首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Amyotrophic lateral sclerosis (ALS) is a degenerative motor neuron disease that is inherited as an autosomal dominant trait in ~ 10% of cases. Recently we and others identified several single-base mutations in the Cu/Zn superoxide dismutase (SOD1) gene in patients with familial ALS (FALS). Using single-strand conformational polymorphism, we studied the C to G mutation in exon 2 of the SOD1 gene (resulting in a leucine to valine substitution in position 38) in affected and unaffected members of a large Belgian family with FALS. We measured the SOD1 activity in red blood cell lysates in 14 members of this family, including the only surviving clinically affected patient. SOD1 activity of the family members carrying the mutation was less than half that of members without the mutation. In addition, in 11 patients with sporadic ALS and 11 age- and sex-matched controls, red blood cell SOD1 activity was normal. These studies indicate that SOD1 activity is reduced in these FALS patients but not in sporadic ALS patients. Moreover, this SOD1 enzyme abnormality is detectable years before onset of clinical ALS in carriers of this FALS mutation.  相似文献   

2.
Abstract: Mutations in the enzyme copper/zinc superoxide dismutase-1 (SOD1) are associated with familial amyotrophic lateral sclerosis (FALS). The means by which the mutations cause FALS appears to be due to an adverse property of the mutant SOD1 protein that may involve increased generation of free radicals. We used in vivo microdialysis to measure the conversion of 4-hydroxybenzoic acid to 3,4-dihydroxybenzoic acid (3,4-DHBA) as a measure of "hydroxyl radical-like" production in transgenic amyotrophic lateral sclerosis (ALS) mice with the G93A mutation as well as littermate controls. The conversion of 4-hydroxybenzoic acid to 3,4-DHBA was significantly increased in the striatum of transgenic ALS mice at baseline but not in mice overexpressing wild-type human SOD1. Following administration of 3-nitropropionic acid 3,4-DHBA generation was significantly increased as compared with baseline, and the increase in the transgenic ALS mice was significantly greater than those in controls, whereas the increase in mice overexpressing wild-type human SOD1 was significantly attenuated. The present results provide in vivo evidence that expression of mutations in SOD1 can lead to increased generation of "hydroxyl radical-like" activity, which further implicates oxidative damage in the pathogenesis of ALS.  相似文献   

3.
Mutations in CuZn-superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS) and are found in 6% of ALS patients. Non-native and aggregation-prone forms of mutant SOD1s are thought to trigger the disease. Two sets of novel antibodies, raised in rabbits and chicken, against peptides spaced along the human SOD1 sequence, were by enzyme-linked immunosorbent assay and an immunocapture method shown to be specific for denatured SOD1. These were used to examine SOD1 in spinal cords of ALS patients lacking mutations in the enzyme. Small granular SOD1-immunoreactive inclusions were found in spinal motoneurons of all 37 sporadic and familial ALS patients studied, but only sparsely in 3 of 28 neurodegenerative and 2 of 19 non-neurological control patients. The granular inclusions were by confocal microscopy found to partly colocalize with markers for lysosomes but not with inclusions containing TAR DNA binding protein-43, ubiquitin or markers for endoplasmic reticulum, autophagosomes or mitochondria. Granular inclusions were also found in carriers of SOD1 mutations and in spinobulbar muscular atrophy (SBMA) patients and they were the major type of inclusion detected in ALS patients homozygous for the wild type-like D90A mutation. The findings suggest that SOD1 may be involved in ALS pathogenesis in patients lacking mutations in the enzyme.  相似文献   

4.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder affecting motor neurons. Although most cases of ALS are sporadic, approximately 10% are inherited as an autosomal dominant trait. Mutations in the Cu/Zn superoxide dismutase gene (SOD 1) are responsible for a fraction of familial ALS (FALS). Screening our FALS kindreds by SSCP, we have identified mutations in 15 families, of which 9 have not been previously reported. Two of the new mutations alter amino acids that have never been implicated in FALS. One of them affects a highly conserved amino acid involved in dimer contact, and the other one affects the active-site loop of the enzyme. These two mutations reduce significantly SOD 1 enzyme activity in lymphoblasts. Our results suggest that SOD 1 mutations are responsible for > or = 13% of FALS cases.  相似文献   

5.
Amyotrophic lateral sclerosis (ALS) is a heterogeneous group of fatal neurodegenerative diseases characterized by a selective loss of motor neurons in the brain and spinal cord. Creation of transgenic mice expressing mutant Cu/Zn superoxide dismutase (SOD1), as ALS models, has made an enormous impact on progress of the ALS studies. Recently, it has been recognized that genetic background and gender affect many physiological and pathological phenotypes. However, no systematic studies focusing on such effects using ALS models other than SOD1(G93A) mice have been conducted. To clarify the effects of genetic background and gender on gross phenotypes among different ALS models, we here conducted a comparative analysis of growth curves and lifespans using congenic lines of SOD1(G93A) and SOD1(H46R) mice on two different genetic backgrounds; C57BL/6N (B6) and FVB/N (FVB). Copy number of the transgene and their expression between SOD1(G93A) and SOD1(H46R) lines were comparable. B6 congenic mutant SOD1 transgenic lines irrespective of their mutation and gender differences lived longer than corresponding FVB lines. Notably, the G93A mutation caused severer disease phenotypes than did the H46R mutation, where SOD1(G93A) mice, particularly on a FVB background, showed more extensive body weight loss and earlier death. Gender effect on survival also solely emerged in FVB congenic SOD1(G93A) mice. Conversely, consistent with our previous study using B6 lines, lack of Als2, a murine homolog for the recessive juvenile ALS causative gene, in FVB congenic SOD1(H46R), but not SOD1(G93A), mice resulted in an earlier death, implying a genetic background-independent but mutation-dependent phenotypic modification. These results indicate that SOD1(G93A)- and SOD1(H46R)-mediated toxicity and their associated pathogenic pathways are not identical. Further, distinctive injurious effects resulted from different SOD1 mutations, which are associated with genetic background and/or gender, suggests the presence of several genetic modifiers of disease expression in the mouse genome.  相似文献   

6.
Abstract: Autosomal dominant familial amyotrophic lateral sclerosis (FALS) is associated with mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1). Previous studies have implicated the involvement of metabolic dysfunction in ALS pathogenesis. To further investigate the biochemical features of FALS and sporadic ALS (SALS), we examined SOD activity and mitochondrial oxidative phosphorylation enzyme activities in motor cortex (Brodmann area 4), parietal cortex (Brodmann area 40), and cerebellum from control subjects, FALS patients with and without known SOD mutations, SALS patients, and disease controls (Pick's disease, progressive supranuclear palsy, diffuse Lewy body disease). Cytosolic SOD activity, predominantly Cu/Zn SOD, was decreased ∼50% in all regions in FALS patients with SOD mutations but was not significantly altered in other patient groups. Marked increases in complex I and II–III activities were seen in FALS patients with SOD mutations but not in SALS patients. We also measured electron transport chain enzyme activities in a transgenic mouse model of FALS. Complex I activity was significantly increased in the forebrain of 60-day-old G93A transgenic mice overexpressing human mutant SOD1, relative to levels in transgenic wild-type animals, supporting the hypothesis that the motor neuron disorder associated with SOD1 mutations involves a defect in mitochondrial energy metabolism.  相似文献   

7.
Genomic and cDNA clones of the acetolactate synthase (ALS) gene of Chlamydomonas reinhardtii have been isolated from a mutant, c85-20 (Hartnett et al., 1987), that is resistant to high concentrations of sulfometuron methyl (SMM) and related sulfonylurea herbicides. Comparison of the ALS gene sequences from the wild-type and the SMM resistant (SMMr) strains revealed two amino acid differences in the mature enzyme, a lysine to threonine change at position 257 (K257T) and a leucine to valine change at position 294 (L294V). Transformation of wild-type C. reinhardtii with the mutant ALS gene produced no transformants with ability to grow in the presence of a minimum toxic concentration of SMM (3 microm). Substitution of the ALS promoter with the promoter of the C. reinhardtii Rubisco small subunit gene (RbcS2) permitted recovery of SMMr colonies. In vitro mutagenesis of the wild-type ALS gene to produce various combinations of mutations (K257T, L294V and W580L) indicated that the K257T mutation was necessary and sufficient to confer the SMMr phenotype. Optimum transformation rates were obtained with two constructs (pJK7 and pRP-ALS) in which all introns in the coding region were present. Rates of transformation with construct pJK7 were approximately 2.5 x 10-4 transformants/cell (i.e. one transformant for each of 4000 initial cells) using electroporation and 8.5 x 10-6 transformants/cell using the glass bead vortexing method. These results suggest that pJK7 and pRP-ALS can serve as important additional dominant selectable markers for the genetic transformation of C. reinhardtii.  相似文献   

8.
Abstract: Some cases of autosomal-dominant familial amyotrophic lateral sclerosis (FALS) have been associated with mutations in SOD1 , the gene that encodes Cu/Zn superoxide dismutase (Cu/Zn SOD). We determined the concentrations (µg of Cu/Zn SOD/mg of total protein), specific activities (U/µg of total protein), and apparent turnover numbers (U/µmol of Cu/Zn SOD) of Cu/Zn SOD in erythrocyte lysates from patients with known SOD1 mutations. We also measured the concentrations and activities of Cu/Zn SOD in FALS patients with no identifiable SOD1 mutations, sporadic ALS (SALS) patients, and patients with other neurologic disorders. The concentration and specific activity of Cu/Zn SOD were decreased in all patients with SOD1 mutations, with mean reductions of 51 and 46%, respectively, relative to controls. In contrast, the apparent turnover number of the enzyme was not altered in these patients. For the six mutations studied, there was no correlation between enzyme concentration or specific activity and disease severity, expressed as either duration of disease or age of onset. No significant alterations in the concentration, specific activity, or apparent turnover number of Cu/Zn SOD were detected in the FALS patients with no identifiable SOD1 mutations, SALS patients, or patients with other neurologic disorders. That Cu/Zn SOD concentration and specific activity are equivalently reduced in erythrocytes from patients with SOD1 mutations suggests that mutant Cu/Zn SOD is unstable in these cells. That concentration and specific activity do not correlate with disease severity suggests that an altered, novel function of the enzyme, rather than reduction of its dismutase activity, may be responsible for the pathogenesis of FALS.  相似文献   

9.
Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is the most commonly recognized defect of the mitochondrial β-oxidation in humans. It is a potentially fatal, autosomal recessive inherited defect. Most patients with MCAD deficiency are homozygous for a single disease-causing mutation (G985), causing a change from lysine to glutamate at position 304 (K304E) in the mature MCAD. Only seven non-G985 mutations, all of which are rare, have been reported. Because the G985 mutation and three of the non-G985 mutations are located in exon 11, it has been suggested that this exon may be a mutational hot spot. Here we describe the results from sequence analysis of exon 11 and part of the flanking introns from 36 compound heterozygous patients with MCAD deficiency. We have identified four previously unknown disease-causing mutations (M301T, S311R, R324X, and E359X) and two silent mutations in exon 11. Our results show that exon 11 is not especially mutation prone. We demonstrate that two of the identified disease-causing mutations can be detected by restriction enzyme digestion of the PCR product from the assay for the G985 mutation, a discovery that makes this assay even more useful than before. On the basis of expression of wild-type and mutant MCAD protein in COS-7 cells, we show that the identified mutations abolish MCAD enzyme activity and that they therefore must be disease causing. The M301T, S311R, and K304E mutations are located in helix H, which makes up part of the dimer-dimer interface of the MCAD tetramer. On the basis of the three-dimensional structure of MCAD and the results from the COS-7 expression experiments, we speculate that the primary effect of the M301T and S311R mutations is on correct folding/tetramer assembly, as it has previously been observed for the K304E mutation.  相似文献   

10.
Progressive muscular atrophy (PMA) and amyotrophic lateral sclerosis (ALS) are devastating motor neuron diseases (MNDs), which result in muscle weakness and/or spasticity. We compared mutation frequencies in genes known to be associated with MNDs between patients with apparently sporadic PMA and ALS. A total of 261 patients with adult-onset sporadic PMA, patients with sporadic ALS, and control subjects of Dutch descent were obtained at national referral centers for neuromuscular diseases in The Netherlands. Sanger sequencing was used to screen these subjects for mutations in the coding regions of superoxide dismutase-1 (SOD1), angiogenin (ANG), fused in sarcoma/translated in liposarcoma (FUS/TLS), TAR DNA-binding protein 43 (TARDBP), and multivesicular body protein 2B (CHMP2B). In our cohort of PMA patients we identified two SOD1 mutations (p.D90A, p.I113T), one ANG mutation (p.K17I), one FUS/TLS mutation (p.R521H), one TARDBP mutation (p.N352S), and one novel CHMP2B mutation (p.R69Q). The mutation frequency of these genes was similar in sporadic PMA (2.7%) and ALS (2.0%) patients, and therefore, our findings demonstrate a genetic overlap between apparently sporadic PMA and ALS.  相似文献   

11.
Despite some advances in the understanding of amyotrophic lateral sclerosis (ALS) pathogenesis, significant achievements in treating this disease are still lacking. Mesenchymal stromal (stem) cells (MSCs) have been shown to be effective in several models of neurological disease. To determine the effects of the intravenous injection of MSCs in an ALS mouse model during the symptomatic stage of disease, MSCs (1 × 106) were intravenously injected in mice expressing human superoxide dismutase 1 (SOD1) carrying the G93A mutation (SOD1/G93A) presenting with experimental ALS. Survival, motor abilities, histology, oxidative stress markers and [3H]d-aspartate release in the spinal cord were investigated. MSC injection in SOD1/G93A mice improved survival and motor functions compared with saline-injected controls. Injected MSCs scantly home to the central nervous system and poorly engraft. We observed a reduced accumulation of ubiquitin agglomerates and of activated astrocytes and microglia in the spinal cord of MSC-treated SOD1/G93A mice, with no changes in the number of choline acetyltransferase– and glutamate transporter type 1–positive cells. MSC administration turned around the upregulation of metallothionein mRNA expression and of the activity of the antioxidant enzyme glutathione S-transferase, both associated with disease progression. Last, we observed that MSCs reverted both spontaneous and stimulus-evoked neuronal release of [3H]d-aspartate, a marker of endogenous glutamate, which is upregulated in SOD1/G93A mice. These findings suggest that intravenous administration of MSCs significantly improves the clinical outcome and pathological scores of mutant SOD1/G93A mice, thus providing the rationale for their exploitation for the treatment of ALS.  相似文献   

12.
Several of the superoxide dismutase-1 (SOD1) mutations linked to amyotrophic lateral sclerosis (ALS) lead to synthesis of structurally defective molecules, suggesting that any cytotoxic conformational species common for all mutations should be misfolded. SOD1 can be secreted and evidence from ALS model systems suggests that extracellular SOD1 may be involved in cytotoxicity. Three ELISAs specifically reacting with different sequence segments in misfolded SOD1 species were used for analysis of CSF from 38 neurological controls and from 96 ALS patients, 57 of whom were sporadic cases and 39 familial, including 22 patients carrying SOD1 mutations. Misfolded SOD1 was found in all samples. There were, however, no significant differences between patients with and without mutations, and between all the ALS patients and the controls. The estimated concentration of misfolded SOD1 in the interstitium of the CNS is a 1000 times lower than that required for appreciable cytotoxicity in model systems. The results argue against a direct cytotoxic role of extracellular misfolded SOD1 in ALS. Misfolded SOD1 in CSF cannot be used as a biomarker of ALS in patients with and without mutations in the enzyme.  相似文献   

13.
Excessive reactive oxygen species (ROS) levels are harmful to the body. The peroxidase, GPx, and the superoxide dismutase, SOD, are important antioxidant enzymes for preventing ROS‐induced damage. Se‐CuZn‐65P is an enzyme mimetic with dual GPx and SOD antioxidant function. However, currently, its production is mainly based on the cysteine auxotrophic expression technique, which is inefficient, expensive, and time consuming. In this study, we combined protein engineering and the chemical mutation method to synthesize Se‐CuZn‐65P. The DNA sequence encoding the 65 amino acid peptide with the desired sequence transformations to incorporate the SOD and the GPx catalytic sites was cloned and expressed in a soluble protein expression vector. The protein yield increased up to 152 mg/L, which is 10 times higher than in previous studies. The SOD and GPx activity of Se‐CuZn‐65P was high (1181 U/mg and 753 U/μmol, respectively). The binding constant of glutathione was 5.6 × 104 L·mol?1, which shows that Se‐CuZn‐65P efficiently catalyzed hydrogen peroxide reduction by glutathione. Mitochondrial damage experiments confirmed the double protective role of the Se‐CuZn‐65P peptide and demonstrated functional synergy between the SOD and the GPx domains, which indicates its potential to be used in the treatment of ROS‐related diseases. Our research may give a new thought to increase the yield of mimic.  相似文献   

14.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by loss of motor function and eventual death as a result of degeneration of motor neurons in the spinal cord and brain. The discovery of mutations in SOD1, the gene encoding the antioxidant enzyme Cu/Zn-superoxide dismutase (CuZnSOD), in a subset of ALS patients has led to new insight into the pathophysiology of ALS. Utilizing a novel adenovirus gene delivery system, our laboratory has developed a human cell culture model using chemically differentiated neuroblastoma cells to investigate how mutations in SOD1 lead to neuronal death. Expression of mutant SOD1 (G37R) resulted in a time and dose-related death of differentiated neuroblastoma cells. This cell death was inhibited by overexpression of the antioxidant enzyme manganese superoxide dismutase (MnSOD). These observations support the hypothesis that mutant SOD1-associated neuronal death is associated with alterations in oxidative stress, and since MnSOD is a mitochondrial enzyme, suggest that mitochondria play a key role in disease pathogenesis. Our findings in this model of inhibition of mutant SOD1-associated death by MnSOD represent an unique approach to explore the underlying mechanisms of mutant SOD1 cytotoxicity and can be used to identify potential therapeutic agents for further testing.  相似文献   

15.
Acetolactate synthase (ALS) catalyzes the first common step in the biosynthesis of valine, leucine, and isoleucine. The ALS is the target of several classes of herbicides, including the sulfonylureas, the imidazolinones, and the triazolopyrimidines. The roles of three well-conserved lysine residues (K219, K255, K299) in tobacco ALS were determined using site-directed mutagenesis. The mutation of K219Q inactivated the enzyme and abolished the binding affinity for cofactor FAD. However, the secondary structure of the enzyme was not changed significantly by the mutation. Both mutants, K255F and K255Q, showed strong resistance to three classes of herbicides Londax (a sulfonylurea), Cadre (an imidazolinone), and TP (a triazolopyrimidine). In addition, there was no difference in the secondary structures of wALS and K255F. On the other hand, the mutation of K299Q did not show any significant effect on the kinetic properties or any sensitivity to the herbicides. These results suggest that Lys219 is located at the active site and is likely involved in the binding of FAD, and that Lys255 is located at a binding site common for the three herbicides in tobacco ALS.  相似文献   

16.
Amyotrophic lateral sclerosis (ALS) is a progressive, lethal, neurodegenerative disorder, characterized by the degeneration of motor neurons. Oxidative stress plays a central role in the disease progression, in concert with an enhanced glutamate excitotoxicity and neuroinflammation. DJ-1 mutations, leading to the loss of functional protein, cause familial Parkinson’s disease and motor neuron disease in several patients. DJ-1 responds to oxidative stress and plays an important role in the cellular defense mechanisms. We aimed to investigate whether loss of functional DJ-1 alters the disease course and severity in an ALS mouse model. To this end we used mice that express the human SOD1G93A mutation, the commonly used model of ALS and knockout of DJ-1 mice to generate SOD1 DJ-1 KO mice. We found that knocking out DJ-1in the ALS model led to an accelerated disease course and shortened survival time. DJ-1 deficiency was found to increase neuronal loss in the spinal cord associated with increased gliosis in the spinal cord and reduced antioxidant response that was regulated by the Nrf2 mechanism.The importance of DJ-1 in ALS was also illustrated in a motor neuron cell line that was exposed to glutamate toxicity and oxidative stress. Addition of the DJ-1 derived peptide, ND-13, enhanced the resistance to glutamate and SIN-1 induced toxicity. Thus, our results maintain that DJ-1 plays a role in the disease process and promotes the necessity of further investigation of DJ-1 as a therapeutic target for ALS.  相似文献   

17.
1. Amyotrophic lateral sclerosis (ALS) is a degenerative disorder characterized by selective damage to the neural system that mediates voluntary movement. Although the pathophysiologic process of ALS remains unknown, about 5 to 10% of cases are familial. According to genetic linkage studies, the familial ALS (FALS) gene has been mapped on chromosome 21 in some families and recent work identified some different missense mutations in the Cu/Zn superoxide dismutase gene in FALS families.2. We recently identified five mutations in six FALS families. The mutations identified in our FALS families are H46R, L84V, I104F, S134N, and V148I. The H46R mutation that locates in the active site of Cu/Zn SOD gene is associated with two Japanese families with very slow progression of ALS. On the other hand, the L84V mutation associated with a rapidly progressive loss of motor function with predominant lower motor neuron manifestations.3. In the family with the V148I, the phenotype of the patient varied very much among the affected members. One case had weakness of the lower extremities at first and died without bulbar paresis. The second case first noticed wasting of the upper limbs with bulbar symptoms, but the third had weakness of upper extremities without developing dysarthria nor dysphagia until death. These mutations account for 50% of all FALS families screened, although Cu/Zn SOD gene mutations are responsible for less than about 13–21% in the Western population.4. Our results indicate that the progression of disease with mutations of Cu/Zn SOD is well correlated with each mutation. The exact mechanism by which the abnormal Cu/Zn SOD molecules selectively affect the function of motor neurons is still unknown.  相似文献   

18.
Yeast has at least three partially characterized aldehyde dehydrogenases. Previous studies by gene disrupted in our laboratory revealed that the Saccharomyces cerevisiae cytosol ALDH1 played an important role in ethanol metabolism as did the class 2 mitochondrial enzyme. To date, few mutagenesis studies have been performed with the yeast enzymes. An important human variant of ALDH is one found in Asian People. In it, the glutamate at position 487 is replaced by a lysine. This glutamate interacts with an arginine (475) that is located in the subunit that makes up the dimer pair in the tetrameric enzyme. Sequence alignment shows that these two residues are located at positions 492 and 480, respectively, in the yeast class 1 enzyme which shares just 45% sequence identity with the human enzymes. Mutating glutamate 492 to lysine produced an enzyme with altered kinetic properties when compared to the wild-type glutamate-enzyme. The K(m) for NADP of E492K increased to nearly 3600 microM compare to 40 microM for wild-type enzyme. The specific activity decreased more than 10-fold with respect to the recombinant wild-type yeast enzyme. Moreover, substituting a glutamine for a glutamate was not detrimental in that the E492Q had wild-type-like K(m) for NADP and V(max). These properties were similar to the changes found with the human class 2 E487K mutant form. Further, mutating arginine 480 to glutamine produced an enzyme that exhibited positive cooperativity in NADP binding. The K(m) for NADP increased 11-fold with a Hill coefficient of 1.6. The NADP-dependent activity of R480Q mutant was 60% of wild-type enzyme. Again, these results are very similar to what we recently showed to occur with the human enzyme [Biochemistry 39 (2000) 5295-5302]. These findings show that the even though the glutamate and arginine residues are not conserved, similar changes occur in both the human and the yeast enzyme when either is mutated.  相似文献   

19.
Mutations in the CuZn superoxide dismutase (SOD1) and TAR DNA-binding protein 43 (TDP-43) genes are linked to familial amyotrophic lateral sclerosis, ALS1 and ALS10, respectively. In addition, TDP-43 is a major component protein of the ubiquitinated aggregates observed in sporadic ALS (SALS) patients. However, it remains unclear whether these ALS groups partly have a shared pathogenesis. In the present study, we demonstrate that mutant SOD1, but not wild-type SOD1, interacts with TDP-43 by co-immunoprecipitation assays using cultured cells and G93A mutant SOD1 transgenic mice. The region responsible for this interaction within SOD1 is the dimer interface, namely, the N- and C-terminal regions. Deletion mutants of TDP-43 with or without nuclear localization sequence interacted with mutant SOD1. Cell fractionation assays using cultured cells showed that mutant SOD1 was localized in the cytosolic fraction but not in the nuclear fraction. TDP-43 was detected both in the nuclear and cytosolic fractions, suggesting that mutant SOD1 interacts with TDP-43 in the cytoplasm. Mutant SOD1 overexpression led to an increased amount of mutant SOD1 and, to some extent, its interacting proteins including TDP-43 in the detergent-insoluble fraction. These results indicate that mutant SOD1 could affect the solubility/insolubility of its interacting proteins including TDP-43 through physical interactions. Our findings may contribute to the understanding of links among SALS, ALS1 and ALS10.  相似文献   

20.
Mutations in the CuZn superoxide dismutase (SOD1) and TAR DNA-binding protein 43 (TDP-43) genes are linked to familial amyotrophic lateral sclerosis, ALS1 and ALS10, respectively. In addition, TDP-43 is a major component protein of the ubiquitinated aggregates observed in sporadic ALS (SALS) patients. However, it remains unclear whether these ALS groups partly have a shared pathogenesis. In the present study, we demonstrate that mutant SOD1, but not wild-type SOD1, interacts with TDP-43 by co-immunoprecipitation assays using cultured cells and G93A mutant SOD1 transgenic mice. The region responsible for this interaction within SOD1 is the dimer interface, namely, the N- and C-terminal regions. Deletion mutants of TDP-43 with or without nuclear localization sequence interacted with mutant SOD1. Cell fractionation assays using cultured cells showed that mutant SOD1 was localized in the cytosolic fraction but not in the nuclear fraction. TDP-43 was detected both in the nuclear and cytosolic fractions, suggesting that mutant SOD1 interacts with TDP-43 in the cytoplasm. Mutant SOD1 overexpression led to an increased amount of mutant SOD1 and, to some extent, its interacting proteins including TDP-43 in the detergent-insoluble fraction. These results indicate that mutant SOD1 could affect the solubility/insolubility of its interacting proteins including TDP-43 through physical interactions. Our findings may contribute to the understanding of links among SALS, ALS1 and ALS10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号