首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
We designed a simple coarse-grained model of the glycocalyx layer, or adhesive mucus layer (AML), covered by mucus gel (luminal mucus layer) using a polymer lattice model and stochastic sampling (replica exchange Monte Carlo) for canonical ensemble simulations. We assumed that mucin MUC16 is responsible for the structural properties of the AML. Other mucins that are much smaller in size and less relevant for layer structure formation were not included. We further assumed that the system was in quasi-equilibrium. For systems with surface coverage and concentrations of model mucins mimicking physiological conditions, we determined the equilibrium distribution of inert nanoparticles within the mucus layers using an efficient replica exchange Monte Carlo sampling procedure. The results show that the two mucus layers penetrate each other only marginally, and the bilayer imposes a strong barrier for nanoparticles, with the AML layer playing a crucial role in the mucus barrier.  相似文献   

2.
We investigated the role of the viscoelastic and adhesive properties of mucus gel simulants on the clearance of mucus by simulated cough. Mucus-like gels with widely varying viscoelastic properties were prepared from polysaccharides crosslinked with sodium borate. Cough was simulated by opening a solenoid valve connecting a model trachea to a pressurized tank. The clearance of gels lining the model trachea was quantified by observing marker particle transport. Viscosity elastic modulus, relaxation time and yield stress were measured with a steady-shear viscoelastometer. Spinnability (thread formation) was determined with a filancemeter. Adhesivity (surface tension) was measured by the platinum ring technique. The viscoelastic and adhesive properties of the mucus gel simulants spanned the ranges observed for bronchial secretions from patients with COPD. The relationship between simulated cough clearance and the viscoelastic and adhesive properties of the gels was analyzed by stepwise linear regression of the non-zero data matrix. The major independent variable relating to clearance was viscosity. Secondary, but highly significant dependences, were also found for spinnability and adhesivity. Elastic modulus, relaxation time and yield stress had no independent effect on cough clearance over the investigated range. The results indicate that, in the absence of airway surface liquid, cough-type clearance relates primarily with mucus gel viscosity. For a given viscosity, clearance is also impaired by spinnability, i.e. the capacity of the mucus to form threads. At constant viscosity and spinnability, clearance is further impaired by an increase in the adhesivity of the mucus. The negative dependence of each of these physical factors can be rationalized in terms of their inhibitory effect on wave formation in the mucus lining layer during high velocity airflow interaction.  相似文献   

3.
The colon mucus layers minimize the contact between the luminal flora and the epithelial cells, and defects in this barrier may lead to colonic inflammation. We now describe an ex vivo method for analysis of mucus properties in human colon and mouse small and large intestine. Intestinal explants were mounted in horizontal perfusion chambers. The mucus surface was visualized by adding charcoal particles on the apical side, and mucus thickness was measured using a micropipette. Mucus thickness, adhesion, and growth rate were recorded for 1 h. In mouse and human colon, the ability of the mucus to act as a barrier to beads the size of bacteria was also evaluated. Tissue viability was monitored by transepithelial potential difference. In mouse ileum, the mucus could be removed by gentle aspiration, whereas in colon ~40 μm of the mucus remained attached to the epithelial surface. Both mouse and human colon had an inner mucus layer that was not penetrated by the fluorescent beads. Spontaneous mucus growth was observed in human (240 μm/h) and mouse (100 μm/h) colon but not in mouse ileum. In contrast, stimulation with carbachol induced a higher mucus secretion in ileum than colon (mouse ileum: Δ200 μm, mouse colon: Δ130 μm, human colon: Δ140 μm). In conclusion, while retaining key properties from the mucus system in vivo, this setup also allows for studies of the highly dynamic mucus system under well-controlled conditions.  相似文献   

4.
Gastrointestinal mucus is considered an important part of the mucosal defence mechanism against endogenous aggressors such as acid and pepsin. The mucus gel layer, adherent to the mucosal surface creates a diffusion barrier to luminal pepsin, thus protecting the underlying epithelium from the digestion by pepsin. The mucolytic pepsin will, however, digest the mucus at its luminal surface, but that lost is normally balanced by secretion of new mucus. This dynamic balance is disrupted when the mucus is exposed to excess pepsin, which causes focal haemorrhagic damage by progressively hydrolyzing the adherent mucus. The adherent mucus gel layer cannot contribute to the protection against exogen damaging agents such as ethanol and nonsteroidal anti-inflammatory drugs, as these compounds easily penetrate the mucus barrier causing, at high concentration, epithelial exfoliation. This study describes the basic properties and characteristics of gastric mucus and compares the pepsin-induced damage with the ethanol damage model.  相似文献   

5.
A new mathematical model of the transport of mucus and periciliary liquid (PCL) in the airways by cilia is presented. Mucus is represented by a linearly viscoelastic fluid, the mat of cilia is modelled as an ‘active porous medium.’ The propulsive effect of the cilia is modelled by a time-dependent force acting in a shear-thinned ‘traction layer’ between the mucus and the PCL. The effects of surface and interface tension are modelled by constraining the mucus free surface and mucus–PCL interface to be flat. It is assumed that the epithelium is impermeable to fluid. Using Fourier series, the system is converted into ODEs and solved numerically. We calculate values for mean mucus speed close to those observed by Matsui et~al. [{J. Clin. Invest.}, 102(6):1125–1131, 1998], (∽40 μms-1). We obtain more detail regarding the dynamics of the flow and the nonlinear relationships between physical parameters in healthy and diseased states than in previously published models. Pressure gradients in the PCL caused by interface and surface tension are vital to ensuring efficient transport of mucus, and the role of the mucus–PCL interface appears to be to support such pressure gradients, ensuring efficient transport. Mean transport of PCL is found to be very small, consistent with previous analyses, providing insight into theories regarding the normal tonicity of PCL. An erratum to this article can be found at  相似文献   

6.
The airway epithelial surface liquid is generally considered to be composed of two layers, a periciliary layer and a continuous thick mucus layer moving in bulk. This view may not be appropriate for all areas of the lung. Our hypothesis, that mucus may form a discontinuous layer with dynamic attachments to the surface, is investigated using a culture system. We used live-cell confocal microscopy to investigate thin mucus layers and fluorescent beads and exogenous MUC5B to visualize mucus dynamics on ciliated human bronchial cultures. A continuous mucus layer was not observed. In sparsely ciliated cultures, mucus attached to ciliated cells; however, in highly ciliated cultures, mucus formed strands several hundred micrometers long. As with increases in ciliation, increases in bead concentration caused the appearance of mucus strands. We confirmed the involvement of mucins in the binding of mucus to cilia by adding labeled purified MUC5B to the cultures. These data suggest that mucins may have an intrinsic ability to form attachments to cilia. The significance of these findings is that aberrant modulation of such an intrinsic property may explain the initiation of highly adherent mucus in cystic fibrosis lung disease.  相似文献   

7.
Divergent results from in vitro studies on the thickness and appearance of the gastrointestinal mucus layer have previously been reported. With an in vivo model, we studied mucus gel thickness over time from stomach to colon. The gastrointestinal tissues of Inactin-anesthetized rats were mounted luminal side up for intravital microscopy. Mucus thickness was measured with a micropipette before and after mucus removal by suction. The mucus layer was translucent and continuous; it was thickest in the colon (approximately 830 microm) and thinnest in the jejunum (approximately 123 microm). On mucus removal, a continuous, firmly adherent mucus layer remained attached to the epithelial surface in the corpus (approximately 80 microm), antrum (approximately 154 microm), and colon (approximately 116 microm). In the small intestine, this layer was very thin (approximately 20 microm) or absent. After mucus removal, there was a continuous increase in mucus thickness with the highest rate in the colon and the lowest rate in the stomach. In conclusion, the adherent gastrointestinal mucus gel in vivo is continuous and can be divided into two layers: a loosely adherent layer removable by suction and a layer firmly attached to the mucosa.  相似文献   

8.
Colonization by lactobacilli of piglet small intestinal mucus   总被引:2,自引:1,他引:1  
The colonization potential of lactobacilli was investigated using small intestinal mucus extracts from 35-d-old pigs. Mucus-secreting tissue from the small intestine of piglets was gently rinsed to remove contents and then shaken in buffer to release mucus from the surface. Numbers of lactobacilli in different portions of the small intestine of 35-d-old pigs were enumerated. Also, mucus isolated from the small intestine of pigs was investigated for its capacity to support the growth of lactobacilli. Results indicated that Lactobacillus spp. inhabit the mucus layer of the small intestine and can grow and adhere to ileal mucus. From adhesion studies of Lactobacillus fermentum 104R to mucus analysed by Scatchard plot, it is suggested that an associating system showing positive cooperativity is involved. Proteinaceous compound(s) involved in the adhesion to mucus were detected in the spent culture fluid from the growth of strain 104R. Studies are continuing in order to identify and characterize the adhesion-promoting protein(s). From the data, it is proposed that lactobacilli colonize the mucus layer of the small intestine of pigs.  相似文献   

9.
We have determined the molar proportions of the MUC5AC and MUC6 mucus glycoproteins (mucins) in mucus from the normal and pathological human gastric antrum using a least-squares minimization analysis applied to amino acid compositions. We noted that the content of MUC5AC mucin in mucus from individuals without gastroduodenal disease was very high, suggesting that the integrity and barrier properties of the adherent gastric mucus layer are normally maintained by building-block structures formed from this mucin alone. We observed that the molar content of MUC6 mucin doubled (without significance) in mucus from patients with duodenal ulcer, and increased five times (with high significance) in mucus from patients with gastric ulcer, when compared with that in mucus from individuals without gastroduodenal disease.  相似文献   

10.
Secretion of bicarbonate into the adherent layer of mucus gel creates a pH gradient with a near-neutral pH at the epithelial surfaces in stomach and duodenum, providing the first line of mucosal protection against luminal acid. The continuous adherent mucus layer is also a barrier to luminal pepsin, thereby protecting the underlying mucosa from proteolytic digestion. In this article we review the present state of the gastroduodenal mucus bicarbonate barrier two decades after the first supporting experimental evidence appeared. The primary function of the adherent mucus gel layer is a structural one to create a stable, unstirred layer to support surface neutralization of acid and act as a protective physical barrier against luminal pepsin. Therefore, the emphasis on mucus in this review is on the form and role of the adherent mucus gel layer. The primary function of the mucosal bicarbonate secretion is to neutralize acid diffusing into the mucus gel layer and to be quantitatively sufficient to maintain a near-neutral pH at the mucus-mucosal surface interface. The emphasis on mucosal bicarbonate in this review is on the mechanisms and control of its secretion and the establishment of a surface pH gradient. Evidence suggests that under normal physiological conditions, the mucus bicarbonate barrier is sufficient for protection of the gastric mucosa against acid and pepsin and is even more so for the duodenum. acid-base transporters; cystic fibrosis transmembrane conductance regulator channel; surface pH gradient; mucus gels; trefoil peptides  相似文献   

11.
Decreased colonic mucus in rats with loperamide-induced constipation   总被引:6,自引:0,他引:6  
Constipation is a risk factor of colorectal cancer. Mucin is a major component of lumenal mucus, which protects the colorectal mucosa against mechanical and chemical damage. The aim of this study was to evaluate mucus production and to quantitate lumen mucus in a rat model of spastic constipation. We induced constipation with loperamide (1.5 mg/kg), and histochemically evaluated mucus production and the thickness of the mucus layer at the fecal surface. We quantitated the mucus attached to the mucosal surface using colonic perfusion with N-acetylcysteine. While more feces remained in the colon, there was less fecal excretion and lower fecal water content in loperamide-administered rats than in control rats. Crypt epithelial cells contained less mucus in constipated rats than in control rats. The mucus layer at the fecal surface was thinner and less mucus was recovered from the mucosal surface in constipated rats than in control rats. Mucus production of crypt epithelial cells and mucus at the fecal and mucosal surface were reduced by loperamide-induced constipation.  相似文献   

12.
The mucus layer on the surface of fish consists of several antimicrobial agents that provide a first line of defense against invading pathogens. To date, little is known about the antimicrobial properties of the mucus of Arctic char (Salvelinus alpinus), brook trout (S. fontinalis), koi carp (Cyprinus carpio sub sp. koi), striped bass (Morone saxatilis), haddock (Melanogrammus aeglefinus) and hagfish (Myxine glutinosa). The epidermal mucus samples from these fish were extracted with acidic, organic and aqueous solvents to identify potential antimicrobial agents including basic peptides, secondary metabolites, aqueous and acid soluble compounds. Initial screening of the mucus extracts against a susceptible strain of Salmonella enterica C610, showed a significant variation in antimicrobial activity among the fish species examined. The acidic mucus extracts of brook trout, haddock and hagfish exhibited bactericidal activity. The organic mucus extracts of brook trout, striped bass and koi carp showed bacteriostatic activity. There was no detectable activity in the aqueous mucus extracts. Further investigations of the activity of the acidic mucus extracts of brook trout, haddock and hagfish showed that these fish species had specific activity for fish and human pathogens, demonstrating the role of fish mucus in antimicrobial protection. In comparison to brook trout and haddock, the minimum bactericidal concentrations of hagfish acidic mucus extracts were found to be approximately 1.5 to 3.0 times lower against fish pathogens and approximately 1.6 to 6.6 folds lower for human pathogens. This preliminary information suggests that the mucus from these fish species may be a source of novel antimicrobial agents for fish and human health related applications.  相似文献   

13.
Mucin glycoproteins are secreted in large quantities by mucosal epithelia and cell surface mucins are a prominent feature of the glycocalyx of all mucosal epithelia. Currently, studies investigating the gastrointestinal mucosal barrier use either animal experiments or non-in vivo like cell cultures. Many pathogens cause different pathology in mice compared to humans and the in vitro cell cultures used are suboptimal because they are very different from an in vivo mucosal surface, are often not polarized, lack important components of the glycocalyx, and often lack the mucus layer. Although gastrointestinal cell lines exist that produce mucins or polarize, human cell line models that reproducibly create the combination of a polarized epithelial cell layer, functional tight junctions and an adherent mucus layer have been missing until now. We trialed a range of treatments to induce polarization, 3D-organization, tight junctions, mucin production, mucus secretion, and formation of an adherent mucus layer that can be carried out using standard equipment. These treatments were tested on cell lines of intestinal (Caco-2, LS513, HT29, T84, LS174T, HT29 MTX-P8 and HT29 MTX-E12) and gastric (MKN7, MKN45, AGS, NCI-N87 and its hTERT Clone5 and Clone6) origins using Ussing chamber methodology and (immuno)histology. Semi-wet interface culture in combination with mechanical stimulation and DAPT caused HT29 MTX-P8, HT29 MTX-E12 and LS513 cells to polarize, form functional tight junctions, a three-dimensional architecture resembling colonic crypts, and produce an adherent mucus layer. Caco-2 and T84 cells also polarized, formed functional tight junctions and produced a thin adherent mucus layer after this treatment, but with less consistency. In conclusion, culture methods affect cell lines differently, and testing a matrix of methods vs. cell lines may be important to develop better in vitro models. The methods developed herein create in vitro mucosal surfaces suitable for studies of host-pathogen interactions at the mucosal surface.  相似文献   

14.
Preservation of Tracheal Mucus by Nonaqueous Fixative   总被引:3,自引:0,他引:3  
Two nonaqueous fixatives, composed of fluorocarbon solvents with dissolved osmium tetroxide, were used to determine the feasibility of preserving the mucous coat in bovine and rat trachea for light and electron microscopy. Aqueous fixatives, while providing excellent cytological preservation, wash away the mucous lining, precluding ultrastructural analysis. Inclusion of ruthenium red or alcian blue within aqueous fixative improved retention of mucus, but provided incomplete, patchy results. Fixation with nonaqueous fluorocarbon solvent and dissolved osmium tetroxide preserved a continuous mucous epiphase layer above a clear hypophase layer. Subcomponents of the mucus included an electron dense surface layer, interrupted patches of mucus above the surface layer and electron dense membrane-like material within the mucus. This method of fixation will preserve mucus for light, scanning and transmission electron microscopy, using either intratracheal or immersion methods of fixation. The latter would enable use of materials from large animal models, autopsy or an abattoir.  相似文献   

15.
Two hypotheses have been proposed recently that offer different views on the role of airway surface liquid (ASL) in lung defense. The "compositional" hypothesis predicts that ASL [NaCl] is kept low (<50 mM) by passive forces to permit antimicrobial factors to act as a chemical defense. The "volume" hypothesis predicts that ASL volume (height) is regulated isotonically by active ion transport to maintain efficient mechanical mucus clearance as the primary form of lung defense. To compare these hypotheses, we searched for roles for: (1) passive forces (surface tension, ciliary tip capillarity, Donnan, and nonionic osmolytes) in the regulation of ASL composition; and (2) active ion transport in ASL volume regulation. In primary human tracheobronchial cultures, we found no evidence that a low [NaCl] ASL could be produced by passive forces, or that nonionic osmolytes contributed substantially to ASL osmolality. Instead, we found that active ion transport regulated ASL volume (height), and that feedback existed between the ASL and airway epithelia to govern the rate of ion transport and volume absorption. The mucus layer acted as a "reservoir" to buffer periciliary liquid layer height (7 microm) at a level optimal for mucus transport by donating or accepting liquid to or from the periciliary liquid layer, respectively. These data favor the active ion transport/volume model hypothesis to describe ASL physiology.  相似文献   

16.
Two C57BL/6 mice colonies maintained in two rooms of the same specific pathogen-free (SPF) facility were found to have different gut microbiota and a mucus phenotype that was specific for each colony. The thickness and growth of the colon mucus were similar in the two colonies. However, one colony had mucus that was impenetrable to bacteria or beads the size of bacteria—which is comparable to what we observed in free-living wild mice—whereas the other colony had an inner mucus layer penetrable to bacteria and beads. The different properties of the mucus depended on the microbiota, as they were transmissible by transfer of caecal microbiota to germ-free mice. Mice with an impenetrable mucus layer had increased amounts of Erysipelotrichi, whereas mice with a penetrable mucus layer had higher levels of Proteobacteria and TM7 bacteria in the distal colon mucus. Thus, our study shows that bacteria and their community structure affect mucus barrier properties in ways that can have implications for health and disease. It also highlights that genetically identical animals housed in the same facility can have rather distinct microbiotas and barrier structures.  相似文献   

17.
The role of mucus sol phase in clearance by simulated cough   总被引:1,自引:0,他引:1  
Using a simulated cough machine, we analyzed the effect of adding tensio-active liquids as sol phase simulant on the clearance of gel mucus simulant by cough. Polysaccharides crosslinked with sodium tetraborate were used at different concentration as gel mucus simulant. A drop of gel mucus simulant was deposited either directly on the model trachea or on a sol phase layer simulant (2% sodium dodecyl sulfate in water). The clearance of the mucus simulants was quantified by observing the movement of marker particles in the gel layer. The viscoelastic properties of gel mucus simulants were determined by using a viscoelastometer (SEFAM). The adhesive properties were analyzed by means of the platinum ring technique. The wettability of the mucus simulants was quantified by the automatic measurement of the contact angle of the drop of gel on the model trachea. We found that the addition of a sol phase significantly decreased by about 50% the adhesivity and wettability of the gel mucus simulants. This decrease was associated with a marked enhancement of cough clearance, whatever the viscoelastic properties of the gel mucus simulants. These results suggest that the sol phase is essential in bronchial respiratory mucus clearance by the cough mechanism.  相似文献   

18.
The mucosal barrier in combination with innate immune system are the first line of defense against luminal bacteria at the intestinal mucosa. Dysfunction of the mucus layer and bacterial infiltration are linked to tissue inflammation and disease. To study host–bacterial interactions at the mucosal interface, we created an experimental model that contains luminal space, a mucus layer, an epithelial layer, and suspended immune cells. Reconstituted porcine small intestinal mucus formed an 880 ± 230 µm thick gel layer and had a porous structure. In the presence of mucus, sevenfold less probiotic and nonmotile VSL#3 bacteria transmigrated across the epithelial barrier compared to no mucus. The higher bacterial transmigration caused immune cell differentiation and increased the concentration of interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-α; p < .01). Surprisingly, the mucus layer increased transmigration of pathogenic Salmonella and increased secretion of TNF-α and IL-8 (p < .05). Nonmotile, flagella knockout Salmonella had lower transmigration and caused lower IL-8 and TNF-α secretion (p < .05). These results demonstrate that motility enables pathogenic bacteria to cross the mucus and epithelial layers, which could lead to infection. Using an in vitro coculture platform to understand the interactions of bacteria with the intestinal mucosa has the potential to improve the treatment of intestinal diseases.  相似文献   

19.
Even though there is no general agreement as to the mechanism of gastric mucosal protection, the consensus is that the initial brunt of luminal insults falls on the mucus layer which constitutes the only identifiable physical barrier between the gastric lumen and the mucosal surface. The continuous renewal and resilient nature of this layer efficiently counters peptic erosion of the gel, assures its viscoelastic and permselective properties, and provides a milieu for containment of the diffusing luminal acid by mucosal bicarbonate. Disturbances in this delicate balance lead to the impairment of the protective function of mucus resulting in gastric disease. Indeed, the weakening of gastric mucosal defense is intimately associated with the diminished viscoelastic qualities of mucus, decrease in hydrogen ion retardation capacity, and the extensive proteolysis of its mucin component. Although until recently the disintegration of the mucus coat was attributed exclusively to the enhanced activity of intragastric pepsin, our studies provided strong argument that a bacterial factor, namely infection by Helicobacter pylori, through the action of its protease and lipase enzymes also is highly detrimental to the integrity of gastric mucus. Hence, agents capable of interfering with the pathogenic activity of this bacteria are becoming the drugs of choice in peptic ulcer therapy.  相似文献   

20.
Muco-ciliary transport in the lung   总被引:5,自引:0,他引:5  
A two-layer Newtonian fluid model for muco-ciliary transport in the lung is developed where the viscosity of the upper mucous layer is very much greater than the viscosity of the lower periciliary layer. Theory is presented for both cases when the cilia penetrate, and do not penetrate, the very viscous mucous layer. Calculations suggest that, in normal circumstances, it is not essential for the cilia to penetrate the mucus to provide positive transport. However, it does suggest that there is a weak optimal penetration depth of the cilia of between 10-20% of the cilium length. In the case of high ciliary inactivity (e.g. 90% inactive), penetration of cilia into the mucus is essential for normal transport rates suggesting the mucociliary system may be deliberately overdesigned to cater for a whole range of pathological circumstances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号