共查询到20条相似文献,搜索用时 0 毫秒
1.
Serotoninergic modulation of GABAergic synaptic transmission in developing rat CA3 pyramidal neurons
Choi IS Cho JH Kim JT Park EJ Lee MG Shin HI Choi BJ Jang IS 《Journal of neurochemistry》2007,103(6):2342-2353
Serotoninergic modulation of GABAergic mIPSCs was investigated in immature (postnatal 12–16-days old) rat CA3 pyramidal neurons using a conventional whole-cell patch clamp technique. Serotonin or 5-hydroxytryptamine (5-HT) (10 μmol/L) transiently and explosively increased mIPSC frequency with a small increase in the current amplitude. However, 5-HT did not affect the GABA-induced postsynaptic currents, indicating that 5-HT acts presynaptically to facilitate the probability of spontaneous GABA release. The 5-HT action on GABAergic mIPSC frequency was completely blocked by 100 nmol/L MDL72222, a selective 5-HT3 receptor antagonist, and mimicked by mCPBG, a selective 5-HT3 receptor agonist. The 5-HT action on GABAergic mIPSC frequency was completely occluded either in the presence of 200 μmol/L Cd2+ or in the Na+ -free external solution, suggesting that the 5-HT3 receptor-mediated facilitation of mIPSC frequency requires a Ca2+ influx passing through voltage-dependent Ca2+ channels from the extracellular space, and that presynaptic 5-HT3 receptors are less permeable to Ca2+ . The 5-HT action on mIPSC frequency in the absence or presence of extracellular Na+ gradually increased with postnatal development. Such a developmental change in the 5-HT3 receptor-mediated facilitation of GABAergic transmission would play important roles in the regulation of excitability as well as development in CA3 pyramidal neurons. 相似文献
2.
应激和学习对突触效能的调控机制 总被引:3,自引:0,他引:3
长期以来人们知道应激与学习和记忆存在着密切的关系。十多年来的研究进展表明应激调控着长时程增强。然而对应激是否影响到长时程抑制却知之甚少。本文简要的介绍了应有 激,学习对突触可塑性的影响的一些主要实验结果。探讨突中可塑性在神经信息储存中的作用。 相似文献
3.
4.
1. Heterosynaptic facilitation (modification of synaptic transmission by a neuron influencing the terminals of the presynaptic neuron) was studied in the pleural ganglion of Aplysia. Among several identified synapses, heterosynaptic facilitation was observed only in one type (EIPSP synapses) when repetitive stimulation was applied to the tentacular nerve or to a particular identified neuron. 2. Serotonin was shown to increase the amplitude of the EIPSP at this synapse; this facilitatory effect was prolonged in the presence of theophylline and mimicked by cyclic AMP. 3. When transmission was abolished by calcium-free solution, calcium injected in the region of the synapse caused partial recovery of the EIPSP; when calcium injection was preceded by serotonin injection near the same terminal, the EIPSP was much larger than with calcium injection alone. 4. It was concluded that the activation of one neuron (the heterosynaptic neuron) caused it to release serotonin, which activated an adenylate cyclase in the pre-synaptic terminals of another neuron. Consequent accumulation of cyclic AMP in these terminals is supposed to have increased their voltage-dependent calcium conductance and hence the amount of transmitter released during an action potential. 相似文献
5.
Wan S Browning KN 《American journal of physiology. Gastrointestinal and liver physiology》2008,295(5):G1050-G1057
Acute hyperglycemia has profound effects on vagally mediated gastrointestinal functions. We have reported recently that the release of glutamate from the central terminals of vagal afferent neurons is correlated directly with the extracellular glucose concentration. The present study was designed to test the hypothesis that 5-HT(3) receptors present on vagal afferent nerve terminals are involved in this glucose-dependent modulation of glutamatergic synaptic transmission. Whole-cell patch-clamp recordings were made from neurons of the nucleus tractus solitarius (NTS) in thin rat brainstem slices. Spontaneous and evoked glutamate release was decreased in a concentration-dependent manner by the 5-HT(3) receptor selective antagonist, ondansetron. Alterations in the extracellular glucose concentration induced parallel shifts in the ondansetron-mediated inhibition of glutamate release. The changes in excitatory synaptic transmission induced by extracellular glucose concentration were mimicked by the serotonin uptake inhibitor, fenfluramine. These data suggest that glucose alters excitatory synaptic transmission within the rat brainstem via actions on tonically active 5-HT(3) receptors, and the number of 5-HT(3) receptors on vagal afferent nerve terminals is positively correlated with the extracellular glucose concentration. These data indicate that the 5-HT(3) receptors present on synaptic connections between vagal afferent nerve terminals and NTS neurons are a strong candidate for consideration as one of the sites where glucose acts to modulate vagovagal reflexes. 相似文献
6.
Postsynaptic Ca2+ signal influences synaptic transmission through multiple mechanisms. Some of them involve retrograde messengers that are released from postsynaptic neurons in a Ca2+-dependent manner and modulate transmitter release through activation of presynaptic receptors. Recent studies have revealed essential roles of endocannabinoids in retrograde modulation of synaptic transmission. Endocannabinoid release is induced by either postsynaptic Ca2+ elevation alone or activation of postsynaptic Gq/11-coupled receptors with or without Ca2+ elevation. The former pathway is independent of phospholipase Cbeta (PLCbeta) and requires a large Ca2+ elevation to a micromolar range. The latter pathway requires PLCbeta and is facilitated by a moderate Ca2+ elevation to a submicromolar range. This facilitation is caused by Ca2+-dependency of receptor-driven PLCbeta activation. The released endocannabinoids then activate presynaptic cannabinoid receptor type 1 (CB1), and suppress transmitter release from presynaptic terminals. Both CB1 receptors and Gq/11-coupled receptors are widely distributed in the brain. Thus, the endocannabinoid-mediated retrograde modulation may be an important and widespread mechanism in the brain, by which postsynaptic events including Gq/11-coupled receptor activation and Ca2+ elevation can retrogradely influence presynaptic function. 相似文献
7.
Astrocyte-induced modulation of synaptic transmission 总被引:8,自引:0,他引:8
Araque A Sanzgiri RP Parpura V Haydon PG 《Canadian journal of physiology and pharmacology》1999,77(9):699-706
The idea that astrocytes simply provide structural and trophic support to neurons has been challenged by recent evidence demonstrating that astrocytes exhibit a form of excitability and communication based on intracellular Ca2+ variations and intercellular Ca2+ waves, which can be initiated by neuronal activity. These astrocyte Ca2+ variations have now been shown to induce glutamate-dependent Ca2+ elevations and slow inward currents in neurons. More recently, it has been demonstrated that synaptic transmission between cultured hippocampal neurons can be directly modulated by astrocytes. We have reported that astrocyte stimulation can increase the frequency of miniature synaptic currents. Furthermore, we also have demonstrated that an elevation in the intracellular Ca2+ in astrocytes induces a reduction in both excitatory and inhibitory evoked synaptic transmission through the activation of selective presynaptic metabotropic glutamate receptors. 相似文献
8.
P. D. Bregestovski L. G. Khaspekov 《Biochemistry (Moscow) Supplemental Series A: Membrane and Cell Biology》2007,1(1):28-37
Calcium (Ca2+) is a second messenger regulating a wide variety of intracellular processes. Using GABA-and glycinergic synapses as examples, this review analyzes two functions of this unique ion: postsynaptic Ca2+-dependent modulation of receptor-operated channels and Ca2+-induced retrograde regulation of neurotransmitter release from the presynaptic terminals. Phosphorylation, rapid Ca2+-induced modulation via intermediate Ca2+-binding proteins, and changes in the number of functional receptors represent the main pathways of short-and long-term plasticity of postsynaptic receptor-operated channel machinery. Retrograde signaling is an example of synaptic modulation triggered by stimulation of postsynaptic cells and mediated via regulation of presynaptic neurotransmitter release. This mechanism provides postsynaptic neurons with efficient tools to control the presynaptic afferents in an activity-dependent mode. Elevation of intracellular Ca2+ in a postsynaptic neuron triggers the synthesis of endocannabinoids (derivatives of arachidonic acid). Their retrograde diffusion through the synaptic cleft and consequent activation of presynaptic G-protein coupled to CB1 receptors inhibits the release of neurotransmitter. These mechanisms of double modulation, which include control over the function of postsynaptic ion channels and retrograde suppression of the release machinery, play an important role in Ca2+-dependent control of the main excitatory and inhibitory synaptic pathways in the mammalian nervous system. 相似文献
9.
Aghil Abed Zadeh Brandon D. Turner Nicole Calakos Nicolas Brunel 《PLoS computational biology》2022,18(6)
GABA is generally known as the principal inhibitory neurotransmitter in the nervous system, usually acting by hyperpolarizing membrane potential. However, GABAergic currents sometimes exhibit non-inhibitory effects, depending on the brain region, developmental stage or pathological condition. Here, we investigate the diverse effects of GABA on the firing rate of several single neuron models, using both analytical calculations and numerical simulations. We find that GABAergic synaptic conductance and output firing rate exhibit three qualitatively different regimes as a function of GABA reversal potential, EGABA: monotonically decreasing for sufficiently low EGABA (inhibitory), monotonically increasing for EGABA above firing threshold (excitatory); and a non-monotonic region for intermediate values of EGABA. In the non-monotonic regime, small GABA conductances have an excitatory effect while large GABA conductances show an inhibitory effect. We provide a phase diagram of different GABAergic effects as a function of GABA reversal potential and glutamate conductance. We find that noisy inputs increase the range of EGABA for which the non-monotonic effect can be observed. We also construct a micro-circuit model of striatum to explain observed effects of GABAergic fast spiking interneurons on spiny projection neurons, including non-monotonicity, as well as the heterogeneity of the effects. Our work provides a mechanistic explanation of paradoxical effects of GABAergic synaptic inputs, with implications for understanding the effects of GABA in neural computation and development. 相似文献
10.
11.
Experiments were performed in eight lightly anesthetized thiopental sodium (Pentothal) cats to examine whether diaphragmatic afferents can significantly alter the neural drive to the diaphragm when the animal is exposed to lower body negative pressure. Moving-time-averaged diaphragmatic electromyograms (EMGma) were recorded and compared before and during exposure to lower body negative pressure in each of three consecutive conditions: C7 spinalization, bilateral vagotomy, and cervical dorsal rhizotomy. Application of lower body negative pressure in C7-spinalized animals resulted in a decrease in inspiratory time and peak diaphragmatic activity compared with control levels. After bilateral vagotomy, EMGma activity was prolonged with the application of lower body negative pressure. However, there was no increase in peak EMGma activity. After transection of the cervical dorsal roots subserving the phrenic nerve, the prolongation of diaphragmatic activity negative was eliminated. Therefore, we conclude that the significant increase in duration of inspiration in response to application of lower body negative pressure in the C7-spinalized, bilaterally vagotomized cat is mediated by phrenic nerve afferents. 相似文献
12.
Page AJ O'Donnell TA Blackshaw LA 《American journal of physiology. Gastrointestinal and liver physiology》2008,294(4):G963-G970
Despite universal use of opioids in the clinic to inhibit pain, there is relatively little known of their peripheral actions on sensory nerve endings, where in fact they may be better targeted with more widespread applications. Here we show differential effects of mu-, kappa-, and delta-opioids on mechanosensitive ferret esophageal vagal afferent endings investigated in vitro. The effects of selective agonists [d-Ala(2),N-Me-Phe(4),Gly-ol(5)]-enkephalin (DAMGO), 2-(3, 4-dichlorophenyl)-N-methyl-N-[(1S)-1phenyl-2-(1-pyrrolidinyl) ethyl] acetamide hydrochlorine (ICI 199441), and (+)-4-[(alphaR)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC-80), respectively, on mechanosensory stimulus-response functions were quantified. DAMGO (10(-7) to 10(-5) M) reduced the responses of tension receptors to circumferential tension (1-5 g) by up to 50%, and the responses of mucosal receptors to mucosal stroking (10-1,000 mg von Frey hair) by >50%. DAMGO effects were reversed by naloxone (10(-5) M). Tension/mucosal (TM) receptor responses to tension and stroking were unaffected by DAMGO. ICI 199441 (10(-6) to 10(-5) M) potently inhibited all responses except TM receptor responses to tension, and SNC-80 (10(-5) to 10(-3) M) had no effect other than a minor inhibition of mucosal receptor responses to intense stimuli at 10(-3) M. We conclude that mu- and kappa-opioids have potent and selective peripheral effects on esophageal vagal afferents that may have applications in treatment of disorders of visceral sensation. 相似文献
13.
A possibility of efferent innervation of gustatory and mechanosensitive afferent fiber endings was studied in frog fungiform papillae with a suction electrode. The amplitude of antidromic impulses in a papillary afferent fiber induced by antidromically stimulating an afferent fiber of glossopharyngeal nerve (GPN) with low voltage pulses was inhibited for 40 s after the parasympathetic efferent fibers of GPN were stimulated orthodromically with high voltage pulses at 30 Hz for 10 s. This implies that electrical positivity of the outer surface of papillary afferent membrane was reduced by the efferent fiber-induced excitatory postsynaptic potential. The inhibition of afferent responses in the papillae was blocked by substance P receptor blocker, L-703,606, indicating that substance P is probably released from the efferent fiber terminals. Slow negative synaptic potential, which corresponded to a slow depolarizing synaptic potential, was extracellularly induced in papillary afferent terminals for 45 s by stimulating the parasympathetic efferent fibers of GPN with high voltage pulses at 30 Hz for 10 s. This synaptic potential was also blocked by L-703,606. These data indicate that papillary afferent fiber endings are innervated by parasympathetic efferent fibers. 相似文献
14.
Long-lasting postsynaptic potentials (PSPs) generated by decreases in membrane conductance (permeability) have been reported in many types of neurons. We investigated the possible role of such long-lasting decreases in membrane conductance in the modulation of synaptic transmission in the sympathetic ganglion of the bullfrog. The molecular basis by which such conductance-decrease PSPs are generated was also investigated. Synaptic activation of muscarinic cholinergic receptors on these sympathetic neurons results in the generation of a slow EPSP (excitatory postsynaptic potential), which is accompanied by a decrease in membrane conductance. We found that the conventional "fast" EPSPs were increased in amplitude and duration during the iontophoretic application of methacholine, which activates the muscarinic postsynaptic receptors. A similar result was obtained when a noncholinergic conductance-decrease PSP--the late-slow EPSP--was elicited by stimulation of a separate synaptic pathway. The enhancement of fast EPSP amplitude increased the probability of postsynaptic action potential generation, thus increasing the efficacy of impulse transmission across the synapse. Stimulation of one synaptic pathway is therefore capable of increasing the efficacy of synaptic transmission in a second synaptic pathway by a postsynaptic mechanism. Furthermore, this enhancement of synaptic efficacy is long-lasting by virtue of the long duration of the slow PSP. Biochemical and electrophysiological techniques were used to investigate whether cyclic nucleotides are intracellular second messengers mediating the membrane permeability changes underlying slow-PSP generation. Stimulation of the synaptic inputs, which lead to the generation of the slow-PSPs, increased the ganglionic content of both cyclic AMP and cyclic GMP. However, electrophysiological analysis of the actions of these cyclic nucleotides and the actions of agents that affect their metabolism does not provide support for such a second messenger role for either cyclic nucleotide. 相似文献
15.
Kornau HC 《Cell and tissue research》2006,326(2):517-533
GABAB receptors modulate transmitter release and postsynaptic membrane potential at various types of central synapses. They function as heterodimers of two related seven-transmembrane domain receptor subunits. Trafficking, activation and signalling of GABAB receptors are regulated both by allosteric interactions between the subunits and by the binding of additional proteins. Recent studies have shed light on the roles of GABAB receptors in plasticity processes at excitatory synapses. This review summarizes our knowledge of the localization, structure and function of GABAB receptors in the central nervous system and their use as drug targets for neurological and psychiatric disorders. 相似文献
16.
Neuromodulators have complex effects on both the presynaptic release and postsynaptic detection of neurotransmitters. Here we describe recent advances in our understanding of synaptic modulation by metabotropic GABAB receptors. By inhibiting multivesicular release from the presynaptic terminal, these receptors decrease the synaptic glutamate signal. GABAB receptors also inhibit the Ca2+ permeability of NMDA receptors to decrease Ca2+ signals in postsynaptic spines. These new findings highlight the importance of GABAB receptors in regulating many aspects of synaptic transmission. They also point to novel questions about the spatiotemporal dynamics and sources of synaptic modulation in the brain. 相似文献
17.
18.
Gain modulation from background synaptic input 总被引:30,自引:0,他引:30
Gain modulation is a prominent feature of neuronal activity recorded in behaving animals, but the mechanism by which it occurs is unknown. By introducing a barrage of excitatory and inhibitory synaptic conductances that mimics conditions encountered in vivo into pyramidal neurons in slices of rat somatosensory cortex, we show that the gain of a neuronal response to excitatory drive can be modulated by varying the level of "background" synaptic input. Simultaneously increasing both excitatory and inhibitory background firing rates in a balanced manner results in a divisive gain modulation of the neuronal response without appreciable signal-independent increases in firing rate or spike-train variability. These results suggest that, within active cortical circuits, the overall level of synaptic input to a neuron acts as a gain control signal that modulates responsiveness to excitatory drive. 相似文献
19.
20.
C Y Wen 《Proceedings of the National Science Council, Republic of China. Part B, Life sciences》1984,8(3):254-267
In order to establish the synaptic relationship between the primary afferent terminals and the cuneothalamic relay neurons in the cuneate nucleus, the combined retrograde transport of horseradish peroxidase (HRP) and experimental degeneration have been applied in the young adult albino rats. 10 to 30% HRP was injected contralaterally (0.5 microliter) in the ventrobasal thalamic nucleus and multiple dorsal rhizotomies (C5 to T1) in the cervicothoracic dorsal roots were performed on the side ipsilateral to the cuneate nucleus. The results showed that: The cuneo-thalamic relay (CTN) neurons were the major neuronal type of the nucleus. More than 55% of neurons have been labelled. These neurons were 18-30 micron X 15-25 micron in sizes. They distributed in the whole rostrocaudal extent of the nucleus, particularly dense in the middle portion. The cells varied from round, oval, spindle to multipolar in shapes. They were rich in cytoplasmic organelles and had well-developed roughed endoplasmic reticulum. Their nucleus was either centrally or eccentrically located and was rather regular. The HRP-positive granules were randomly distribute in the perikaryon, dendrites and initial segment of the axons; At least three types of the experimental degeneration of the primary afferent terminals (PAT) were observed in the cuneate nucleus two to three days after dorsal rhizotomy, namely, electron-dense, granular and neurofilamentous. These PAT were mostly large and contained round vesicles. They were commonly found within synaptic complex, in which they were presynaptic to dendrites of various sizes, and were themselves postsynaptic to smaller axon terminals containing flattened vesicles. Degenerating PAT forming isolated synapses were less commonly seen; The PAT in the synaptic complex were directly presynaptic to the dendrites originating from the CTN neurons. The dendrites forming PAT-CTN synases were of large and medium-sized. The PAT did not form direct axo-somatic synapses with the somata of CTN or of any other cell types in the cuneate nucleus. 相似文献