首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
This study showed that four factors which stimulate transepithelial fluid secretion and inorganic ion transport across the main segment of the Malpighian tubules of Drosophila melanogaster also stimulate transepithelial secretion of the prototypical organic cation tetraethylammonium (TEA). TEA fluxes across the Malpighian tubules and gut were measured using a TEA-selective self-referencing (TEA-SeR) microelectrode. TEA flux across isolated Malpighian tubules was also measured using a TEA-selective microelectrode positioned in droplets of fluid secreted by tubules set up in a modified Ramsay assay. TEA flux was stimulated by the intracellular second messengers cAMP and cGMP, which increase the lumen-positive transepithelial potential (TEP), and also by tyramine and leucokinin-I (LK-I), which decrease TEP. The largest increase was measured in response to 1 micromol l-1 LK-I which increased transepithelial TEA flux by 72%. TEA flux in the lower tubule was stimulated slightly (13%) by 1 micromol l-1 tyramine but not by any of the other factors. TEA flux across the midgut was unaffected by cAMP, cGMP or tyramine. This is the first study to demonstrate the effects of insect diuretic factors and second messengers on excretion of organic cations.  相似文献   

2.
The Malpighian (renal) tubules play important roles in ionic and osmotic homeostasis in insects. In Lepidoptera, the Malpighian tubules are structurally regionalized and the concentration of Na+ and K+ in the secreted fluid varies depending on the segment of tubule analyzed. In this work, we have characterized fluid and ion (Na+, K+, H+) transport by tubules of the larval stage of the cabbage looper Trichoplusia ni; we have also evaluated the effects of fluid secretion inhibitors and stimulants on fluid and ion transport. Ramsay assays showed that fluid was secreted by the iliac plexus but not by the yellow and white regions of the tubule. K+ and Na+ were secreted by the distal iliac plexus (DIP) and K+ was reabsorbed in downstream regions. The fluid secretion rate decreased > 50% after 25 μM bafilomycin A1, 500 μM amiloride or 50 μM bumetanide was added to the bath. The concentration of K+ in the secreted fluid did not change, whereas the concentration of Na+ in the secreted fluid decreased significantly when tubules were exposed to bafilomycin A1 or amiloride. Addition of 500 μM cAMP or 1 μM 5-HT to the bath stimulated fluid secretion and resulted in a decrease in K+ concentration in the secreted fluid. An increase in Na+ concentration in the secreted fluid was observed only in cAMP-stimulated tubules. Secreted fluid pH and the transepithelial electrical potential (TEP) did not change when tubules were stimulated. Taken together, our results show that the secretion of fluid is carried out by the upper regions (DIP) in T. ni Malpighian tubules. Upper regions of the tubules secrete K+, whereas lower regions reabsorb it. Stimulation of fluid secretion is correlated with a decrease in the K+/Na+ ratio.  相似文献   

3.
Abstract.  A radioisotope tracer technique is used to study mechanisms and regulation of transepithelial transport of the plant allelochemical salicylate by the Malpighian tubules of Drosophila melanogaster . Transepithelial transport of salicylate is nearly abolished in Na+-free saline, and inhibited by ouabain, low K+ or K+-free bathing saline. In addition, the carboxylates probenecid, unlabelled salicylate, fluorescein, and p -aminohippuric acid (PAH) significantly inhibit transepithelial transport of salicylate. The sulphonates taurocholate and phenol red also inhibit transepithelial transport of salicylate, whereas amaranth has no effect. Stimulation of fluid secretion by cAMP, cGMP or leucokinin I increases transepithelial transport of salicylate, particularly when the concentration of salicylate in the bathing saline is high. The correlation between the fluid secretion rate and transepithelial transport of salicylate shows that 64% of the changes in salicylate transport can be explained on the basis of changes in fluid secretion rate. The results show that naturally-occurring plant secondary metabolite salicylate is transported into the lumen of the Mapighian tubules of D. melanogaster by a mechanism similar to that previously described for the prototypical organic anions PAH and fluorescein. In addition, the transepithelial transport of salicylate increases in response to increases in fluid secretion rate.  相似文献   

4.
The effects of changes in the salinity of the rearing medium on Malpighian tubule fluid secretion and ion transport were examined in larvae of the freshwater mosquito Aedes aegypti and the saltwater species Ochlerotatus taeniorhynchus. For unstimulated tubules of both species, the K(+) concentration of secreted fluid was significantly lower when larvae were reared in 30% or 100% seawater (O. taeniorhynchus only), relative to tubules from freshwater-reared larvae. The Na(+) concentration of secreted fluid from unstimulated tubules of O. taeniorhynchus reared in 30% or 100% seawater was higher relative to tubules from freshwater-reared larvae. The results suggest that changes in salinity of the larval rearing medium lead to sustained changes in ion transport mechanisms in unstimulated tubules. Furthermore, alterations of K(+) transport may be utilized to either conserve Na(+) under freshwater (Na(+)-deprived) conditions or eliminate more Na(+) in saline (Na(+)-rich) conditions. The secretagogues cyclic AMP [cAMP], cyclic GMP [cGMP], leucokinin-VIII, and thapsigargin stimulated fluid secretion by tubules of both species. Cyclic AMP increased K(+) concentration and decreased Na(+) concentration in the fluid secreted by tubules isolated from O. taeniorhynchus larvae reared in 100% seawater. Interactions between rearing salinity and cGMP actions were similar to those for cAMP. Leucokinin-VIII and thapsigargin had no effect on secreted fluid Na(+) or K(+) concentrations. Results indicate that changes in rearing medium salinity affect the nature and extent of stimulation of fluid and ion secretion by secretagogues.  相似文献   

5.
Renal tubular transport and its regulation are reviewed for Na(+) (and Cl(-)), and for fluid and organic anions (including urate). Filtered Na(+) (and Cl(-)) is reabsorbed along the tubules but only in mammals and birds does most reabsorption occur in the proximal tubules. Reabsorption involves active transport of Na(+) and passive reabsorption of Cl(-). The active Na(+) step always involves Na-K-ATPase at the basolateral membrane, but the entry step at luminal membrane varies among tubule segments and among vertebrate classes (except for Na(+)-2Cl(-)-K(+) cotransporter in diluting segment). Regulation can involve intrinsic, neural and endocrine factors. Proximal tubule fluid reabsorption is dependent on Na(+) reabsorption in all vertebrates studied, except ophidian reptiles. Fluid secretion occurs in glomerular and aglomerular fishes, reptiles and even mammals, but its significance is not always clear. A non-specific transport system for net secretion of organic anions (OAs) exists in the proximal renal tubules of almost all vertebrates. Net transepithelial secretion involves: (1) transport into the cells at the basolateral side against an electrochemical gradient by a tertiary active transport process, in which the final step involves OA/alpha-ketoglutarate exchange and (2) movement out of the cells across the luminal membrane down an electrochemical gradient by unknown carrier-mediated process(es). Regulation may involve protein kinase C and mitogen-activated protein kinase. Urate is net secreted in the proximal tubules of birds and reptiles. This process is urate-specific in reptiles but in birds, it may involve both a urate-specific system and the general OA system.  相似文献   

6.
Summary We have established well-differentiated, polarized cultures of monkey oviductal epithelium. Oviductal epithelial cells were isolated by protease digestion and plated on collagen-coated, porous cell culture inserts. About 5 d after plating, cells developed detectable transepithelial electrical resistance of up to 2000 Ω.cm2 (an index of tight junction formation) and transepithelial voltages of up to 20 mV (an index of vectorial transepithelial ion transport). Measurements of short-circuit current in Ussing chambers indicated that active secretion of Cl was the major transepithelial active ion transport process, and that this was stimulated by elevation of either cAMP or Ca. Furthermore, estimates of the volume of mucosal liquid were consistent with Cl secretion mediating fluid secretion. Various microscopical methods showed that the cultures were densely ciliated and contained mature secretory cells. Transport across the oviductal epithelium determines the composition of the oviductal fluid, and the study of the relevant transport processes will be greatly enhanced by well-differentiated cultures of oviductal epithelium of the kind established here.  相似文献   

7.
ABSTRACT. A simple modification of the Ramsay method is described for the isolation in vitro of Malpighian tubules from Acheta domesticus. Isolated tubules continue to secrete for many hours in a simple Ringer solution. The rate of secretion is linearly related to the length of tubule within the bathing fluid.
Secretion rates during the immediate post-equilibration period relate to the physiological state of the donor insect. Highest rates are recorded in tubules removed from animals during the scotophase when the crickets are most actively feeding. Starvation reduces the rate of secretion and when previously starved insects are given access to food the rate increases. These results are consistent with variations in the haemolymph titre of DH that are induced by feeding.
Tubule fluid secretion is stimulated by either CC extract (1 gland pair/50 μ1) or dibutyryl cAMP (10-3M). CC extracts increase the rate of fluid secretion by c. 200 pl/mm/min for up to 6 h after the tubules have been isolated. The response varies little with the age or physiological state of the donor insect. However, tubules from newly moulted insects secrete at very low rates and respond poorly to CC extract, although they are stimulated by cAMP. The significance of these results is discussed with particular reference to the use of Acheta tubules as a bioassay preparation for DH.  相似文献   

8.
The ionic dependencies of stimulated and unstimulated Locusta tubules have been studied. K+, Na+, Cl? are essential to both basal and stimulated secretion. K+ is secreted against a concentration gradient in unstimulated tubules. In response to diuretic hormone or cAMP application, there is a dramatic influx of K+ into the lumen. A high level of Na+ and Cl? in the bathing medium is required to allow maximal fluid secretion. The tubules show an apparent impermeability to Na+; its concentration in the secreted fluid is always much less than in the bathing medium. If Na+ is omitted from the medium and excess K+ added (80 mM K), then although basal secretion occurs (2.5 nl/min), the tubules fail to respond to stimulation. Clearly Na+ has an important indirect role to play in stimulated fluid secretion.  相似文献   

9.
Hemolymph calcium homeostasis in insects is achieved by the Malpighian tubules, primarily by sequestering excess Ca2+ within internal calcium stores (Ca‐rich granules) most often located within type I (principal) tubule cells. Using both the scanning ion‐selective electrode technique and the Ramsay secretion assay this study provides the first measurements of basolateral and transepithelial Ca2+ fluxes across the Malpighian tubules of an Orthopteran insect, the house cricket Acheta domesticus. Ca2+ transport was specific to midtubule segments, where 97% of the Ca2+ entering the tubule is sequestered within intracellular calcium stores and the remaining 3% is secreted into the lumen. Antagonists of voltage‐gated (L‐type) calcium channels decreased Ca2+ influx ≥fivefold in adenosine 3′,5′‐cyclic monophosphate (cAMP)‐stimulated tubules, suggesting basolateral Ca2+ influx is facilitated by voltage‐gated Ca2+ channels. Increasing fluid secretion through manipulation of intracellular levels of cAMP or Ca2+ had opposite effects on tubule Ca2+ transport. The adenylyl cyclase‐cAMP‐PKA pathway promotes Ca2+ sequestration whereas both 5‐hydroxytryptamine and thapsigargin inhibited sequestration. Our results suggest that the midtubules of Acheta domesticus are dynamic calcium stores, which maintain hemolymph calcium concentration by manipulating rates of Ca2+ sequestration through stimulatory (cAMP) and inhibitory (Ca2+) regulatory pathways.  相似文献   

10.
5-Hydroxytryptamine (5-HT) stimulates fluid secretion by semi-isolated Malpighian tubules of Locusta in a dose-dependent manner. The threshold of stimulation is between 10(-8) and 10(-7) M 5-HT; maximal activation occurs at doses greater than 10(-6) M. Relative to the activation induced by diuretic hormone (storage lobe extracts), 5-HT increases the rate of fluid secretion by only 65%. Phentolamine, the alpha-adrenergic blocker, failed to inhibit either DH or 5-HT stimulated secretion. Diuretic hormone raises the levels of intracellular of cAMP, and activates adenylate cyclase in plasma membrane preparations of Locusta Malpighian tubules. 5-HT (10(-4) M) has no effect in either assay system. Thus 5-HT can stimulate fluid secretion independently of cAMP. A hypothetical model for hormone stimulated fluid secretion by Locusta Malpighian tubules, involving dual-receptor activation, is proposed. Other biogenic amines, including octopamine, adrenalin, dopamine, synephrine and the formamidine chlordimeform were tested for their ability to stimulate fluid secretion. Only dopamine showed a weakly stimulatory effect.  相似文献   

11.
Modulation of renal epithelial ion transport allows organisms to maintain ionic and osmotic homeostasis in the face of varying external conditions. The Drosophila melanogaster Malpighian (renal) tubule offers an unparalleled opportunity to study the molecular mechanisms of epithelial ion transport, due to the powerful genetics of this organism and the accessibility of its renal tubules to physiological study. Here, we describe the use of the Ramsay assay to measure fluid secretion rates from isolated fly renal tubules, with the use of ion-specific electrodes to measure sodium and potassium concentrations in the secreted fluid. This assay allows study of transepithelial fluid and ion fluxes of ~20 tubules at a time, without the need to transfer the secreted fluid to a separate apparatus to measure ion concentrations. Genetically distinct tubules can be analyzed to assess the role of specific genes in transport processes. Additionally, the bathing saline can be modified to examine the effects of its chemical characteristics, or drugs or hormones added. In summary, this technique allows the molecular characterization of basic mechanisms of epithelial ion transport in the Drosophila tubule, as well as regulation of these transport mechanisms.  相似文献   

12.
In most HCO(3)(-)-secreting epithelial tissues, SLC26 Cl(-)/HCO(3)(-) transporters work in concert with the cystic fibrosis transmembrane conductance regulator (CFTR) to regulate the magnitude and composition of the secreted fluid, a process that is vital for normal tissue function. By contrast, CFTR is regarded as the only exit pathway for HCO(3)(-) in the airways. Here we show that Cl(-)/HCO(3)(-) anion exchange makes a major contribution to transcellular HCO(3)(-) transport in airway serous cells. Real-time measurement of intracellular pH from polarized cultures of human Calu-3 cells demonstrated cAMP/PKA-activated Cl(-)-dependent HCO(3)(-) transport across the luminal membrane via CFTR-dependent coupled Cl(-)/HCO(3)(-) anion exchange. The pharmacological and functional profile of the luminal anion exchanger was consistent with SLC26A4 (pendrin), which was shown to be expressed by quantitative RT-PCR, Western blot, and immunofluorescence. Pendrin-mediated anion exchange activity was confirmed by shRNA pendrin knockdown (KD), which markedly reduced cAMP-activated Cl(-)/HCO(3)(-) exchange. To establish the relative roles of CFTR and pendrin in net HCO(3)(-) secretion, transepithelial liquid secretion rate and liquid pH were measured in wild type, pendrin KD, and CFTR KD cells. cAMP/PKA increased the rate and pH of the secreted fluid. Inhibiting CFTR reduced the rate of liquid secretion but not the pH, whereas decreasing pendrin activity lowered pH with little effect on volume. These results establish that CFTR predominately controls the rate of liquid secretion, whereas pendrin regulates the composition of the secreted fluid and identifies a critical role for this anion exchanger in transcellular HCO(3)(-) secretion in airway serous cells.  相似文献   

13.
Calcium homeostasis in Drosophila melanogaster was examined in response to the challenges imposed by growth, reproduction and variations in dietary calcium content. Turnover time for calcium, calculated as the time for (45)Ca(2+)to accumulate to half the steady state value of 3.46 nmol/fly, was 3.3 days. Although larvae weighed 2x as much as adults, they contained 3-4x as much calcium. Anterior Malpighian tubules (Mts) contain much more calcium than posterior Mts, accounting for 25-30% of the calcium content of the whole fly. In response to a 6.2-fold increase in dietary calcium level, calcium content of whole flies increased only 10%. Hemolymph calcium concentration ( approximately 0.5 mM) was similar in males and females and in animals raised on diets differing in calcium content. Fluid secretion rate, secreted fluid calcium concentration, and transepithelial calcium flux in tubules isolated from flies raised on high and low calcium diets did not differ significantly. Malpighian tubules secrete calcium at rates sufficient to eliminate whole body calcium content in 0.5 and 3 days for tubules secreting fluid at basal and maximal rates, respectively. It is suggested that flies absorb high quantities of calcium from the diet and maintain homeostasis through the combined effects of elimination of calcium in fluid secreted by the Malpighian tubules and the sequestration of calcium in granules, especially within the distal segment of the anterior pair of Malpighian tubules.  相似文献   

14.
In vitro preparations of locust Malpighian tubules can conveniently be made by a new technique in which the alimentary canal to which the tubules attach is removed from the insect and set up in Ringer's solution under liquid paraffin. Such Malpighian tubules will secrete a fluid iso-osmotic to the bathing fluid at a steady rate of about 1 to 2 nl min?1 for some hours. The secreted fluid is rich in potassium ions, the lumen is at a potential positive to that of the bathing solution, and the rate of secretion can be controlled by changing the potassium concentration of the bathing fluid. It seems likely, therefore, that an active transport of potassium drives secretion ny locust Malpighian tubules. The secreted fluid contains an elevated concentration of phosphate ions. The Malpighian tubules will secrete at a high rate in a chloride-free phosphate-based solution. The rate of fluid secretion can be increased by treatment with cyclic AMP but 5-hydroxytryptamine has no such effect.  相似文献   

15.
In vitro studies with whole Malpighian tubules of the water boatman Cenocorixa bifida show that the composition of the secreted fluid is similar to that reported in several other insects. All three distal segments of the tubule are secretory, but the rate of fluid, sodium, potassium and chloride contribution is greatest in the short, most distal segment (IV). The sodium, potassium, and chloride concentrations of fluid produced by segments II, III, and IV change sequentially in a gentle stepwise gradient; osmotic pressure does not change significantly. Segment II produces fluid with a high pH under cAMP stimulation thus raising the pH of fluid produced by the whole tubule. Segment III is the site of dye transport and the production of luminal secretory granules. Possible correlations between the morphology and transport properties of the different segments are discussed.  相似文献   

16.
Malpighian tubules (Mt) are the primary excretory and osmoregulatory organs of insects, capable of rapidly transporting extraordinary volumes of fluid when stimulated by diuretic factors. In the house cricket, Acheta domesticus, the Mt are composed of three morphologically distinct regions (proximal, mid, and distal). Unlike the dipteran Mt, which have both primary and stellate cells, each region of the Acheta Mt consists of a morphologically uniform cell type. The mid and distal regions are both secretory in function and increase secretion rate in response to dibutyryl cAMP (cAMP). Achetakinin-2, while acting synergistically with cAMP on the mid-Mt, inhibits secretion by the distal Mt, and the effects can be reversed by cAMP. Using an antibody to the water-specific Drosophila aquaporin (DRIP), we demonstrated that DRIP-like immunoreactivity was found in both the distal and mid-Mt. The distribution of the aquaporin altered in response to stimulation and was consistent with the secretory data. The regulation of secretion in Acheta Mt is quite different from that of Drosophila, with both cation and anion/water transport occurring in the same cells. This is the first demonstration of the presence of an insect aquaporin, namely DRIP, in the Mt of an order other than the Diptera.  相似文献   

17.
18.
Derived from bile duct epithelia (BDE), secretion by liver cyst-lining epithelia is positioned to drive cyst expansion but the responsible ion flux pathways have not been characterized. Cyst-lining epithelia were isolated and cultured into high resistance monolayers to assess the ion secretory pathways. Electrophysiologic studies showed a marked rate of constitutive transepithelial ion transport, including Cl(-) secretion and Na(+) absorption. Na(+) absorption was amiloride-sensitive, suggesting the activation of epithelial sodium channels (ENaC). Further, both cAMP(i) and extracellular ATP induced robust secretory responses. Western blotting and immunohistologic analysis of liver cyst epithelia demonstrated expression of P2X4, a potent purinergic receptor in normal BDE. Luminometry and bioassaying measured physiologically relevant levels of ATP in a subset of liver cyst fluid samples. Liver cyst epithelia also displayed a significant capacity to degrade extracellular ATP. In conclusion, regulated ion transport pathways are present in liver cyst epithelia and are positioned to direct fluid secretion into the lumen of liver cysts and promote increases in liver cyst expansion and growth.  相似文献   

19.
We determined net fluid secretion rate across the pigmented rabbit conjunctiva in the presence and absence of pharmacological agents known to affect active Cl- secretion and Na+ absorption. Fluid flow across a freshly excised pigmented rabbit conjunctiva mounted between two Lucite half chambers was measured by a pair of capacitance probes in an enclosed cabinet maintained at 37 degrees C and a relative humidity of 70%. Fluid transport was also measured in the presence of compounds known to affect active Cl- secretion (cAMP, UTP, and ouabain), Na+ absorption (D-glucose), or under the Cl--free condition on both sides of the tissue. Net fluid secretion rate across the pigmented rabbit conjunctiva in the serosal-to-mucosal direction at baseline was 4.3+/-0.2 microl/hr/cm2 (mean +/- s.e.m.). Net fluid secretion rate was increased approximately two-fold by mucosally applied 1 mM 8-Br cAMP (8.4+/-0.4 microl/hr/cm2) and 10 microM UTP (9.8+/-0.6 microl/hr/cm2), but was abolished by either serosally applied 0.5 mM ouabain (0.3+/-0.1 microl/hr/cm2) or under the Cl--free conditions (0.06+/-0.04 microl/hr/cm2). Mucosal addition of 20 mM D-glucose decreased net fluid secretion rate to 1.0+/-0.5 microl/hr/cm2. In conclusion, the pigmented rabbit conjunctiva appears to secrete fluid secondary to active Cl- secretion. This net fluid secretion is subject to modulation by changes in active Cl- secretion rate and in mucosal fluid composition such as glucose concentration.  相似文献   

20.
We examined transepithelial transport of the prototypical type I organic cation (OC) tetraethylammonium (TEA) and the plant alkaloid nicotine by the isolated Malpighian tubules (MTs) of nine insect species from six orders. Isolated tubules were exposed to radiolabelled forms of either TEA or nicotine in the bathing (basal) fluid. Luminal (apical) secreted fluid was collected and TEA or nicotine concentration was determined. Active net transport of nicotine from bath to lumen was observed by the MTs of all the insects studied. TEA was also transported from bath to lumen in MTs of all species except Rhodnius prolixus and Aedes aegypti. MTs of both of these blood feeders did not show active transport of TEA under normal physiological conditions. Transport of TEA but not nicotine increased during the moult in the MTs of Rhodnius, but the concentrations of TEA in the secreted fluid were still consistent with passive accumulation in response to the lumen-negative transepithelial potential. Nicotine transport by Rhodnius MTs was inhibited by the type II OC quinidine, a known p-glycoprotein inhibitor, but not by the type I OCs N-methylnicotinamide or cimetidine. Taken together, the results suggest that active transport of OCs by the MTs is common among species from different orders and that transepithelial TEA and nicotine transport occur through separate pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号