首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solubilities of dye-iodine precipitates in alcohol and in aqueous safranin solution were determined by direct solubility methods and by photocolorimetric methods. It was found that, increasing precipitate solubility in alcohol or safranin solution gave decreasing differentiation between Gram-positive and Gram-negative bacteria. Dyes which did not stain the cells well as a primary stain did not give good Gram stains, regardless of the solubilities of their precipitates. Some dyes (typified by methylene blue) which gave relatively alcohol-insoluble iodine precipitates gave inferior Gram differentiation because these precipitates were readily soluble in the safranin counterstain.

Solubilities of precipitates of crystal violet and various iodine substitutes were determined photocolorimetrically. The ability of a substance to replace iodine in the Gram stain correlated with its ability to give a precipitate which was only slightly soluble in alcohol and relatively insoluble in aqueous safranin solution.

It was concluded that the usual Gram reagents are not truly specific for the differentiation. Any dye and mordant could be used if the dye was deeply colored, stained the cells well, and if the precipitate of dye and mordant was only slightly soluble in alcohol and relatively insoluble in the counterstain. These factors, combined with those influencing differences in cell membrane permeability, constitute the most important factors in the Gram stain differentiation.

Studies were made concerning the ability of dyes to substitute for crystal violet in the Gram procedure. Of 29 dye samples reported on here for the first time none proved to be good substitutes for crystal violet.  相似文献   

2.
A differential Gram stain has been evolved which incorporates the combined features of the original Gram and Pappenheim methods. National Aniline crystal violet and new methyl green and pyronin are the dyes preferred. The iodine mixture of Kopeloff and Beerman is a satisfactory mordant and Merck's pure technical acetone is an excellent differentiating agent. A system is established by means of the dyes and reagents which form a physicochemical equilibrium, provided pure dyes are employed, and the technic is carried out with precision. Gram-positive bacteria are coated by means of buffered crystal violet solution and the iodine-sodium hydroxide solution precipitates the crystal violet from other substances. The dye-iodine precipitate is readily dissolved by pure acetone. Iodine green, a pure derivative of crystal violet has the effect of noninterference in the technic and has selective action upon nuclear substance. Pyronin has affinity for Neisserian organisms primarily and acts as an inert substance upon most other proteins, (except cytoplasm of eosinophils, lymphocytes, plasma cells, and endothelial cells). The following technic is recommended:

Stain air-dry films 3 to 5 minutes in a 1% solution of crystal violet in 10 parts of Clark and Lubs' phosphate buffer of pH 6.6 to 7.0 and 90 parts water. Decant and flush with 2% iodine in N/10 NaOH. Decant and decolorize in acetone 10 seconds or less. Air dry and counterstain 1 1/2 to 2 minutes with methyl-green-pyronin (2 parts 2% aqueous methyl green National with one part 0.3% aqueous pyronin yellowish). Wash and air dry. Oil of Bergamot is preferable to xylene as a clearing agent. Best results are obtained if each slide is handled separately as for staining blood films.  相似文献   

3.
A modified Gram procedure, with the use of an extremely diluted or acidified crystal violet solution, stained only volutin in contrast with nonstaining of the rest of cell in Gram-positive bacteria. The substrate of the Gram reaction is not only a ribonucleic acid-magnesium-protein complex in cytoplasm (Henry and Stacey 1946), but also a metaphosphate-ribonucleic acid complex in volutin and deoxyribonucleic acid in nuclei in Gram-positive cells. The isoelectric-point theory and permeability theory of the Gram stain are unsupported by the experiments.  相似文献   

4.
Gentian violet, crystal violet and carbol fuchsin applied to cover slip preparations for one minute will destroy the majority of non-spore-forming bacteria and yeasts, tho they can not be relied upon to do this consistently and in all cases.

The Gram staining procedure is more effective and non-spore-formers were never found to survive this process.

Methylene blue stains exert very little if any germicidal power and most organisms survived them readily. India ink was totally ineffective.

Several species of yeasts and yeast-like molds were killed in every instance by the Gram stain, gentian violet, crystal violet and carbol fuchsin, but survived both Loeffler's methylene blue and a plain aqueous solution of methylene blue.  相似文献   

5.
Gentian violet, crystal violet and carbol fuchsin applied to cover slip preparations for one minute will destroy the majority of non-spore-forming bacteria and yeasts, tho they can not be relied upon to do this consistently and in all cases.

The Gram staining procedure is more effective and non-spore-formers were never found to survive this process.

Methylene blue stains exert very little if any germicidal power and most organisms survived them readily. India ink was totally ineffective.

Several species of yeasts and yeast-like molds were killed in every instance by the Gram stain, gentian violet, crystal violet and carbol fuchsin, but survived both Loeffler's methylene blue and a plain aqueous solution of methylene blue.  相似文献   

6.
Fifty-five reagents were studied as to their ability to replace iodine in the Gram stain. None gave results as good as iodine. Eight gave usable Gram preparations, and forty-seven gave negative results. Omission of the counterstain resulted in increasing to thirty-three the number of reagents giving differentiation, but this, was not considered a true Gram differentiation. Many oxidizing agents were shown not to be substitutes for iodine; therefore the function of iodine must be more than to serve as an oxidizing agent. Many reagents which formed precipitates with the dye could not replace iodine; therefore factors other than precipitate formation must be involved. However, all agents which were good substitutes for iodine were both good oxidizing and dye precipitating agents. Experiments involving the study of cell membrane permeability showed that Gram-positive cells were less permeable to iodine in alcoholic solution than Gram-negative cells. This difference could not be demonstrated for iodine in aqueous solution. It was concluded that iodine served to form a dye-iodine precipitate (or complex) in the cell. Since Gram-positive cells were less permeable to iodine in alcohol than Gram-negative cells, this resulted in a slower dissolving out of this complex from Gram-positive cells during de-colorization and hence a slower decolorization time. The relative solubilities of dye precipitates in alcohol and in aqueous safranin solution were also indicated as an important factor influencing decolorization. Dyes which formed highly soluble precipitates with iodine could not be used in the Gram stain. It is not proposed that the mechanism of the Gram stain is entirely one of membrane permeability; chemical factors are undoubtedly important and will be discussed in a later paper. However, it is proposed that the chemical and physical factors are closely interrelated in the Gram stain mechanism.  相似文献   

7.
Dyes of all major types were tested for their suitability as the primary dye in the Gram stain. When a counterstain was not used, some dyes of all types were found to differentiate Gram-positive from Gram-negative organisms. When a counterstain was used, these dyes were found to vary greatly in their suitability. Those dyes found to be good substitutes for crystal violet were: Brilliant green, malachite green, basic fuchsin, ethyl violet, Hoffmann's violet, methyl violet B, and Victoria blue R. All are basic triphenylmethane dyes. Acid dyes were generally not suitable. Differences in the reaction of Gram-positive and Gram-negative cells to Gram staining without the use of iodine were observed and discussed but a practical differentiation could not be achieved in this manner. Certain broad aspects of the chemical mechanism of dyes in the gram stain are discussed.  相似文献   

8.
The Gram stain, the most important stain in microbiology, was described more than a century ago. Only within the past decade, however, has an understanding of its mechanism emerged. It now seems clear that the cell wall of Gram-positive microorganisms is responsible for retention of a crystal violet:iodine complex. In Gram-negative cells, the staining procedures damage the cell surface resulting in loss of dye complexes. Gram-positive microorganisms require a relatively thick cell wall, irrespective of composition, to retain the dye. Therefore, Gramstainability is a function of the cell wall and is not related to chemistry of cell constituents. This review provides a chronology of the Gram stain and discusses its recently discovered mechanism.  相似文献   

9.
Bartholomew, J. W. (University of Southern California, Los Angeles), Thomas Cromwell, and Richard Gan. Analysis of the mechanism of Gram differentiation by use of a filter-paper chromatographic technique. J. Bacteriol. 90:766-777. 1965.-Data are presented which demonstrate that the mechanism of gram-positivity could not be due solely to factors such as a single, specific gram-positive substrate, specific affinities of crystal violet for certain cellular components, a specific crystal violet-iodine-substrate complex, or to any specific characteristic of the dye, iodine, or solvent molecules. Ruptured cells of gram-positive organisms stain gram-negatively when subjected to a standard Gram-stain procedure. However, when stained fragments of broken cells were deposited in thick layers on the surface of filter-paper strips and exposed to decolorizers, the rate of dye release correlated with the Gram characteristic of the intact cell. Therefore, the intact cell in itself is not an absolute requirement for Gram differentiation. The data are interpreted as indicating that the mechanism of Gram differentiation primarily involves the rate of permeation of molecules (dye, iodine, solvent) through the interstitial spaces of cell-wall material.  相似文献   

10.
The characterization and ultrastructure of two new strains of Butyrivibrio   总被引:1,自引:0,他引:1  
Strains B-385-1 and 2-33 are numerically important components rumen bacterial populations , but they have remained (taxonomically) undefined. In spite of some resemblance to Selenomonas ruminantium in their cell size and in their formation of tufts of flagella, they more closely resemble Butyrivibrio fibrisolvens in the subpolar location of their flagella, in their guanine + cytosine content, and in most biochemical characteristics, including butyrate formation. Cells of these strains stain Gram negative, as do both Selenomonas and Butyrivibrio, but their cell walls closely resemble those of Butyrivibrio in their Gram-positive type of molecular architecture and in their cleavage pattern in freeze-etching. Cells of these strains and of B. fibrisolvens have a very thin (ca. 12 nm) peptidoglycan cell wall; thus, they fail to retain the crystal violet complex of the Gram stain and stain Gram negative. This important structural characteristic of their cell walls places strains B-385-1 and 2-33 within the genus Butyrivibrio and certain morphological and biochemical characteristics distinguish them from B. fibrisolvens.  相似文献   

11.
M Brzin  S Pucihar 《Histochemistry》1976,48(4):283-292
The necessity of the presence of iodide in Cu-ThCh reaction was investigated by following the precipitate formation "in vitro" and by evaluating the ultrastructural localization of the precipitate in sympathetic ganglion cells of the frog and in the end-plate regions of the rat diaphragm. It was found that thiocyanate or cyanide is the only anion that can be substituted for iodide as the capturing agent in precipitation. The optimal concentration in the preincubation and incubation media of any one of the three anions is from 2 to 5 mM. At a concentration below 1 mM precipitation "in vitro" is considerably delayed as a result of which in electron microscopy diffusion artefacts appear in tissue sections. The unconverted primary precipitate obtained in the presence of iodide had been used for ultrastructural localization of ChE activity and now this use has been extended to precipitates obtained in the presence of CN- or CNS-. Better-quality localization in the presence of either one of the latter anions suggests that they, and particularly CN-, should be substituted for I- in the one-step Cu-ThCh method for the cytochemistry of cholinesterases.  相似文献   

12.
The Gram stain differentiates bacteria into two fundamental varieties of cells. Bacteria that retain the initial crystal violet stain (purple) are said to be 'Gram-positive,' whereas those that are decolorized and stain red with carbol fuchsin (or safranin) are said to be 'Gram-negative.' This staining response is based on the chemical and structural makeup of the cell walls of both varieties of bacteria. Gram-positives have a thick, relatively impermeable wall that resists decolorization and is composed of peptidoglycan and secondary polymers. Gram-negatives have a thin peptidoglycan layer plus an overlying lipid-protein bilayer known as the outer membrane, which can be disrupted by decolorization. Some bacteria have walls of intermediate structure and, although they are officially classified as Gram-positives because of their linage, they stain in a variable manner. One prokaryote domain, the Archaea, have such variability of wall structure that the Gram stain is not a useful differentiating tool.  相似文献   

13.
The staining method developed by Christian Gram was introduced as a simple and highly selective tool for demonstrating myxosporean and coccidian sporogonic stages. When using standard blood staining procedures for those enigmatic parasites it is sometimes difficult to distinguish them from fish host tissue. They clearly exhibit a partial Gram-positive reaction in histological sections, but staining is variable in air dried fish organ imprints. To visualize the Gram-negative background of different host tissue components in histological sections, the conventional safranin counterstain of the Gram protocol may be modified as follows: after application of 2% crystal violet (basic violet 3) and Lugol's solution, sections are stained with 0.1% nuclear fast red-5% aluminum sulfate and 0.35% aniline blue (acid blue 22) dissolved in saturated aqueous picric acid. Replacement of the Gram-specific dye crystal violet with 2% malachite green gave similar results in organ imprints containing myxospores or coccidia, but only in sections containing myxosporea. Staining for 1 min with an aqueous solution of 0.5% malachite green and followed 1 min washing was sufficient for rapidly demonstrating the parasite spores in organ imprints of both myxosores and oocysts. With regard to the role of acid mucopolysaccharides and other carbohydrates in the Gram reaction of spores, alcian blue 8GX staining was compared to the binding of FITC-labeled WGA, GS I and GS II. Each lectin was applied at 20 μl/ml PBS, HEPES for 1 hr. Whereas WGA yielded a nonspecific pattern like the alcian blue staining, GS II resulted in a pattern similar to the Gram staining results. This binding was weak in untreated specimens, but was significantly enhanced when digested first within trypsin overnight in a humid chamber at 37 °C. The binding of GS II to both myxosporidian and coccidian spores suggests that they are both composed of polymers containing N-acetyl-D-glucosamine residues. Furthermore, the results suggest that this hexosamine plays a key role in the Gram reaction.  相似文献   

14.
The Gram stain differentiates bacteria into two fundamental varieties of cells. Bacteria that retain the initial crystal violet stain (purple) are said to be ''Gram-positive,'' whereas those that are decolorized and stain red with carbol fuchsin (or safranin) are said to be ''Gram-negative.'' This staining response is based on the chemical and structural makeup of the cell walls of both varieties of bacteria. Gram-positives have a thick, relatively impermeable wall that resists decolorization and is composed of peptidoglycan and secondary polymers. Gram-negatives have a thin peptidoglycan layer plus an overlying lipid-protein bilayer known as the outer membrane, which can be disrupted by decolorization. Some bacteria have walls of intermediate structure and, although they are officially classified as Gram-positives because of their linage, they stain in a variable manner. One prokaryote domain, the Archaea, have such variability of wall structure that the Gram stain is not a useful differentiating tool.  相似文献   

15.
The photoreduction of crystal violet to a carbon-centered radical was detected directly by electron spin resonance (ESR) spectroscopy under anaerobic conditions. The linewidth (0.9 G) of this radical was less broad than the linewidth (11.0 G) of the free radical obtained in Trypanosoma cruzi incubations. No crystal violet radical could be detected under aerobic conditions. However, crystal violet was found to convert oxygen to superoxide anion and hydrogen peroxide in the presence of light. This superoxide anion and hydrogen peroxide formation was greatly enhanced by reducing agents such as NAD(P)H. In addition, irradiation of crystal violet did not generate detectable amounts of singlet oxygen.  相似文献   

16.
Both cationic and anionic detergents were found to precipitate fibrinogen by forming fibrinogen-detergent complexes. These complexes were soluble in distilled water, but the aqueous solutions were very unstable and the complexes precipitated in the presence of salt. In the interaction of fibrinogen with the cationic detergent, stearyltrimethyl-ammonium chloride, approximately 160 molecules of detergent were found to bind to one molecule of fibrinogen. In distilled water, the fibrinogen-stearyltrimethylammonium complex (FG-STA(Cl)) remained soluble in the presence of thrombin [ED 3.4.21.5] although the same peptides were released as those released from fibrinogen. Precipitation of FG-STA(Cl) by salt was found to be closely related to adsorption of the anion of the salt by the complex. Futher addition of salt resulted in solubilization of the precipitate, and the solubilization was also due to further adsorption of the anion onto the precipitate.  相似文献   

17.
介绍影响大肠菌群革兰染色正确性的因素:菌株的菌龄、涂片时菌体浓度、染色时间、媒染时间、脱色程度等,通过试验分析,得出大肠菌群革兰染色的最佳条件,并提出验证革兰染色结果正确性的方法。  相似文献   

18.
The fluorescent nucleic acid binding dyes hexidium iodide (HI) and SYTO 13 were used in combination as a Gram stain for unfixed organisms in suspension. HI penetrated gram-positive but not gram-negative organisms, whereas SYTO 13 penetrated both. When the dyes were used together, gram-negative organisms were rendered green fluorescent by SYTO 13; conversely, gram-positive organisms were rendered red-orange fluorescent by HI, which simultaneously quenched SYTO 13 green fluorescence. The technique correctly predicted the Gram status of 45 strains of clinically relevant organisms, including several known to be gram variable. In addition, representative strains of gram-positive anaerobic organisms, normally decolorized during the traditional Gram stain procedure, were classified correctly by this method.Gram’s staining method is considered fundamental in bacterial taxonomy. The outcome of the Gram reaction reflects major differences in the chemical composition and ultrastructure of bacterial cell walls. The Gram stain involves staining a heat-fixed smear of cells with a rosaniline dye such as crystal or methyl violet in the presence of iodine, with subsequent exposure to alcohol or acetone. Organisms that are decolorized by the alcohol or acetone are designated gram negative.Alternative Gram staining techniques have recently been proposed. Sizemore et al. (19) reported on the use of fluorescently labeled wheat germ agglutinin. This lectin binds specifically to N-acetylglucosamine in the peptidoglycan layer of gram-positive bacteria, whereas gram-negative organisms contain an outer membrane that prevents lectin binding. Although simpler and faster than the traditional Gram stain, this method requires heat fixation of organisms.Other Gram stain techniques suitable for live bacteria in suspension have been described. Allman et al. (1) demonstrated that rhodamine 123 (a lipophilic cationic dye) rendered gram-positive bacteria fluorescent, but its uptake by gram-negative organisms was poor. This reduced uptake by gram-negative bacteria was attributed to their outer membranes. The outer membrane can be made more permeable to lipophilic cations by exposure to the chelator EDTA (4). Shapiro (18) took advantage of this fact to form the basis of another Gram stain, one which involved comparing the uptake of a carbocyanine dye before and after permeabilizing organisms with EDTA. All of these methods, however, rely on one-color fluorescence, making analysis of mixed bacterial populations difficult.An alternative to the use of stains is the potassium hydroxide (KOH) test. The method categorizes organisms on the basis of differences in KOH solubility. After exposure to KOH, gram-negative bacteria are more easily disrupted than gram-positive organisms. This technique has been used to classify both aerobic and facultatively anaerobic bacteria, including gram-variable organisms (8). In a study by Halebian et al. (9), however, this technique incorrectly classified several anaerobic strains, giving rise to the recommendation that the method should only be used in conjunction with the traditional Gram stain.In this study we demonstrate a Gram staining technique for unfixed organisms in suspension, by using clinically relevant bacterial strains and organisms notorious for their gram variability. The method uses two fluorescent nucleic acid binding dyes, hexidium iodide (HI) and SYTO 13. Sales literature (11) published by the manufacturers of HI (Molecular Probes, Inc., Eugene, Oreg.), which displays a red fluorescence, suggests that the dye selectively stains gram-positive bacteria. SYTO 13 is one of a group of cell-permeating nucleic acid stains and fluoresces green (11). These dyes have been found to stain DNA and RNA in live or dead eukaryotic cells (16). Both dyes are excited at 490 nm, permitting their use in fluorescence instruments equipped with the most commonly available light sources. We reasoned that a combination of these two dyes applied to mixed bacterial populations would result in all bacteria being labeled, with differential labeling of gram-positive bacteria (HI and SYTO 13) and gram-negative bacteria (SYTO 13 only). The different fluorescence emission wavelengths of the two dyes would ensure differentiation of gram-positive from gram-negative bacteria by either epifluorescence microscopy or flow cytometry when equipped with the appropriate excitation and emission filters. While a commercial Gram stain kit produced by Molecular Probes includes HI and an alternative SYTO dye, SYTO 9, we are unaware of any peer-reviewed publications regarding either its use or its effectiveness with traditionally gram-variable organisms.  相似文献   

19.
【目的】分离和鉴定工业腐败物中高产细菌生物膜菌株,并明确该菌的部分产膜特性。【方法】通过微孔板结晶紫染色法对分离的菌株进行产膜能力评价,根据菌落形态、生理生化特性和16S rRNA序列的系统进化树分析进行菌株鉴定;同时利用扫描电子显微镜(SEM)和结晶紫染色法分别研究材料及温度对该菌产膜特性和能力的影响。【结果】筛选出一株高产细菌生物膜菌株,经鉴定该菌为魏氏柠檬酸杆菌;其在玻璃、不锈钢和聚氯乙烯(PVC)材料表面均能形成生物膜;温度条件显著影响产膜能力,在30°C时,菌株在PVC材料表面形成生物膜能力最强。【结论】工业腐败物中含有高产细菌生物膜菌株,并且产膜受附着物和温度影响。  相似文献   

20.
After aldehyde-fixation, treatment with phosphotungstic acid (PTA) in aqueous acidic medium was shown to produce an intense electron-opaque stain with minimal distortion of organelles. Mitochondrial matrix, cisternae of the endoplasmic reticulum, and the Z-band of muscle were densely stained, whereas membranes stood out in negative contrast. Staining of glycogen or lipid was not apparent. Under certain conditions the stain density reflected the concentration of protein based on the quantitative reaction of PTA with the positively charged groups, although the stoichiometry of the reaction between PTA and protein varied with the kind of protein. The staining conditions established should provide a base for the use of the method in quantitative electron microscopy, particularly on thin sections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号