different from that of any of the previously described alphoid families. Members of this new family are unusually heterogeneous in sequence, and there are a number of variant sequence classes. Some of the variant classes exist in separate genomic domains, and even on a single chromosome the members of such a class are not significantly intermixed with members of another class.  相似文献   

20.
Considerable plasticity can occur within the amino acid sequence of amphiphilic peptide hormones. This is particularly evident within the corticotropin-releasing factor (CRF) family of peptides where, despite less than 15% sequence similarity among the four paralogous lineages, all are capable of acting as high affinity ligands to members of the CRF receptor family. This suggests that these peptides could undergo many mutational changes and remain as high affinity ligands to their receptors as long as the functional motifs do not change radically. Because paralogous peptide lineages are a product of genome duplications, additional genes encoding peptide-like sequences, which through mutation have lost their functional integrity, may exist. Function to these sequences may be restored if the appropriate motifs are reinserted into the primary structure. We screened rat genomic DNA with highly degenerate polymerase chain reaction (PCR) primers targeted to hybridize with the termini of CRF-related sequences. One set of sauvagine-based primers hybridized with a 120-bp sequence. The theoretical peptide sequence (SV4) showed similarity to the CRF family of peptides at the primary structure level. The encoded sequence was prepared by solid-phase synthesis and its activity assayed against mouse R1 and human R1/R2 receptors. SV4 did not bind to either mouse or human variants of the R1 receptor, but did bind to the R2 receptor with an affinity comparable to human CRF. SV4 exhibited a similar efficacy of cellular activation as CRF in trials quantifying the acidification rate of human R2alpha-transfected Chinese hamster ovary (CHO) cells, but not R1-transfected cells. SV4 utilizes adenylate cyclase as the principal secondary messenger of R2 signal transduction but, unlike urocortin or sauvagine, does not activate guanylate cyclase-, calcium- or mitogen-activated protein (MAP) kinase-mediated pathways. These data suggest that this artificial peptide may be useful to understand the cyclic adenosine monophosphate (cAMP)-dependent component of the CRF-R2 signal transduction cascade, and that additional sequences in the genome may be used to engineer bioactive peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号