共查询到20条相似文献,搜索用时 15 毫秒
1.
Ralf Heilker Martin Spiess Pascal Crottet 《BioEssays : news and reviews in molecular, cellular and developmental biology》1999,21(7):558-567
Sorting of membrane proteins is generally mediated by cytosolic coats, which create a scaffold to form coated buds and vesicles and to selectively concentrate cargo by interacting with cytosolic signals. The classical paradigm is the interaction between clathrin coats and associated adaptor proteins, which cluster receptors with characteristic tyrosine and dileucine motifs during endocytosis. Clathrin in association with different sets of adaptors is found in addition at the trans-Golgi network and endosomes. Sequences similar to internalization signals also direct lysosomal and basolateral sorting, which implicates related clathrin-adaptor coats in the respective sorting pathways. This review concentrates on the recognition of sorting signals by clathrin-associated adaptor proteins, an area of significant recent progress due to new methodological and conceptual approaches. BioEssays 21:558–567, 1999. © 1999 John Wiley & Sons, Inc. 相似文献
2.
3.
In vivo phosphorylation of adaptors regulates their interaction with clathrin 总被引:13,自引:0,他引:13 下载免费PDF全文
《The Journal of cell biology》1996,135(3):635-645
The coat proteins of clathrin-coated vesicles (CCV) spontaneously self- assemble in vitro, but, in vivo, their self-assembly must be regulated. To determine whether phosphorylation might influence coat formation in the cell, the in vivo phosphorylation state of CCV coat proteins was analyzed. Individual components of the CCV coat were isolated by immunoprecipitation from Madin-Darby bovine kidney cells, labeled with [32P]orthophosphate under normal culture conditions. The predominant phosphoproteins identified were subunits of the AP1 and AP2 adaptors. These included three of the four 100-kD adaptor subunits, alpha and beta 2 of AP2 and beta 1 of AP1, but not the gamma subunit of AP1. In addition, the mu 1 and mu 2 subunits of AP1 and AP2 were phosphorylated under these conditions. Lower levels of in vivo phosphorylation were detected for the clathrin heavy and light chains. Analysis of phosphorylation sites of the 100-kD adaptor subunits indicated they were phosphorylated on serines in their hinge regions, domains that have been implicated in clathrin binding. In vitro clathrin-binding assays revealed that, upon phosphorylation, adaptors no longer bind to clathrin. In vivo analysis further revealed that adaptors with phosphorylated 100-kD subunits predominated in the cytosol, in comparison with adaptors associated with cellular membranes, and that phosphorylated beta 2 subunits of AP2 were exclusively cytosolic. Kinase activity, which converts adaptors to a phosphorylated state in which they no longer bind clathrin, was found associated with the CCV coat. These results suggest that adaptor phosphorylation influences adaptor-clathrin interactions in vivo and could have a role in controlling coat disassembly and reassembly. 相似文献
4.
Specificity of binding of clathrin adaptors to signals on the mannose-6-phosphate/insulin-like growth factor II receptor. 总被引:54,自引:20,他引:54 下载免费PDF全文
Adaptors mediate the interaction of clathrin with select groups of receptors. Two distinct types of adaptors, the HA-II adaptors (found in plasma membrane coated pits) and the HA-I adaptors (localized to Golgi coated pits) bind to the cytoplasmic portion of the 270 kd mannose 6-phosphate (M6P) receptor-a receptor which is concentrated in coated pits on both the plasma membrane and in the trans-Golgi network. Neither type of adaptor appears to compete with the other for binding, suggesting that each type recognizes a distinct site on the M6P receptor tail. Mutation of the two tyrosines in the tail essentially eliminates the interaction with the HA-II plasma membrane adaptor, which recognizes a 'tyrosine' signal on other endocytosed receptors (for example, the LDL receptor and the poly Ig receptor). In contrast, the wild type and the mutant M6P receptor tail (lacking tyrosines) are equally effective at binding HA-I adaptors. This suggests that there is an HA-I recognition signal in another region of the M6P receptor tail, C-terminal to the tyrosine residues, which remains intact in the mutant. This signal is presumably responsible for the concentration of the M6P receptor, with bound lysosomal enzymes, into coated pits which bud from the trans-Golgi network, thus mediating efficient transfer of these enzymes to lysosomes. 相似文献
5.
Binding of coated vesicle assembly proteins to clathrin causes it to assemble into regular coat structures. The assembly protein fraction of bovine brain coated vesicles comprises AP180, auxilin, and HA1 and HA2 adaptors. Clathrin heavy chains, separated from their light chains, polymerize with unimpaired efficiency when assembly proteins are added. The reassembled coats were purified by sucrose gradient centrifugation and examined for composition by SDS-PAGE and immunoblotting. We found that all four major coat proteins are incorporated in the presence and absence of light chains. Moreover, each of the purified coat proteins is able to associate directly with clathrin heavy chains in preassembled cages as efficiently as with intact clathrin. We conclude that light chains are not essential for the interaction of AP180, auxilin, and HA1 and HA2 with clathrin. 相似文献
6.
Cytosol- and clathrin-dependent stimulation of endocytosis in vitro by purified adaptors 总被引:4,自引:0,他引:4 下载免费PDF全文
Using stage-specific assays for receptor-mediated endocytosis of transferrin (Tfn) into perforated A431 cells we show that purified adaptors stimulate coated pit assembly and ligand sequestration into deeply invaginated coated pits. Late events in endocytosis involving membrane fission and coated vesicle budding which lead to the internalization of Tfn are unaffected. AP2, plasma membrane adaptors, are active at physiological concentrations, whereas AP1, Golgi adaptors, are inactive. Adaptor-dependent stimulation of Tfn sequestration requires cytosolic clathrin, but is unaffected by clathrin purified from coated vesicles suggesting that soluble and assembled clathrin pools are functionally distinct. In addition to adaptors and cytosolic clathrin other, as yet unidentified, cytosolic factors are also required for efficient coated pit invagination. These results provide new insight into the mechanisms and regulation of coated pit assembly and invagination. 相似文献
7.
Novel binding sites on clathrin and adaptors regulate distinct aspects of coat assembly 总被引:2,自引:1,他引:1
Knuehl C Chen CY Manalo V Hwang PK Ota N Brodsky FM 《Traffic (Copenhagen, Denmark)》2006,7(12):1688-1700
Clathrin-coated vesicles (CCVs) sort proteins at the plasma membrane, endosomes and trans Golgi network for multiple membrane traffic pathways. Clathrin recruitment to membranes and its self-assembly into a polyhedral coat depends on adaptor molecules, which interact with membrane-associated vesicle cargo. To determine how adaptors induce clathrin recruitment and assembly, we mapped novel interaction sites between these coat components. A site in the ankle domain of the clathrin triskelion leg was identified that binds a common site on the appendages of tetrameric [AP1 and AP2] and monomeric (GGA1) adaptors. Mutagenesis and modeling studies suggested that the clathrin-GGA1 appendage interface is nonlinear, unlike other peptide-appendage interactions, but overlaps with a sandwich domain binding site for accessory protein peptides, allowing for competitive regulation of coated vesicle formation. A novel clathrin box in the GGA1 hinge region was also identified and shown to mediate membrane recruitment of clathrin, while disruption of the clathrin-GGA1 appendage interaction did not affect recruitment. Thus, the distinct sites for clathrin-adaptor interactions perform distinct functions, revealing new aspects to regulation of CCV formation. 相似文献
8.
Metzler M Legendre-Guillemin V Gan L Chopra V Kwok A McPherson PS Hayden MR 《The Journal of biological chemistry》2001,276(42):39271-39276
Polyglutamine expansion in huntingtin is the underlying mutation leading to neurodegeneration in Huntington disease. This mutation influences the interaction of huntingtin with different proteins, including huntingtin-interacting protein 1 (HIP1), in which affinity to bind to mutant huntingtin is profoundly reduced. Here we demonstrate that HIP1 colocalizes with markers of clathrin-mediated endocytosis in neuronal cells and is highly enriched on clathrin-coated vesicles (CCVs) purified from brain homogenates. HIP1 binds to the clathrin adaptor protein 2 (AP2) and the terminal domain of the clathrin heavy chain, predominantly through a small fragment encompassing amino acids 276-335. This region, which contains consensus clathrin- and AP2-binding sites, functions in conjunction with the coiled-coil domain to target HIP1 to CCVs. Expression of various HIP1 fragments leads to a potent block of clathrin-mediated endocytosis. Our findings demonstrate that HIP1 is a novel component of the endocytic machinery. 相似文献
9.
An important function of the low affinity IgG Fc receptor FcRII-B2 (FcR) on macrophages is the internalization of soluble antigen-antibody complexes for lysosomal degradation. Most endocytic receptors possess tyrosine-containing cytoplasmic determinants required for endocytosis. In many proteins, signals which overlap with the endocytosis determinant and share the same critical tyrosine residue also mediate basolateral sorting in the trans-Golgi network of epithelial cells. Despite the presence of two tyrosine residues in the FcR cytosolic domain, neither one is absolutely required for coated pit localization or basolateral targeting. Nevertheless, a short domain of 13 residues containing one of the non-critical tyrosine residues mediates endocytosis and basolateral delivery. Alanine scan mutagenesis of this region now revealed a critical role of a leucine-leucine motif in both events. These findings suggest that endocytosis and basolateral sorting can be mediated by both tyrosine- and di-leucine-based signals and confirm the close relationship between the two determinants already observed for 'classical' tyrosine-dependent motifs. 相似文献
10.
Membrane cofactor protein (MCP), a widely distributed complement regulatory protein, is expressed on the basolateral surface of polarized epithelial cells, and it is not endocytosed. The carboxyl-terminal tetrapeptide (FTSL) is required for polarized surface expression. The ability of this tetrapeptide to serve as an autonomous sorting signal has been analyzed by adding this sequence motif to the C terminus of an apical membrane protein, the influenza A virus hemagglutinin (HA). The recombinant protein HA-FTSL retained the apical localization of the parental HA protein. Substitution of the complete cytoplasmic tail of MCP for the cytoplasmic tail of HA resulted in the targeting of the chimeric protein (HA/MCP) to the basolateral surface suggesting that the carboxyl-terminal FTSL motif is a weak sorting signal that requires additional targeting information from the membrane-proximal part of the cytoplasmic tail of MCP for redirecting an apical protein to the basolateral membrane domain. In contrast to the native HA, the HA-FTSL protein was subject to endocytosis. The basolateral HA/MCP was also found to be internalized and thus differed from the basolateral MCP. This result suggests that the carboxyl-terminal FTSL motif serves as an internalization signal and that in native MCP sorting information outside the cytoplasmic tail counteracts this endocytosis signal. Substitution of a tyrosine for the phenylalanine dramatically increased the internalization with most of the HA-YTSL protein being present intracellularly. Our results are consistent with the view that the interplay of multiple sorting signals and the modification of a well known targeting signal (YTSL) by amino acid exchange (FTSL) determine the constitutive expression of MCP on the basolateral surface of polarized epithelial cells. 相似文献
11.
The actin-binding protein Hip1R associates with clathrin during early stages of endocytosis and promotes clathrin assembly in vitro 下载免费PDF全文
Engqvist-Goldstein AE Warren RA Kessels MM Keen JH Heuser J Drubin DG 《The Journal of cell biology》2001,154(6):1209-1223
Huntingtin-interacting protein 1 related (Hip1R) is a novel component of clathrin-coated pits and vesicles and is a mammalian homologue of Sla2p, an actin-binding protein important for both actin organization and endocytosis in yeast. Here, we demonstrate that Hip1R binds via its putative central coiled-coil domain to clathrin, and provide evidence that Hip1R and clathrin are associated in vivo at sites of endocytosis. First, real-time analysis of Hip1R-YFP and DsRed-clathrin light chain (LC) in live cells revealed that these proteins show almost identical temporal and spatial regulation at the cell cortex. Second, at the ultrastructure level, immunogold labeling of 'unroofed' cells showed that Hip1R localizes to clathrin-coated pits. Third, overexpression of Hip1R affected the subcellular distribution of clathrin LC. Consistent with a functional role for Hip1R in endocytosis, we also demonstrated that it promotes clathrin cage assembly in vitro. Finally, we showed that Hip1R is a rod-shaped apparent dimer with globular heads at either end, and that it can assemble clathrin-coated vesicles and F-actin into higher order structures. In total, Hip1R's properties suggest an early endocytic function at the interface between clathrin, F-actin, and lipids. 相似文献
12.
African trypanosomes, such as Trypanosoma brucei, are protozoan parasites that are transmitted by the tsetse fly and cause sleeping sickness in humans and Nagana in cattle. Trypanosomes evade the immune responses of their hosts by varying their surface coat protein (VSG) and restricting exocytosis and endocytosis to an invagination of the plasma membrane called the flagellar pocket (FP). The FP represents only 0.5% of the cellular surface but membrane turnover here occurs at high rates [1] [2] [3]. No model has yet been proposed to account for the sequestration of membrane proteins and the rate of membrane turnover that occur in the FP. Recent data have suggested that glycans are involved in the sorting of membrane proteins in polarized cells [4] [5] [6] [7]. Here, we show that N-linked glycans containing linear poly-N-acetyllactosamine (pNAL) are only associated with proteins of the FP/endocytic pathway in T. brucei and are present only in bloodstream forms of the parasite. These glycoproteins bind to tomato lectin (TL), a property that allowed their single-step isolation. Chito-oligosaccharides that compete specifically for pNAL binding to TL also inhibited receptor-mediated uptake of several ligands. These results suggest a model in which N-linked linear pNAL acts as a sorting signal for endocytosis in trypanosomes. 相似文献
13.
Renold A Cescato R Beuret N Vogel LK Wahlberg JM Brown JL Fiedler K Spiess M 《The Journal of biological chemistry》2000,275(13):9290-9295
Polarized sorting of membrane proteins in epithelial cells is mediated by cytoplasmic basolateral signals or by apical signals in the transmembrane or exoplasmic domains. Basolateral signals were generally found to be dominant over apical determinants. We have generated chimeric proteins with the cytoplasmic domain of either the asialoglycoprotein receptor H1 or the transferrin receptor, two basolateral proteins, fused to the transmembrane and exoplasmic segments of aminopeptidase N, an apical protein, and analyzed them in Madin-Darby canine kidney cells. Whereas both cytoplasmic sequences induced endocytosis of the chimeras, only that of the transferrin receptor mediated basolateral expression in steady state. The H1 fusion protein, although still largely sorted to the basolateral side in biosynthetic surface transport, was subsequently resorted to the apical cell surface. We tested whether the difference in sorting between trimeric wild-type H1 and the dimeric aminopeptidase chimera was caused by the number of sorting signals presented in the oligomers. Consistent with this hypothesis, the H1 signal was fully functional in a tetrameric fusion protein with the transmembrane and exoplasmic domains of influenza neuraminidase. The results suggest that basolateral signals per se need not be dominant over apical determinants for steady-state polarity and emphasize an important contribution of the valence of signals in polarized sorting. 相似文献
14.
Rodionov DG Nordeng TW Kongsvik TL Bakke O 《The Journal of biological chemistry》2000,275(12):8279-8282
CD1d is a member of the CD1 polypeptide family that represents a new arm of host defense against invading pathogens. In our previous work (Rodionov, D. G., Nordeng, T. W., Pedersen, K., Balk, S. P., and Bakke, O. (1999) J. Immunol. 162, 1488-1495) we have shown that CD1d contained a classic tyrosine-based internalization signal (YQGV) in its short cytoplasmic tail. CD1d is expressed in polarized epithelial cells, and we found that the cytoplasmic tail of CD1d also contained information for basolateral sorting. Interestingly, a mutation of the critical tyrosine residue of the endosomal sorting signal did not result in the loss of basolateral targeting of the mutant CD1d. To search for a basolateral sorting signal we have constructed a full set of alanine mutants, but no single alanine substitution inactivated the signal. However, deletions or mutations of either the C-terminal valine/leucine pair or the critical tyrosine residue from the internalization signal and either residue from the C-terminal valine/leucine pair inactivated basolateral sorting. Our data thus suggest that the cytoplasmic tail contains two overlapping basolateral signals, one tyrosine- and the other leucine-based, each being sufficient to direct CD1d to the basolateral membrane of polarized Madin-Darby canine kidney cells. 相似文献
15.
Identification of clathrin and clathrin adaptors on tubulovesicles of gastric acid secretory (oxyntic) cells 总被引:4,自引:0,他引:4
Okamoto Curtis T.; Karam Sherif M.; Jeng Young Y.; Forte John G.; Goldenring James R. 《American journal of physiology. Cell physiology》1998,274(4):C1017
-Adaptin and clathrin heavy chain were identified ontubulovesicles of gastric oxyntic cells with the anti--adaptinmonoclonal antibody (MAb) 100/3 and an anti-clathrin heavy chain MAb(MAb 23), respectively. In Western blots, crude gastric microsomes fromrabbit and rat and density gradient-purified, H-K-ATPase-rich microsomes from these same species were immunoreactive for-adaptin and clathrin. In immunofluorescent labeling of isolatedrabbit gastric glands, anti--adaptin and anti-clathrin heavy chainimmunoreactivity appeared to be concentrated in oxyntic cells. Inprimary cultures of rabbit oxyntic cells, the immunocytochemicaldistribution of -adaptin immunoreactivity was similar to that of thetubulovesicular membrane marker in oxyntic cells, the H-K-ATPase.Further biochemical characterization of the tubulovesicular-adaptin-containing complex suggested that it has a subunitcomposition that is typical of that for a clathrin adaptor: in additionto the -adaptin subunit, it contains a -adaptin subunit and othersubunits of apparent molecular masses of 50 kDa and 19 kDa. Fromsolubilized gastric microsomes from rabbit, -adaptin could becopurified with the major cargo protein of tubulovesicles, theH-K-ATPase. Thus this tubulovesicular coat may bind directly to theH-K-ATPase and may thereby mediate the regulated trafficking of theH-K-ATPase at the apical membrane of the oxyntic cell during thegastric acid secretory cycle. Given the similarities of the regulatedtrafficking of the H-K-ATPase with recycling of cargo through theapical recycling endosome of many epithelial cells, we propose thattubulovesicular clathrin and adaptors may regulate some part of anapical recycling pathway in other epithelial cells. 相似文献
16.
Dynamics of clathrin and adaptor proteins during endocytosis 总被引:3,自引:0,他引:3
Rappoport JZ Kemal S Benmerah A Simon SM 《American journal of physiology. Cell physiology》2006,291(5):C1072-C1081
The endocytic adaptor complex AP-2 colocalizes with the majority of clathrin-positive spots at the cell surface. However, we previously observed that AP-2 is excluded from internalizing clathrin-coated vesicles (CCVs). The present studies quantitatively demonstrate that AP-2 disengages from sites of endocytosis seconds before internalization of the nascent CCV. In contrast, epsin, an alternate adaptor for clathrin at the plasma membrane, disappeared, along with clathrin. This suggests that epsin remains an integral part of the CCV throughout endocytosis. Clathrin spots at the cell surface represent a heterogeneous population: a majority (70%) of the spots disappeared with a time course of 4 min, whereas a minority (22%) remained static for 30 min. The static clathrin spots undergo constant subunit exchange, suggesting that although they are static structures, these spots comprise functional clathrin molecules, rather than dead-end aggregates. These results support a model where AP-2 serves a cargo-sorting function before endocytosis, whereas alternate adaptors, such as epsin, actually link cargo to the clathrin coat surrounding nascent endocytic vesicles. These data also support a role for static clathrin, providing a nucleation site for endocytosis. adaptor complex; epsin; total internal reflection fluorescence microscopy 相似文献
17.
K L Banks 《The Journal of protozoology》1979,26(1):103-108
Trypanosoma congolense Broden, an intravascular parasite, binds to vessel walls and erythrocytes of infected hosts. In an attempt to characterize T. congolense adhesion to host cells, an in vitro assay was devised. It was shown in the in vitro experiments that T. congolense binds to bovine, sheep, and goat erythrocytes, but not always to erythrocytes of rats, mice, rabbits, horses or humans. Only the anterior part of live trypanosomes adheres to erythrocytes, and the attachment site on the trypanosomes is destroyed by trypsin and chymotrypsin-trypanosomes did not adhere to bovine erythrocytes that had been incubated with neuraminidase, sodium periodate and poly-L-lysine. The foregoing experiments suggest that the surface of T. congolense contains a protein-associated site which binds to sialic acid of some host cells. This surface site is most likely responsible for attachment to blood vessels in vivo. 相似文献
18.
Mint1 (X11/human Lin-10) and Mint2 are neuronal adaptor proteins that bind to Munc18-1 (n/rb-sec1), a protein essential for synaptic vesicle exocytosis. Mint1 has previously been characterized in a complex with CASK, another adaptor protein that in turn interacts with neurexins. Neurexins are neuron-specific cell surface proteins that act as receptors for the excitatory neurotoxin alpha-latrotoxin. Hence, one possible function for Mint1 is to mediate the recruitment of Munc18 to neurexins. In agreement with this hypothesis, we now show that the cytoplasmic tail of neurexins captures Munc18 via a multiprotein complex that involves Mint1. Furthermore, we demonstrate that both Mint1 and Mint2 can directly bind to neurexins in a PDZ domain-mediated interaction. Various Mint and/or CASK-containing complexes can be assembled on neurexins, and we demonstrate that Mint1 can bind to Munc18 and CASK simultaneously. Our data support a model whereby one of the functions of Mints is to localize the vesicle fusion protein Munc18 to those sites at the plasma membrane that are defined by neurexins, presumably in the vicinity of points of exocytosis. 相似文献
19.
The adaptor protein complex-1 (AP-1) sorts and packages membrane proteins into clathrin-coated vesicles (CCVs) at the TGN and endosomes. Here we show that this process is highly regulated by phosphorylation of AP-1 subunits. Cell fractionation studies revealed that membrane-associated AP-1 differs from cytosolic AP-1 in the phosphorylation status of its beta1 and mu1 subunits. AP-1 recruitment onto the membrane is associated with protein phosphatase 2A (PP2A)-mediated dephosphorylation of its beta1 subunit, which enables clathrin assembly. This Golgi-associated isoform of PP2A exhibits specificity for phosphorylated beta1 compared with phosphorylated mu1. Once on the membrane, the mu1 subunit undergoes phosphorylation, which results in a conformation change, as revealed by increased sensitivity to trypsin. This conformational change is associated with increased binding to sorting signals on the cytoplasmic tails of cargo molecules. Dephosphorylation of mu1 (and mu2) by another PP2A-like phosphatase reversed the effect and resulted in adaptor release from CCVs. Immunodepletion and okadaic acid inhibition studies demonstrate that PP2A is the cytosolic cofactor for Hsc-70-mediated adaptor uncoating. A model is proposed where cyclical phosphorylation/dephosphorylation of the subunits of AP-1 regulate its function from membrane recruitment until its release into cytosol. 相似文献
20.
H S Lawrence 《Federation proceedings》1968,27(1):3-5