首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1,1-Dipehnyl-2-picrylhydrazyl (DPPH) radical scavenging activities were found in the extract of dried leaves of oregano (Origanum vulgare). The water-soluble active ingredients were isolated, and their structures were determined to be 4'-O-beta-D-glucopyranosyl-3',4'-dihydroxybenzyl protocatechuate and 4'-O-beta-D-glucopyranosyl-3',4'-dihydroxybenzyl 4-O-methylprotocatechuate by (1)H-, (13)C-NMR, DEPT, HMQC, and HMBC spectral analyses, and by NOE experiments. The DPPH radical scavenging activities of these compounds were compared with those of rutin, quercetin and rosmarinic acid at a concentration of 2 x 10(-5) M. The scavenging activity of 4'-O-beta-D-glucopyranosyl-3',4'-dihydroxybenzyl protocatechuate was almost the same as that of quercetin and rosmarinic acid, but that of 4'-O-beta-D-glucopyranosyl-3',4'-dihydroxybennzyl 4-O-methylprotocatechuate was less than that of quercetin, rosmarinic acid and 4'-O-beta-D-glucopyranosyl-3',4'-dihydroxybenzyl protocatechuate. The amount of 4'-O-beta-D-glucopyranosyl-3',4'-dihydroxybenzyl protocatechuate was estimated to be 3.8 mg/1 g of dried leaves by an HPLC analysis.  相似文献   

2.
Free radical scavengers in myocardial ischemia   总被引:7,自引:0,他引:7  
Reperfusion of ischemic myocardium is recognized as potentially beneficial because mortality is directly related to infarct size, and the latter is related to the severity and duration of ischemia. However, reperfusion is associated with extension of the injury that is additive to that produced by ischemia alone. The phenomenon of reperfusion injury is caused in large part by oxygen-derived free radicals from both extracellular and intracellular sources. The loci of oxygen-free radical formation include: myocardial sources (mitochondria), vascular endothelial sources (xanthine oxidase and other oxidases), or the inflammatory cellular infiltrate (neutrophils). Experimental studies have shown that free radical scavengers and agents that prevent free radical production can reduce myocardial infarct size in dogs subjected to temporary regional ischemia followed by reperfusion. Superoxide dismutase and catalase, which catalyze the breakdown of superoxide anion and hydrogen peroxide, respectively, limit experimental myocardial infarct size. The free radical scavenging agent N-(2-mercaptopropionyl)glycine (MPG) is reported to be effective in limiting infarct size. The ischemic-reperfused myocardium derives significant protection when experimental animals are pretreated with the xanthine oxidase inhibitor allopurinol. Neutrophils also serve as a significant source of oxygen-derived free radicals at the site of tissue injury. A number of agents have been shown to directly inhibit neutrophil-derived oxygen free radical formation and neutrophil accumulation within the reperfused myocardium. These agents include ibuprofen, nafazatrom, BW755C, prostacyclin, and iloprost. Thus, free radical scavengers and agents that prevent free radical formation can provide significant protection to the ischemic-reperfused myocardium.  相似文献   

3.
Consistent with a recent literature report (Repine, J. E. etal. (1981) Proc.Nat.Acad.Sci.USA7?8?, 1001–1003), the release of [3H]-thymine from PM-2 DNA by Fe(II)-H2O2-generated ·OH was suppressed by dimethyl sulfoxide. In contrast, DMSO did not affect [3H]-thymine release mediated by Fe(II)-bleomycin. Under aerobic conditions in the presence of t-butyl phenylnitrone, Fe(II)-BLM produces an epr signal that has been presumed to arise by transfer of ·OH or O2? from the “active complex” of bleomycin to the spin trap. Remarkably, high concentrations (80 mM) of PBN had no effect on the ability of Fe(II)-BLM to solubilize [3H]-thymine, although the ability of authentic ·OH to degrade DNA was completely suppressed under these condition. The suproxide dismutase catalyst tetrakis(4-N-methylpyridyl)porphineiron(III) also failed to suppress BLM-mediated DNA degradation. Moreover, the epr signal observed with 1.6 mM Fe(II)-BLM in the presence of 80 mM PBN was found to be much less intense than that produced by 1.6 mM Fe(II) and 290 mM H2O2, but equivalent in intensity to that obtained with 45 mM Fe(II) and exoess H2O2. We conclude that the fragmentation of DNA produced by Fe(II)-BLM can be due neither to free ·OH nor to O2?. We suggest that DNA degradation is initiated by an “active complex” consisting of BLM, metal and oxygen that functions by abstracting H· from susceptible sites on DNA.  相似文献   

4.
Co(II) ions react with hydrogen peroxide under physiological conditions to form a 'reactive species' that can hydroxylate aromatic compounds (phenol and salicylate) and degrade deoxyribose to thiobarbituric-acid-reactive material. Catalase decreases the formation of this species but superoxide dismutase or low concentrations of ascorbic acid have little effect. EDTA, present in excess over the Co(II), can accelerate deoxyribose degradation and aromatic hydroxylation. In the presence of EDTA, deoxyribose degradation by the reactive species is inhibited competitively by scavengers of the hydroxyl radical (.OH), their effectiveness being related to their second-order rate constants for reaction with .OH. In the absence of EDTA the scavengers inhibit only at much higher concentrations and their order of effectiveness is changed. It is suggested that, in the presence of EDTA, hydroxyl radical is formed 'in free solution' and attacks deoxyribose or an aromatic molecule. In the absence of EDTA, .OH radical is formed in a 'site-specific' manner and is difficult to intercept by .OH scavengers. The relationship of these results to the proposed 'crypto .OH' radical is discussed.  相似文献   

5.
The aerial parts of the Lamiaceae Hedeoma drummondii (Benth.) are used in Mexico to prepare a herbal tea and by North American Amerindians as a spice. The methanolic extract of the aerial parts exhibited a strong antioxidant effect measured by the scavenging of the free diphenyl picrylhydrazyl (DPPH) radical. Assay-guided fractionation of the crude methanolic extract allowed the identification of three major active constituents, chlorogenic, caffeic and rosmarinic acid, as well as sideritoflavone derivatives and simple phenolics. The TEAC, FRAP, total phenolic and flavonoid content were determined. The high content of caffeic acid and rosmarinic acid relates to the antioxidant activity of H. drummondii.  相似文献   

6.
7.
The one-electron oxidation of (bi)sulfite is catalyzed by peroxidases to yield the sulfur trioxide radical anion (SO3-), a predominantly sulfur-centered radical as shown by studies with 33S-labeled (bi)sulfite. This radical reacts with molecular oxygen to form a peroxyl radical. The subsequent reaction of this peroxyl radical with (bi)sulfite has been proposed to form the sulfate anion radical, which is nearly as strong an oxidant as the hydroxyl radical. We used the spin trapping electron spin resonance technique to provide for the first time direct evidence for sulfate anion radical formation during (bi)sulfite peroxidation. The sulfate anion radical is known to react with many compounds more commonly thought of as hydroxyl radical scavengers such as formate and ethanol. Free radicals derived from these scavengers are trapped in systems where (bi)sulfite peroxidation has been inhibited by these scavengers.  相似文献   

8.
Phagocytic leukocytes from normal humans can produce mutations in bacteria. To define further the role of oxygen radicals in this mutagenic process, we performed experiments in which scavengers or antioxidants were added to the incubation of phagocytes and bacteria. We found that 1) superoxide dismutase, catalase, mannitol, and benzoate were all capable of inhibiting mutation, 2) sulfhydryl compounds and vitamin E were also inhibitory, and 3) the presence of vitamin C in the incubations increased the mutation frequency. These data suggest an important role for hydroxyl radicals in mediating phagocyte-induced mutations.  相似文献   

9.
The endothelo-protective activity of a series of low-molecular oxygen-derived free radical scavengers (OFRS) was tested in rats. A model of endothelaemia provoked by intravenous administration of hydrogen peroxide was used. With each OFRS the activity in the hydrogen peroxide model was compared with that in the less specific model using the provocation by citrate as a calcium chelating agent. Relatively unspecific but biologically important OFRS, ascorbic acid, tocopherol, troxerutin and glutathione were tested in the first phase of the study. A marked optimum of endothelo-protective activity was shown with all agents, the optimum against hydrogen peroxide having been observed at doses from 3 to 50 times lower than against citrate. Ascorbic acid, troxerutin and the combination of both were also tested in another model based on leg ischaemia produced by ligature of the common femoral artery. Without OFRS, a marked increase of endothelaemia was observed after 30-60 min ischaemia showing a second peak after the release of the ligature. This second peak was completely abolished by the preventive administration of OFRS in a dose which was also effective in the hydrogen peroxide model.  相似文献   

10.
Indoles are very common in the body and diet and participate in many biochemical processes. A total of twenty-nine indoles and analogs were examined for their properties as antioxidants and radical scavengers against 2,2'-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) ABTS*+ radical cation. With only a few exceptions, indoles reacted nonspecifically and quenched this radical at physiological pH affording ABTS. Indoleamines like tryptamine, serotonin and methoxytryptamine, neurohormones (melatonin), phytohormones (indoleacetic acid and indolepropionic acid), indoleamino acids like L-tryptophan and derivatives (N-acetyltryptophan, L-abrine, tryptophan ethyl ester), indolealcohols (tryptophol and indole-3-carbinol), short peptides containing tryptophan, and tetrahydro-beta-carboline (pyridoindole) alkaloids like the pineal gland compound pinoline, acted as radical scavengers and antioxidants in an ABTS assay-measuring total antioxidant activity. Their trolox equivalent antioxidant capacity (TEAC) values ranged from 0.66 to 3.9 mM, usually higher than that for Trolox and ascorbic acid (1 mM). The highest antioxidant values were determined for melatonin, 5-hydroxytryptophan, trp-trp and 5-methoxytryptamine. Active indole compounds were consumed during the reaction with ABTS*+ and some tetrahydropyrido indoles (e.g. harmaline and 1-methyl-1,2,3,4-tetrahydro-beta-carboline-3-carboxylic acid ethyl ester) afforded the corresponding fully aromatic beta-carbolines (pyridoindoles), that did not scavenge ABTS*+. Radical scavenger activity of indoles against ABTS*+ was higher at physiological pH than at low pH. These results point out to structural compounds with an indole moiety as a class of radical scavengers and antioxidants. This activity could be of biological significance given the physiological concentrations and body distribution of some indoles.  相似文献   

11.
Different antioxidants and free radical scavengers on aflatoxin production are analysed. The different compounds at different concentration were used: buthylated hydroxyanisole (BHA), buthylated hydroxytoluene (BHT), α-tocopherol (vitamin E), ascorbic acid (vitamin C), reduced glutathione, cysteine, cysteamine. The above compounds were tested in culture ofAspergillus parasiticus supplemented with carbon tetrachloride, a potent stimulating agent of aflatoxin biosynthesis. Cysteamine and BHA highly inhibited the aflatoxin production induced by carbon tetrachloride, the inhibition decreased by lowering the concentration. On the contrary, vitamin E, vitamin C, reduced glutathione and cysteine further enhanced the carbon tetrachloride stimulating effect. The addition of the above compounds did not significantly affect the growth of the fungal mycelia.  相似文献   

12.
Oxygen radicals, such as superoxide radicals, embellishing DNA, protein, lipids, etc., and carrying out the obstacle of the function of a cell is known. It depends for the oxidant level in the living body on the balance of a generation system and an elimination system of oxygen radicals, and research which controls an oxidant level in the living body is briskly done by taking in the substance which eliminates an oxygen radical. We investigated scavenging effects of superoxide radicals by selenoureas and thioureas using a highly sensitive and quantitative chemiluminescence method. At 330 nM, five selenoureas and five thioureas scavenged fractions of superoxide radicals (O2-) ranging from 8.4% to 87.6%. Among five N,N-unsubstituted selenoureas and N,N-unsubstituted thioureas 1-selenocarbamoylpiperidine and 1-thiocarbamoylpyrrolidine were the most effective scavengers. A possibility that selenoureas could use it as a new superoxide anion-scavenging substance from the result of this research became clear.  相似文献   

13.
In our screening program for antioxidants with 1,1-diphenyl-2-picrylhydrazyl (DPPH)-radical scavenging activity, two novel compounds, demethylbisorbibutenolide (1) and trichopyrone (2), were isolated from the fermentation broth of the fungus of USF-4860 strain isolated from a soil sample. The structures of these compounds were determined from spectroscopic evidence. The biosynthetic origin of the carbon atoms of 2 was unambiguously determined by feeding experiments using (13)C-labeled precursors and elucidation of the (13)C-NMR spectrum of (13)C-labeled 2. These studies showed that 2 was derived from five acetates and a methyl group of methionine. In the DPPH-radical scavenging assay, 1 and 2 gave ED(50) values of 149 and 167 muM after standing for 2.0 hr. Compound 2 reacted with the DPPH radical to form reaction product 3 which was determined to be 1-[4-(3,4-dihydro-3-methyl-6-{1,3-pentadienyl}-2,4-dioxo-2H-pyran-3-yl)-phenyl]-1-phenyl-2-picrylhydrazine from spectroscopic evidence.  相似文献   

14.
Co(II) ions react with hydrogen peroxide under physiological conditions to form a ‘reactive species’ that can hydroxylate aromatic compounds (phenol and salicylate) and degrade deoxyribose to thiobarbituric-acid-reactive material. Catalase decreases the formation of this species but superoxide dismutase or low concentrations of ascorbic acid have little effect. EDTA, present in excess over the Co(II), can accelerate deoxyribose degradation and aromatic hydroxylation. In the presence of EDTA, deoxyribose degradation by the reactive species is inhibited competitively by scavengers of the hydroxyl radical (OH), their effectiveness being related to their second-order rate constants for reaction with OH. In the absence of EDTA the scavengers inhibit only at much higher concentrations and their order of effectiveness is changed. It is suggested that, in the presence of EDTA, hydroxyl radical is formed ‘in free solution’ and attacks deoxyribose or an aromatic molecule. In the absence of EDTA, OH radical is formed in a ‘site-specific’ manner and is difficult to intercept by OH scavengers. The relationship of these results to the proposed ‘crypto OH’ radical is discussed.  相似文献   

15.
In this study, we evaluated the abilities of a series of chalcones to inhibit the activity of the enzyme xanthine oxidase (XO) and to scavenge radicals. 20 mono- and polyhydroxylated chalcone derivatives were synthesized by Claisen–Schmidt condensation reactions and then tested for inhibitory potency against XO, a known generator of reactive oxygen species (ROS). In parallel, the ability of the synthesized chalcones to scavenge a stable radical was determined. Structure–activity relationship analysis in conjunction with molecular docking indicated that the most active XO inhibitors carried a minimum of three hydroxyl groups. Moreover, the most effective radical scavengers had two neighboring hydroxyl groups on at least one of the two phenyl rings. Since it has been proposed previously that XO inhibition and radical scavenging could be useful properties for reduction of ROS-levels in tissue, we determined the chalcones’ effects to rescue neurons subjected to ROS-induced stress created by the addition of β-amyloid peptide. Best protection was provided by chalcones that combined good inhibitory potency with high radical scavenging ability in a single molecule, an observation that points to a potential therapeutic value of this compound class.  相似文献   

16.
Study was made to determine whether oxygen free radicals mediate uranium-induced acute renal failure (ARF). Superoxide dismutase (SOD), a superoxide anion scavenger, did not prevent uranium acetate (UA) (5 mg/kg, i.v.)-induced renal injury 48 h after injection. In contrast, dimethylthiourea (DMTU), a hydroxyl radical scavenger, significantly attenuated UA-induced rise in serum creatinine concentration (1.11 ± 0.05 (DMTU) vs. 1.40 ± 0.06 mg/dl (control), p < .05), and tubular necrosis. Dimethyl sulfoxide (DMSO), a hydroxyl radical scavenger, decreased UA-induced tubular damage. UA injection caused no increase in renal cortical malondialdehyde (MDA) content. DMTU and DMSO did not modify intrarenal MDA content. UA administration brought about significant increase in plasma renin activity but not in renal cortical renin content. Treatment with DMTU and DMSO had no effect on plasma renin activity or intrarenal renin content. It follows from these findings that DMTU and DMSO may attenuate UA-induced renal injury. Such a protective effect would not be mediated through modulation of lipid peroxidation or renin activity.  相似文献   

17.
The cytotoxic and mutagenic effects of X irradiation on a human lymphoblast cell line were examined in the presence of two radioprotective agents which modulate damage to DNA. The cells were treated with X rays alone or in the presence of either dimethyl sulfoxide or cysteamine. Surviving fraction and mutation to trifluorothymidine resistance (tk locus) and to 6-thioguanine resistance (hgprt locus) were measured. Survival was enhanced when the cells were irradiated in the presence of dimethyl sulfoxide; the D0 rose from 58 to 107 rad. However, at both genetic loci the induced mutant fractions were identical in the presence or absence of dimethyl sulfoxide. Survival was enhanced to a greater degree when the cells were irradiated in the presence of cysteamine; the D0 rose from 58 to 200 rad. Cysteamine also protected the cells from X-ray-induced mutation; the frequencies of X-ray-induced mutation at both the tk and hgprt loci were reduced by 50-75%. No protective effects were observed unless dimethyl sulfoxide or cysteamine was present during irradiation. These findings are discussed in terms of the hypothesis that, unlike for cell killing, radiation-induced mutagenesis in human lymphoblast cells is not mediated by the actions of aqueous free radicals, but rather by the direct effects of ionizing radiation.  相似文献   

18.
The biomass production of Cymbopogon citratus shoots cultivated in bioreactors according to the temporary immersion (TIS) principle was assessed under different growth conditions. The effect of gassing with CO2-enriched air, reduced immersion frequency, vessel size and culture time on total phenolic and flavonoid content and free radical scavenging effect of the methanolic extracts was measured. From the TIS-culture of C. citratus, seven compounds were isolated and identified as caffeic acid (1), chlorogenic acid (2), neochlorogenic acid (3), p-hydroxybenzoic acid (4), p-hydroxybenzoic acid 3-O-beta-D-glucoside (5), glutamic acid (6) and luteolin 6-C-fucopyranoside (7). The occurrence of compounds 1-7 and their variability in C. citratus grown under different TIS conditions was determined by HPLC. The free radical scavenging effect of the methanolic extract and compounds was measured by the discoloration of the free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH). The main metabolites in 6- and 8-week-old cultures, both in 5 and 10 1 vessels, were chlorogenic acid (2) (100-113 mg%) and neochlorogenic acid (3) (80-119 mg%), while in the cultures with CO2-enriched air and reduced immersion frequency the main compound detected in the extracts was glutamic acid (6) (400 and 670 mg% for the green and white biomass and 619 and 630 mg% for the green and white biomass, respectively). The most active compounds, as free radical scavengers, in the DPPH discoloration assay were caffeic acid (1), chlorogenic acid (2), neochlorogenic acid (3) and the flavonoid luteolin 6-C-fucopyranoside (7).  相似文献   

19.
The genotoxic effect of chloroquine (CQ), a 4-aminoquinoline antimalarial drug was investigated in rat liver cells using the alkaline comet assay. Chloroquine (0–1000 μmol/L) significantly increased DNA strand breaks of rat liver cells dose-dependently. Rat liver cells exposed to CQ (100–500 μmol/L) and treated with endonuclease III and formamidopyrimidine-DNA glycosylase, the bacterial DNA repair enzymes that recognize oxidized pyrimidine and purine, respectively, showed greater DNA damage than those not treated with the enzymes, providing evidence that CQ induced oxidation of purines and pyrimidines. Treatment of cells with 5 mmol/L N-acetylcysteine, an intracellular reactive oxygen species (ROS) scavenger, and 100 μmol/L and 250 μmol/L deferoxamine, an established iron chelator, significantly decreased the CQ-induced strand breaks and base oxidation, respectively. Similarly, the formation of DNA strand breaks and oxidized bases was prevented by vitamin C (10 μmol/L) (a water-soluble antioxidant), quercetin (50 μmol/L) (an antioxidant flavonoid), and kolaviron (30 μmol/L and 90 μmol/L) (an antioxidant and a liver hepatoprotective phytochemical). The results indicate that the genotoxicity of CQ in rat liver cells might involve ROS and that free radical scavengers may elicit protective effects in these cells.  相似文献   

20.
We investigated the antioxidant and radical scavenging activity of polyphenolic isochromans. To assess the relation between structure and scavenging properties the natural occurring 1-(3'-methoxy-4'-hydroxy)phenyl-6,7-dihydroxy-isochroman (ISO-3, three OH groups) was compared with three newly synthesized derivatives that differ in their degree of hydroxylation by substitution with methoxy-groups (ISO-4: four OH groups; ISO-2: two OH groups and ISO-0: fully methoxylated). We found that ISO-4 is a 2-fold better scavenger for the artificial radical 1,1-diphenyl-2-picrylhydrazyl (DPPH, 100 microM) with an EC50=10.3 microM compared to the natural ISO-3 (EC50=22.4 microM) and to ISO-2 (EC50=25.1 microM), while ISO-0 did not react with DPPH. The scavenging capacity for superoxide enzymatically generated in a hypoxanthin-xanthinoxidase reaction was the highest for ISO-4 (EC50=34.3 microM) compared to those of ISO-3 (EC50=84.0 microM) and ISO-2 (EC50=91.8 microM), while ISO-0 was inactive. In analogy, ISO-4 scavenged peroxynitrite (ONOO-, EC25=23.0 microM) more effective than ISO-3, ISO-2 and ISO-0.When C6 rat glioma cells loaded with the reactive oxygen/nitrogen (ROS/RNS)-sensitive fluorochrome 2,7-dichlorodihydrofluorescein, were exposed to hydrogen peroxide, the lowest stress level as indicated by the fluorescence signal was detected when the cells were pretreated with ISO-4 or ISO-2 but to a much lesser extent with ISO-3, while ISO-0 did not show any effect. All tested hydroxyisochromans superceded the scavenging effect of trolox.The excellent radical and ROS/RNS scavenging features of the hydroxy-1-aryl isochromans and their simple synthesis let these compounds appear to be interesting candidates for pharmaceutical interventions that protect against the deleterious action of ROS/RNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号