首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ecosystem resistance to the impacts of diverse human insults depends on the replacement of sensitive species by ones more tolerant of the stressor. Here we present evidence from a whole-lake acidification experiment (Lake 302S, Experimental Lakes Area, Canada) that resistance and species compensation decline with increasing trophic level. Diverse and fast-growing algal and rotifer assemblages with high dispersal potentials showed significant compensatory species dynamics, resulting in the maintenance of total biomass despite 30%–80% declines in species richness. Canonical correspondence analysis showed that significant compensatory algal and rotifer dynamics were best explained by differential species tolerances of acidified chemical conditions coupled with release from resource limitation and predation. However, less diverse cladoceran, copepod, and fish assemblages showed significant declines in total biomass and weak species compensation with loss of species during acidification. In comparison, algal and zooplankton species dynamics remained relatively synchronized in a nearby unperturbed reference lake (Lake 239) during the experiment. As a result, Lake 302S showed limited ecosystem resistance to anthropogenic acidification. Therefore, we hypothesize that lost species will increase the susceptibility of acidified lakes to the adverse impacts of other environmental stressors (for example, climate warming, stratospheric ozone depletion, invasive species). Consequently, the ecosystem stability of boreal lakes is expected to decline as global change proceeds. Received 2 January 2001; accepted 12 July 2002.  相似文献   

2.
Acidified lakes recover chemically relatively quickly following the reduction or cessation of acidic inputs. Although fish, invertebrate, and phytoplankton communities are reported to begin to return to preacidification states in chemically-improving lakes, the process and extent of biological recovery are not well-documented. The experimental acidification of Precambrian Shield Lake 223 (27.4 ha surface area; 14.4 m maximum depth) in the Experimental Lakes Area in northwestern Ontario, provides an opportunity to compare the zooplankton community prior to acidification with that during progressive acidification and during chemical recovery. Acidified with sulfuric acid from pH 6.47 (ice-free season mean) in 1976 to pH 5.0 (1981 to 1983), Lake 223 has been allowed to recover in steps of pH 5.5 (1984 to 1987), pH 5.8 (1988 to 1990), and pH 6.11 (1991). Total zooplankton biomass showed no trend to increase or decrease during the acidification and recovery, but species composition changed. Compared with species composition at pH 6.13 early in acidification in 1977, the recovering community at pH 6.11 in 1991 had the previously-dominant cladoceran species present in very low numbers and had two newly-appearing cladoceran species. The community had lost one species of calanoid and gained none and lost two species of cyclopoids and gained two. It appeared to lose four species of rotifiers and gain seven. In nearby unmanipulated reference Lake 239 (56.1 ha; 30.4 m), species shifts were recorded but they involved rarer species, not dominants as in Lake 223. Although the zooplankton community in 1991 is in a new state with respect to species composition, static measures of total community biomass, contribution to biomass by the four main taxonomic groups, per cent smilarity to the preacidification community (for crustaceans), and biomass of herbivores do not indicate impairment of community health. Lowered species diversity for both crustaceans and rotifers partially returned to preacidification levels. Nevertheless, the rotifer community in 1991 was more dissimilar to the preacidification community than was the crustacean community, and carnivore biomass appeared to be depressed in Lake 223. The Lake 223 zooplankton community at pH 6.11 in 1991 appears to be in a state of flux.  相似文献   

3.
The maintenance of species and genetic diversity within zooplankton egg banks may be crucial to the re-establishment of zooplankton communities following historical disturbance, such as anthropogenic acidification which globally caused widespread damage to ecological communities. Despite this, no other study has described basic characteristics of zooplankton egg banks among lakes with different acidification histories, such as variation in resting egg concentration. Theoretically, habitats with frequent periods of harsh environmental conditions are expected to select for resting egg production or prolonged dormancy in zooplankton, which would increase the size of the resting egg bank in lake sediments. In this study, we compared abundances of viable and inviable calanoid copepod resting eggs among three freshwater lakes with different acidification histories. While Swan Lake underwent major chemical and biological changes from acid and metal deposition, Teardrop and Bat lakes were relatively unaffected by historical acidification and had comparatively constant, but different pH over time. We also tested the effect of age on the viability of resting eggs. As predicted, higher numbers of viable resting eggs were found in recent sediments from acid-recovering Swan Lake compared to study lakes with relatively temporally constant environments (Teardrop and Bat lakes) when the total number of eggs was held as a covariate. We detected this result in spite of similar pelagic abundances of Leptodiaptomus minutus, the dominant species in zooplankton communities of these lakes. This pattern did not necessarily hold for inviable egg concentrations since these eggs were more abundant in both Swan and Bat lakes compared to Teardrop Lake in older sediments (1939–1951, 1800s). Within study lakes, the abundance of viable resting eggs declined with increased egg age. Further study is required to test mechanisms underlying these patterns. Handling editor: S. I. Dodson  相似文献   

4.
SUMMARY. 1. During the summer of 1987 we conducted an acidification experiment using large enclosure at Emerald Lake, a dilute, high-elevation lake in the Sierra Nevada, California, U.S.A. The experiment was designed to examine the effects of acidification on the zooplankton and zoobenthos assemblages of Sierran lakes.
2. Treatments consisted of a control (pH 6.3) and pH levels of 5.8, 5.4, 5.3, 5.0 and 4.7; each treatment was run in triplicate. The experiment lasted 35 days.
3. The zooplankton assemblage was sensitive to acidification. Daphnia rosea Sars emend. Richard and Diaptomns signicauda Lilljeborg decreased in abundance below pH 5.5–5.8, and virtually disappeared below pH 5.0. Bosmina longirostris (Müller) and Keratella taurocephala Ahlstrom became more abundant with decreasing pH. although B. longirostris was rare in the pH 4.7 treatment. These species might serve as reliable indicators of early acidification in lakes such as Emerald Lake.
4. The elimination of D. rosea in acidified treatments probably allowed the more acid-tolerant taxa to increase in abundance because interspecific competition was reduced. Even slight acidification can therefore alter the structure of the zooplankton assemblage.
5. In contrast to the zooplankton, there was no evidence that the zoobenthos in the enclosures was affected by acidification.  相似文献   

5.
1. Most studies on zooplankton responses to acidification have focused on clearwater lakes with a dramatic acidification history. The role of dissolved organic carbon (DOC) in moderating zooplankton responses to acidification in naturally acidic, dystrophic lakes is less well understood and is partially impeded by a lack of baseline data. 2. Cladocera leave identifiable remains preserved in lake sediments that can be used to provide information on pre‐industrial species assemblages and their responses to environmental stressors such as acidification. Therefore, we used palaeolimnological approaches to track cladoceran assemblage responses to acidification since c.1850 (inferred from sedimentary diatom assemblages) in three acidified lakes in Kejimkujik National Park (Nova Scotia, Canada) that differ markedly in DOC content. These include two highly dystrophic lakes (Kejimkujik and Pebbleogittch lakes), and one clearwater lake (Beaverskin Lake). 3. In dystrophic Pebbleogittch Lake, an increase in the acid‐tolerant, jelly‐clad, pelagic taxon Holopedium glacialis occurred coincident with diatom‐inferred pH (DI‐pH) declines, but no other notable cladoceran assemblage shifts occurred. Similarly, Cladocera assemblages did not appear to respond to lakewater acidification in dystrophic Kejimkujik Lake. 4. In contrast, in the clearwater Beaverskin Lake, several observed shifts in cladoceran assemblage corresponded to DI‐pH declines, including an increase in the proportion of littoral taxa and an increase in Hill’s N2 species diversity. This may indicate increased water clarity as a result of acidification‐related decreases in DOC, which may have enhanced growth of emergent aquatic macrophytes and improved visibility for planktivorous fish, leading to increased predation on pelagic taxa. Species shifts within the littoral assemblage of Beaverskin Lake may reflect the differing tolerances of littoral taxa to low pH and aluminium toxicity. 5. Overall, our results suggest that cladoceran assemblages in naturally acidic, dystrophic lakes may be resilient against additional pH declines related to industrial emissions of acidifying agents, as dystrophic lakes are less vulnerable to increased aluminium toxicity and acidification‐induced increases in water clarity and often have a pre‐industrial cladoceran assemblage already adapted to acidic conditions.  相似文献   

6.
Fourteen West Tatra lakes were studied, of which one could be considered to be recently anthropogenically acidified and eight others classified as acidification-endangered. In the anthropogenically acidified lake, the zooplankton assemblage has been substantially altered (three mountain-lake crustacean species have been eliminated). Several littoral macrobenthic species sensitive to acidification have either been eliminated from the acidified and acidification-endangered lakes or occur only sporadically. The effect of acidification has so far not been observed on the benthic fauna of the lakes medial which is probably due to the higher pH below the surface of sediment. In comparison with the High Tatra, acid depositions have had a less pronounced effect on the lakes of the West Tatra.  相似文献   

7.
We tested for disproportional changes in annual and seasonal species richness and biomass among five trophic levels (phytoplankton, herbivorous, omnivorous, and carnivorous zooplankton, and fish) as well as altered trophic structure and ecosystem function following the 5-year experimental acidification of Little Rock Lake (Wisconsin, USA) from pH 6.1 to 4.7. Abiotic and biotic controls of trophic level response during acidification were also identified. Asymmetric reductions of species richness among trophic levels, separated by life stage and feeding type, were evident and changes in trophic structure were most pronounced by the end of the acidification period. Relative declines in richness of fish and zooplankton were greater than phytoplankton, which were generally unaffected, leading to a reduction of upper trophic level diversity. Each of the lower four trophic levels responded to a distinct combination of abiotic and biotic variables during acidification. pH was identified as a direct driver of change for only carnivorous zooplankton, while all other trophic levels were affected more by indirect interactions caused by acidification. Fluctuations in ecosystem function (zooplankton biomass and primary production) were also evident, with losses at all trophic levels only detected during the last year of acidification. The acidified basin displayed a tendency for greater variation in biomass for upper trophic levels relative to reference conditions implying greater unpredictability in ecosystem function. Together, these results suggest that trophic asymmetry may be an important and recurring feature of ecosystem response to anthropogenic stress.  相似文献   

8.
Species composition of planktonic Crustacea in 102 lakes in the West and High Tatra Mountains, studied during the peak of anthropogenic acidification (1978–1996), is presented in this work. Zooplankton of the Tatra lakes have been studied since the middle of the 19th century, which later enabled the recognition of lake acidification and the assessment of its effect on the plankton community of lake ecosystems. In the pre-acidification period, the distribution of zooplankton was determined namely by the lake altitude and orientation (north vs. south) and by the catchment character. Crustacean zooplankton in larger lakes consisted of a limited number of species, with Acanthodiaptomus denticornis and Daphnia longispina dominating lakes in the forest zone, and Arctodiaptomus alpinus, Cyclops abyssorum, Daphnia longispina, Daphnia pulicaria, and Holopedium gibberum dominating lakes in the alpine zone. Ceriodaphnia quadrangula, Daphnia obtusa, Daphnia pulex, and Mixodiaptomus tatricus occurred in lakes with high concentrations of dissolved organic matter and in strongly acidified waters. Anthropogenic acidification has caused drastic changes in both the chemistry and biology of the Tatra lakes. Based on their status during the acidification peak, lakes were divided into three categories: non-acidified (with no change in the species composition of crustacean zooplankton due to the acidification), acidified (planktonic Crustacea disappeared in lakes with meadow-rocky catchments), and strongly acidified lakes where original Crustacea in meadow-rocky catchment lakes disappeared and were replaced by populations of the acid-tolerant littoral species Acanthocyclops vernalis, Chydorus sphaericus, and Eucyclops serrulatus. The acidification-induced processes of oligotrophication and toxicity of aluminium played a key role in the extinction of species. Despite the first signs of biological recovery observed in the early 2000s, acidification remains the most important factor governing the structure of plankton in the Tatra lakes.  相似文献   

9.
To assess the relative importance of lake chemistry, morphometry and zoogeography on limnetic zooplankton, we collected zooplankton, water, and morphometric data from 132 headwater Canadian Shield lakes in 6 regions across north-central Ontario. A subset of these lakes (n = 52) were fished with gill nets. We clustered lakes based on their zooplankton species composition (presence/absence). Discriminant analysis was employed to determine how well lake characteristics could predict zooplankton community types. Correct classification of zooplankton communities for three models ranged from 72 to 91%. Lake size, lake location, and buffering capacity were ranked as the most important factors separating lake groups. Fish abundance (CPUE) was not significant in distinguishing between zooplankton communities. Though the range of lake sizes was limited (1–110 ha), larger lakes tended to support more species. Lake location (zoogeography) also influenced species composition patterns. Although Algoma lakes tended to be larger (\-x = 18.0 ha, other lakes \-x = 2.5 ha), they supported relatively depauperate zooplankton communities. Buffering capacity was ranked third in the discriminant analysis models, but pH and alkalinity were not significantly different between lake groups.  相似文献   

10.
About 130 years of anthropogenic acidification of Round Loch of Glenhead, SW Scotland, has resulted in successively decreased stability, diversity, productivity and survival rate of the non-biting midge (Diptera: Chironomidae) fauna. Similar trends have also been observed among mayflies, caddis-flies and water mites. The first effects of anthropogenic acidification on the insect and mite fauna, as evidenced by palaeolimnological analyses of210Pb-dated sediment cores, occurred as early as around 1850, i.e. earlier than in any other lake hitherto studied. The drop in the lake's pH was first indicated by decreased stability and changes in species composition of chironomids and mayflies in the littoral zone. Major changes in the profundal chironomid fauna did not take place until about 1950, when mean lake pH dropped below 5.0. At the same time, the littoral insect fauna became even more unstable and the first significant elimination of species occurred. Comparison with insect fauna of other lakes suggests that a pH of less than 5 might be critical for the ecological conditions in many acidified lakes. None of the twelve most common chironomid species present prior to the acidification of the lake had disappeared after 120–130 years of considerable acidification, and they are all common in oligotrophic lakes with a pH of 6.5–7.0. This is in contrast to the effects of heavy acidification on other aquatic animal groups. Chironomids are probably more sensitive to lake trophic status than lake acidity.  相似文献   

11.
Summary 1. Species compositions of zooplankton and phytoplankton were followed in Tuesday Lake before and after experimental manipulation of its fish populations (addition of piscivorous largemouth bass, removal of planktivorous minnows). Plankton dynamics were compared to those of adjacent, unmanipulated Paul Lake, where piscivorous fish have been dominant historically. 2. Indices of similarity for the zooplankton communities in the two lakes in 1984 prior to the manipulation were low; however, following the manipulation in spring, 1985, similarity of the zooplankton in the two lakes rose considerably and remained high throughout 1986. This was the result of an increase in Tuesday Lake of previously rare large-bodied cladocerans (Daphnia pulex, Holopedium gibberum) which were the dominants in Paul Lake, and the disappearance in Tuesday Lake of the dominant small-bodied copepod Tropocyclops prasinus, a minor component of the Paul Lake zooplankton. These observations are consistent with prior observations of the effects of size-selective predation on zooplankton communities. 3. Phytoplankton communities also responded strongly to the manipulation, with similarity indices for the two lakes rising from low levels in 1984 to high levels of similarity in 1985 and 1986, reflecting the decrease of formerly dominant Tuesday Lake taxa which were unimportant in Paul Lake and the appearance or increase in Tuesday Lake of several taxa characteristic of the Paul Lake phytoplankton assemblage. these results clearly show that food web structure can have pronounced effects on community composition at all levels of the food web, and that, just as zooplankton communities are structured by sizeselective predation, phytoplankton communities are structured by herbivory. These observations may provide some insight into factors governing the complex distributions of phytoplankton species among various lakes.A contribution from the University of Notre Dame Environmental Research Center, funded by NSF grants BSR-83-08918 and BSR-86-06271  相似文献   

12.
1. Recovery of acidified aquatic systems may be affected by both abiotic and biotic processes. However, the relative roles of these factors in regulating recovery may be difficult to determine. Lakes around the smelting complexes near Sudbury, Ontario, Canada, formerly affected by acidification and metal exploration, provide an excellent opportunity to examine the factors regulating the recovery of aquatic communities. 2. Substantial recovery of zooplankton communities has occurred in these lakes following declines in acidity and metal concentrations, although toxicity by residual metals still appears to limit survival for many species. Metal bioavailability, not simply total metal concentrations, was very important in determining effects on zooplankton and was associated with a decrease in the relative abundance of cyclopoids and Daphnia spp., resulting in communities dominated by Holopedium gibberum. 3. As chemical habitat quality has improved and fish, initially yellow perch and later piscivores (e.g. smallmouth bass, walleye), have invaded, biotic effects on the zooplankton are also becoming apparent. Simple fish assemblages dominated by perch appear to limit the survival of some zooplankton species, particularly Daphnia mendotae. 4. Both abiotic (residual metal contamination) and biotic (predation from planktivorous fish) processes have very important effects on zooplankton recovery. The re‐establishment of the zooplankton in lakes recovering from stress will require both improvements in habitat quality and the restoration of aquatic food webs.  相似文献   

13.
A large-scale liming program was initiated in Sweden in the mid-1970s to ameliorate the effects of acidification and to restore acidified lakes and rivers to conditions present before acidification. I compared the fish fauna composition and biomass among limed, acidified, and consistently circumneutral lakes. The study focused on (1) recolonization and fish assemblage development and (2) fish biomass and assemblage composition. Time-series data from 14 limed, 5 acid, and 10 circumneutral lakes, and a data set of 323 limed and 346 nonlimed circumneutral lakes, are analyzed. Long-term monitoring revealed that fish species richness increased after liming and was of the same magnitude in limed lakes as in nonlimed circumneutral lakes after 10–20 years. Species proportions differed between limed and nonlimed lakes, and the relative biomass of Perca fluviatilis (Eurasian perch) was in general higher, whereas cyprinid and pelagic species were less important in the limed lakes than in the nonlimed circumneutral lakes. Recolonization of fish species was found to be a crucial factor for the development of the fish assemblages after liming, and in several limed lakes the reintroduction of fish species has accelerated the recovery of pre-acidification fish assemblages.  相似文献   

14.
The field of lake palaeoecology has undergone significant changes. Powerful quantitative techniques have been developed to investigate anthropogenic impacts on lakes. Inclusion of zooplankton and benthic chydorid cladocerans has provided previously unavailable information on the historical development of planktivorous fish populations, submerged macrophytes and lake production, and has been used to document exotic species introductions, rapid genetic evolution and human disturbance of lakes. In particular, new techniques now allow a more complete evaluation of changes in past and present trophic structure to be made, and provide insights on the rapid evolutionary responses of aquatic invertebrate communities to anthropogenic perturbation of lakes.  相似文献   

15.
How many fish populations in Finland are affected by acid precipitation?   总被引:2,自引:0,他引:2  
Synopsis The number of fish populations affected or lost from small lakes in southern and central Finland due to acid precipitation is estimated. Tolerance limits (pH and labile aluminum) of common fish species were obtained from a fish status survey of 80 lakes. These tolerance values were used to estimate the proportion of affected lakes from the water chemistry data of 783 statistically selected lakes. The proportion of anthropogenically acidified lakes was estimated by calculating pre-acidification pH and aluminum concentrations of the lakes, using a steady-state model based on water chemistry. The number of fish populations for which acidification has affected growth or population structure was estimated at between 2200 and 4400. Out of these, the number of fish populations that have disappeared due to acid precipitation would be about 1000–2000. Almost 60% of the affected or lost populations are roach, Rutilus rutilus, the most sensitive of the common fish species in small lakes in southern and central Finland. Less than 15% of the damaged population is European perch, Perca fluviatilis, the most common species. This is due to the substantially higher tolerance of perch to acidified water in comparison with roach.  相似文献   

16.
1. Yellow perch (Perca flavescens) are often the only surviving fish species in acidified lakes. We studied four lakes along a gradient of recovery from acidification and that had different food web complexities. All had abundant yellow perch, two had low piscivore abundance, one had a well‐established piscivore population and one was manipulated by introducing piscivorous smallmouth bass (Micropterus dolomieu). We hypothesised that there would be strong effects on perch abundance, behaviour and diet induced by the presence of piscivores. 2. In the manipulated lake, the bass reduced yellow perch abundance by 75% over a 2‐year period. Concomitantly, perch use of the pelagic habitat fell from 48 to 40%. 3. In contrast to findings from less disturbed systems, yellow perch in the littoral zone of the manipulated lake did not strongly shift from zooplankton to benthic food sources after the arrival of piscivores. Diet analysis using stable carbon isotopes revealed a strong continued reliance on zooplankton in all lakes, independent of the degree of piscivory. The failure to switch to benthos in the refuge area of the littoral zone is most likely related to the depauperate benthos communities in these formerly acidified lakes. 4. Yellow perch in lakes recovering from acidification face a considerable ecological challenge as the necessary switch to benthic diet is hindered by a low abundance of benthos. The arrival of piscivores in these recovering lakes imposes further restrictions on perch access to food items. We infer that future recovery of perch populations (and higher trophic levels) will have to be preceded by the re‐establishment of diverse benthic macroinvertebrate communities in these lakes.  相似文献   

17.
Acidification of waters and soils caused by emissions and the long-range transport of air pollutants has been a serious worldwide problem during the last decades. The extent of the acidification problem in Finnish acid-sensitive forest lakes was examined in the Acidification Research Project (HAPRO) in the mid-1980s. The recent decline in the emissions of air pollutants has resulted in the chemical recovery of watersheds in many regions, and the present work on the recovery processes in acidified Finnish headwater lakes (REPRO) was launched to examine whether the chemical recovery has already been accompanied by biological recovery. The patterns of recovery were studied by re-sampling littoral macrozoobenthos in a subset of the previously sampled HAPRO lakes. Paleolimnological samples were taken in order to assess the possible dependence of lacustrine chironomid communities on the changing degree of acidification. Acid sensitive and moderately acid sensitive benthic species revealed slight recovery in the formerly most acidic (pH 5.5) but recently recovered lakes. The most significant factors affecting the response of benthic communities were increased mean lake pH and decreased labile aluminium concentration. Paleolimnological chironomid analysis revealed a slight response along the pH gradient, but also significant structural similarity between the present and pristine chironomid assemblages. This implies that no major changes in chironomid communities of these acidic lakes have occurred during the past centuries. The alternative future trends and threats to biological recovery in small headwater lakes are discussed.  相似文献   

18.
Paleolimnological techniques were employed to document the limnological histories of the aurora trout lakes, located in the Sudbury region of Ontario. Two of these lakes are of special interest to fisheries managers, as they represent the only known native habitats of a rare strain of brook trout: the aurora trout. These lakes were limed as part of restoration efforts. Stratigraphic changes in diatom and chrysophyte assemblages from dated lake sediment cores indicate that all the lakes have been impacted by anthropogenic acidification, although the timing and the magnitude of acidification were different amongst the lakes. For example, Whirligig Lake was likely the most naturally acidic lake in the past, but it had further acidified since about 1960. This lake was limed in 1989 and then again in 1993. In Whitepine Lake, acidification started 1940; however, in the most recent sediments (1992), some recovery in lakewater acidity has occurred. In Little Whitepine Lake (a reference lake), acidification started earlier (1920) and the lakewater pH continued to decline until about 1990. This lake was limed in 1989. The chrysophyte paleoindicators suggest a recent recovery in this lake. The successful re-introduction of aurora trout in Whirligig and Whitepine lakes is undoubtedly related to the improved water quality through liming but, based on our paleolimnological indicators, the lakes' limnological characteristics (e.g. pH and metal concentrations) are still different from those present before atmospheric deposition of strong acids from the Sudbury smelters.  相似文献   

19.
Fish Communities Associated with Macrophytes in Brazilian Floodplain Lakes   总被引:4,自引:0,他引:4  
The composition, diversity and similarity of fish communities associated with macrophytes of two oxbow lakes of Mogi-Guaçu River, São Paulo State, Brazil, were evaluated in the wet and dry seasons of 1994–1995. Fish species composition and relative abundance values were similar for both lakes, despite their difference in connection time to the river and the abundance of macrophytes. The fish communities were predominantly composed by small sized species typical of lentic environments (Characidae), juveniles of large non-migratory species (Erythrinidae and Gymnotidae) and a few juveniles of migratory species (Anostomidae and Curimatidae). These lakes are not characterized as nurseries for the young of migratory species and the zooplankton does not have an important role as food in the ontogenetic development of migratory species of fish.  相似文献   

20.
The species present within a community result from a combination of local and regional processes. We experimentally tested the importance of these two processes for lake zooplankton communities by examining the ability of additional species to persist when introduced into mesocosms in Little Rock Lake, Wisconsin, from other nearby lakes in the Northern Highland Lake District. We established a control treatment with only Little Rock Lake zooplankton and two treatments that supplemented the Little Rock communities with zooplankton from nearby lakes. Species richness declined during the 3 weeks of the experiment so that, at the end of the third week, the treatments with added zooplankton species had the same number of species as the controls; increasing the initial number of species in the community did not increase its final species richness. A plot of the mean species richness in the local habitat against the mean species richness of the regional pool fell below a 1:1 slope. This suggested that local processes were more important in structuring Little Rock Lake zooplankton communities.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号