首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The relationship between macroinvertebrate assemblages and the breakdown of alder [Alnus viridis (Chaix), Dc.] leaves was examined by exposing leaf packs in four streams in an alpine glacial floodplain over 8 months. Although glacially fed, the four sites (pro-glacial, glacial lake outlet, main channel, and a side-channel with a mix of water sources) differed physically and contained different benthic communities.
2. Leaf breakdown and associated fungal properties differed widely among sites. Leaf decay rate varied by an order of magnitude ( k ranged from 0.0029 to 0.0305 day–1), and was fastest at the lake outlet (< 20% leaf mass remaining by day 45) and slowest at the pro-glacial site (> 75% remaining on day 45). Rapid processing at the lake outlet was because of the presence of Acrophylax zerberus Brauer, a shredding caddisfly.
3. There were few macroinvertebrate taxa at the pro-glacial site (two to four taxa present in packs) and leaf breakdown was attributed primarily to micro-organisms. Leuctra abundance in leaf packs was strongly correlated with fungal biomass but not with the sporulation activity of any specific aquatic hyphomycete. Other taxa, such as Baetis and chironomids, showed no relationship with any leaf characteristic, suggesting that leaf packs were used mainly as a habitat and not as a food resource.
4. The predatory stonefly Isoperla was significantly associated with the abundance of macroinvertebrate prey ( Baetis , Chironomidae and Leuctra ) in leaf packs at the main and side-channel sites. The results indicate that leaf breakdown can vary widely in alpine lotic environments, reflecting site-specific differences in habitat characteristics, and in macroinvertebrate and fungal composition.  相似文献   

2.
The decomposition of deciduous leaf material provides a critical source of energy to aquatic food webs. Changes to riparian forests through harvesting practices may alter the species composition of deciduous leaf material entering streams. We compared over-winter decomposition of three different riparian leaf species (speckled alder (Alnus incana ssp. rugosa (Du Roi) J. Clausen), white birch (Betula papyrifera Marsh.), and trembling aspen (Populus tremuloides Michx.)) to determine their importance as a food resource for macroinvertebrate communities within Boreal Shield streams in northeastern Ontario, Canada. Leaf pack decomposition of the three leaf species formed a processing continuum throughout winter, where alder and birch leaf packs decomposed at a medium rate (k = 0.0065/day and 0.0053/day, respectively) and aspen leaf packs decomposed more slowly (k = 0.0035/day). Macroinvertebrate community colonization on leaf packs changed through time regardless of leaf species. Alder leaf packs supported higher abundances of macroinvertebrates in the fall while aspen leaf packs supported greater shredder abundances in the following spring. The study shows that leaf diversity may be important for providing a sustained food resource for aquatic macroinvertebrates throughout the relatively long over-winter period in Canadian Boreal Shield streams. Riparian forest management strategies should ensure that deciduous plant species richness is sustained in riparian areas.  相似文献   

3.
The mechanisms of leaf decay, leaf-associated macroinvertebrate community structure, leaf-associated microbial activity and physicochemical stream characteristics were investigated on a mid-Michigan headwater stream in summer. An undisturbed wooded site was compared with two agriculturally perturbed sites. Discharge, total suspended particulates, and nutrients were all higher and more variable throughout the season within the agricultural reaches. Leaf decay rates were higher at the agricultural sites and results suggest discharge abrasion was the major leaf processing mechanism at these sites while microbial decay and macroinvertebrate shredding appear to be the primary mediators of leaf weight loss at the wooded site. Total macroinvertebrate densities on leaf packs at the agricultural sites were 1.9 times the densities at the wooded site. It is suggested that experimentally introduced leaf packs acted as a lure for net-spinning invertebrates limited by stable substratum at the agricultural sites. Species shifts were observed from wooded reaches where Pychnopsyche spp., Gammarus, Ephemeroptera, Bezzia, and Nigronia serricornis were important, to downstream agricultural reaches which were dominated by Cheumatopsyche, Chironomidae, Elmidae, Hydracarina, Hemerodromia, and Caecidotea.  相似文献   

4.
Japanese knotweed (Fallopia japonica Houtt. Ronse Decrane ) is a highly invasive exotic plant that forms monocultures in riparian areas, effectively reducing plant diversity. This change in riparian plant composition alters the allocthonous input of leaf litter into adjacent streams. A field experiment was completed to understand how leaf decomposition and macroinvertebrate colonisation associated with the incorporation of exotic leaf litter. Leaf packs of Japanese knotweed, native alder (Alnus incana L.), native cottonwood (Populus trichocarpa Torr . and Gray ), and two additional mixed pack types (alder and cottonwood; alder, cottonwood, and Japanese knotweed) were placed into a 50 m stream reach in Clear Creek, Idaho, and removed over a three‐month period. Leaf decomposition and macroinvertebrate assemblages were similar between leaf types, despite differences in nitrogen and phosphorus content. The diversity of leaf types within a given leaf pack also had no effect on leaf decomposition or macroinvertebrate dynamics. These findings suggest that allochthonous inputs of Japanese knotweed fulfill a detrital function similar to that of native leaf litter. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
  1. We investigated how compositional differences in riparian leaf litter derived from burned and undisturbed forests influenced leaf breakdown and macroinvertebrate communities using experimental mixed-species leaf packs in boreal headwater streams. Leaf pack mixtures simulating leaf litter from dominant riparian woody-stem species in burned and undisturbed riparian zones were incubated in two references and two fire-disturbed streams for 5 weeks prior to measuring temperature-corrected breakdown rates and macroinvertebrate community composition, richness, and functional metrics associated with decomposers such as shredder abundance and % shredders.
  2. Leaf litter breakdown rates were higher and had greater variability in streams bordered by reference riparian forests than in streams where riparian forests had been burned during a wildfire. Streams bordered by fire disturbance showed significant effects of litter mixture on decomposition rates, observed as significantly higher decomposition rates of a fire-simulated leaf mixture compared to all other mixtures.
  3. Variation among sites was higher than variation among litter mixtures, especially for macroinvertebrate community composition. In general, fire-simulated leaf mixtures had greater shredder abundances and proportions, but lower overall macroinvertebrate abundance; however, the shredder abundance trend was not consistent across all leaf mixtures at each stream.
  4. These results show that disturbance-driven riparian forest condition and resulting composition of leaf subsidies to streams can influence aquatic invertebrate community composition and their function as decomposers. Therefore, if one of the primary goals of modern forest management is to emulate natural disturbance patterns, boreal forest managers should adapt silvicultural practices to promote leaf litter input that would arise post-fire, thereby supporting stream invertebrate communities and their function.
  相似文献   

6.
We studied benthic macroinvertebrate communities upstream and downstream of five small reservoirs (surface release in autumn–winters) (north Spain) to assess the effect of flow regulation on structural and functional characteristics of stream ecosystems. We based our approach on the use of structural metrics (density, biomass, richness and diversity) in combination with two functional diversity indices based on biological and ecological traits: FDPG index, related to species richness, and FDQ, which incorporates evenness across taxa. Although water physicochemical parameters were unaffected by the reservoirs during the study period (autumn–winter), macroinvertebrate metrics were lower below the dams, with detritivores (shredders and collector-gatherers) being the most affected. The alder leaf breakdown rate estimated by the litter-bag technique was related to the density, biomass, richness, diversity and FDPG index of shredders, compromising the ecosystem functioning. The most plausible origin for the observed differences in macroinvertebrate metrics between upstream and downstream reaches was the change of the flow regime caused by the impoundments at downstream sites, leading to droughts in summer in those naturally permanently flowing streams. The observed functional diversity loss might reduce the chances of the community to override natural or man-induced fluctuations in their environment with possible repercussions on important ecosystem functions and services.  相似文献   

7.
Rouse  Greg W. 《Hydrobiologia》2005,549(1):167-178
This paper provides data on fine particulate organic matter (FPOM) and macroinvertebrates associated to natural and artificial leaf packs in a small woodland stream (Schlaube, Brandenburg). Macroinvertebrate colonisation and the dynamics of FPOM were studied in oven-dried alder leaf packs, air-dried alder leaf packs and packs with artificial leafshaped substrate exposed in the stream during a 68-day period. The importance of FPOM as a potential food source for macroinvertebrates especially in artificial leaf packs was evaluated. Changes in the quantity as well as in the chemical composition of the accumulating FPOM (>63 and <63 μm) was determined using soluble carbohydrates, proteins and chlorophyll a as parameters of the nutritional quality. Mass loss and the chemical changes of alder leaves during the decompositional process were also described. The loss of soluble carbohydrates due to leaching was more rapid in oven-dried alder leaf packs than in air-dried ones. After 3 days of leaf pack exposure weight loss of oven-dried and air-dried leaf packs was nearly comparable, as the similar decay coefficients, k = 0.0228 (oven-dried leaf packs) and k = 0.0214 (air-dried leaf packs), respectively, show. The amount of FPOM per unit leaf area constantly increased in artificial packs, although it remained below that of alder leaf packs at all sampling dates. The nutritional quality of FPOM <63 μm was constantly greater than that of FPOM >63 μm and decreased in both size-fractions with length of exposure. Referring to leaf area the abundance of macroinvertebrates continually increased in all packs till the end of exposure, whereas the numbers in artificial packs remained below that in alder leaf packs. The taxonomic composition of all treatments was very similar with Gammarus pulex being the most abundant taxon in all packs until day 42, while afterwards the caddis fly genus Hydropsyche gained in importance. The amphipod Gammarus pulex in general did not show a preference for air-dried alder leaf packs compared to oven-dried alder leaf and artificial packs. Corresponding dynamics of macroinvertebrate colonisation and FPOM content in artificial packs support the hypothesis that FPOM functions not only as an important food source for macroinvertebrates including gammarideans but also as a control mechanism of macroinvertebrate abundance in stream habitats. Even if the accumulation of FPOM and drifting macroinvertebrates might be influenced by the same abiotic factor (e.g. by reduction in stream velocity inside the packs) it is quite unlikely that only physical properties caused the invertebrates to stay.  相似文献   

8.
SUMMARY.
  • 1 Communities of invertebrates colonizing senescent autumn and fresh summer alder leaves (Alnus rugosa) were compared. Leaf packs for each treatment were placed in two hardwater streams in the Upper Peninsula of Michigan in late summer and early autumn. One stream has a cobble-bottom and the other a sand-bottom and both receive fresh leaf inputs by beaver fellings.
  • 2 Fresh leaf packs remained intact after 26 days immersion, but thereafter were processed faster than were the autumn leaf packs in both streams.
  • 3 In the cobble-bottom stream taxon richness (S), numbers of individuals and biomass were higher on fresh than on autumn leaves.
  • 4 Fresh leaves in the sand-bottom stream supported a more diverse (H'), richer (S) and more equitably distributed (J') insect fauna than did the autumn leaves.
  • 5 We discuss the simultaneous lack of fresh leaf loss and the presence of more complex insect communities on those leaves during the first 26 days of the study. Invertebrates in both mid-latitude heterotrophic streams and in tropical lowland wet forest streams may rely on fresh leaf inputs, which have received little attention.
  相似文献   

9.
Many communities comprise species that select resources that are patchily distributed in an environment that is otherwise unsuitable or suboptimal. Effects of this patchiness can depend on the characteristics of patch arrays and animal movements, and produce non-intuitive outcomes in which population densities are unrelated to resource abundance. Resource mosaics are predicted to have only weak effects, however, where patches are ephemeral or organisms are transported advectively. The running waters of streams and benthic invertebrates epitomize such systems, but empirical tests of resource mosaics are scarce. We sampled 15 common macroinvertebrates inhabiting distinct detritus patches at four sites within a sand-bed stream, where detritus formed a major resource of food and living space. At each site, environmental variables were measured for 100 leaf packs; invertebrates were counted in 50 leaf packs. Sites differed in total abundance of detritus, leaf pack sizes and invertebrate densities. Multivariate analysis indicated that patch size was the dominant environmental variable, but invertebrate densities differed significantly between sites even after accounting for patch size. Leaf specialists showed positive and strong density–area relationships, except where the patch size range was small and patches were aggregated. In contrast, generalist species had weaker and variable responses to patch sizes. Population densities were not associated with total resource abundance, with the highest densities of leaf specialists in sites with the least detritus. Our results demonstrate that patchy resources can affect species even in communities where species are mobile, have advective dispersal, and patches are relatively ephemeral.  相似文献   

10.
Several studies have reported a positive relationship between species richness and ecosystem functioning. However, if much of a particular ecosystem function is performed by one species (i.e. a functionally dominant species) and this species is also a competitive dominant that excludes other taxa from a habitat, then it is possible to obtain a negative relationship between richness and ecosystem functioning. Results of a leaf pack breakdown experiment in a small stream suggested that the caddisfly Pycnopsyche gentilis , a common detritivorous insect in North American headwater streams, was both a functional and competitive dominant. In a second experiment we compared the effect of Pycnopsyche on leaf breakdown to that of other detritivore taxa by enclosing them with leaf packs in a section of headwater stream in which they were uncommon ( Pycnopsyche transplant experiment). Final leaf pack mass was significantly lower in the Pycnopsyche enclosure treatment; leaves exposed to a greater diversity of detritivores displayed little reduction in leaf mass. These results demonstrated that Pycnopsyche was a functionally dominant detritivore. In a third experiment ( Pycnopsyche density experiment) we found that Pycnopsyche was also a competitively dominant species. Leaf packs and large Pycnopsyche were placed in enclosures that were permeable to the majority of other detritivores but not Pycnopsyche . Leaf mass lost increased with increasing Pycnopsyche density. Leaf packs exposed to Pycnopsyche , however, contained fewer detritivore taxa which suggested that Pycnopsyche was also a competitive dominant. There was a negative relationship between three measures of diversity and leaf litter breakdown in the Pycnopsyche density experiment. Experiments conducted in natural communities that incorporate important species interactions may produce diversity-ecosystem function relationships other than the positive ones that are commonly reported.  相似文献   

11.
1. We quantified spatial and temporal variability in benthic macroinvertebrate species richness, diversity and abundance in six unpolluted streams in monsoonal Hong Kong at different scales using a nested sampling design. The spatial scales were regions, stream sites and stream sections within sites; temporal scales were years (1997–99), seasons (dry versus wet seasons) and days within seasons. 2. Spatiotemporal variability in total abundance and species richness was greater during the wet season, especially at small scales, and tended to obscure site‐ and region‐scale differences, which were more conspicuous during the dry season. Total abundance and richness were greater in the dry season, reflecting the effects of spate‐induced disturbance during the wet season. Species diversity showed little variation at the seasonal scale, but variability at the site scale was apparent during both seasons. 3. Despite marked variations in monsoonal rainfall, inter‐year differences in macroinvertebrate richness and abundance at the site scale during the wet season were minor. Inter‐year differences were only evident during the dry season when streams were at base flow and biotic interactions may structure assemblages. 4. Small‐scale patchiness within riffles was the dominant spatial scale of variation in macroinvertebrate richness, total abundance and densities of common species, although site or region was important for some species. The proportion of total variance contributed by small‐scale spatial variability increased during the dry season, whereas temporal variability associated with days was greater during the wet season. 5. The observed patterns of spatiotemporal variation have implications for detection of environmental change or biomonitoring using macroinvertebrate indicators in streams in monsoonal regions. Sampling should be confined to the dry season or, in cases where more resources are available, make use of data from both dry and wet seasons. Sampling in more than one dry season is required to avoid the potentially confounding effects of inter‐year variation, although variability at that scale was relatively small.  相似文献   

12.
1. An experimental field study examined the aggregation of stream macroinvertebrates associated with leaf packs over different spatial scales (several metres–km) (extent), at different patch sizes (grain) and temporal scales (2 and 4 weeks). 2. Standardized leaf packs were constructed and set in eighteen blocks of nine equally spaced packs in glide areas over a 2 km stretch of a wooded stream. The distribution of macroinvertebrates colonizing the artificial leaf packs was investigated to examine the extent of both intraspecific and interspecific aggregation across leaf packs. 3. All major colonizing taxa were intraspecifically aggregated across the leaf packs. Aggregation decreased with increasing patch size (grain) (from pack to block), and also decreased with decreasing spatial extent (from 2 km stretch to within-block scale) with patch size held constant. Interspecific associations among all major taxa were not common on most occasions at the short temporal scale, although the proportion of significant associations tended to increase somewhat over time and with spatial scale, but did not exceed 42% of all possible associations. The vast majority of significant associations were positive rather than negative. 4. The influence of heterogeneity in a number of environmental variables measured for each leaf pack (accumulated detritus and sediment, leaf mass, flow and depth) on the distribution of invertebrates was considered, but this could only partially explain the variation in macroinvertebrate abundance across leaf packs. 5. The roles of intrinsic aggregation and stochastic processes were examined as alternative explanations for the distribution patterns observed. It is apparent from this study that intrinsic aggregation, in concert with resource partitioning, influences the community structure of stream macroinvertebrates associated with leaf packs. These findings may also have implications for the distribution of taxa in the benthos as a whole.  相似文献   

13.
The aim of the present study was to understand the effects of abiotic conditions on seasonal feeding activity of diverse herbivores on the same oak tree species in two different forests. We tracked changes in herbivore feeding activities on an oak tree species (Quercus serrata) in two localities: a low elevation small hillock forest patch (Muan, MN) and a middle elevation mountain forest patch (Mt. Jirisan, JR). A total of five sites were selected in each of two forest localities. Data for leaf expansion, leaf chemical qualities, leaf damage ratio, and numbers of lepidopteran caterpillars were collected during spring (May) and summer (July to August), 2012. Leaf expansion rate was higher at the low hillock forest than the mid‐mountain forest from spring to summer. Nitrogen and carbon content decreased seasonally at both localities. Lepidopteran larval diversity was high in the mid‐mountain forest, and two‐way ANOVA showed that species richness of lepidopteran larvae was significantly affected by the interaction between season and locality. Leaf damage by all herbivores was higher in the low hillock forest than the mid‐mountain forest in spring, but was higher in the mid‐mountain forest in summer. Relative proportion of general herbivores increased from spring to summer in the mid‐mountain forest, but not in the low hillock forest. Canonical Correspondence Analysis (CCA) ordination showed that altitude‐ and season‐related variables were significant species and environment interaction factors. Our data indicate that locality and temperature disproportionally affected the feeding activities of diverse herbivores in two different temperate forests.  相似文献   

14.
Monument Creek, a second-order Alaskan subarctic stream, experiences a severe thermal regime, with water temperatures of 0°C for six months. Leaching, long-term decomposition and macroinvertebrate colonization of 5 g leaf packs were studied using leaves of the major riparian tree species, alder Alnus tenuifolia Nutt., birch Betula papyrifera Marsh. and willow Salix alaxensis (Anderss.) Cov. subsp. alaxensis and Salix arbucolides Anders. var. glabra Anderss. The processing rates of birch (k = 0.0080) and willow (k = 0.0063) were moderate while alder was processed very rapidly (k = 0.0513). Leaching rates did not differ significantly among the three leaf species, and accounted for 10–15% of total weight loss. Densities and biovolume of colonizing insects increased from fall to winter. Shredders dominated insect biovolume by midwinter, but were a small fraction of total biovolume in leaf packs that had frozen over winter and were sampled following spring thaw. This may be a function of low food quality in spring and/or the timing of shredder life histories. Limited allochthonous input and constriction of the stream channel due to freezing, with resultant high shredder densities, may explain the relatively rapid detritus processing rates in Monument Creek, despite cold stream temperatures.  相似文献   

15.
Four populations of kudzu (Puerarta lobata Willd.) were studiedin rural, relatively unpolluted areas and in habitats characterizedby heavy industrial pollution in north-west Tennessee, U.S.A.Leaf length, leaf width, petiole length, flower size and podsize showed a decrease in growth in heavily polluted areas.Trichome frequency and length on the leaf surfaces increasedwith an increase in environmental pollution while the stomatalfrequency values showed a slight decrease in polluted habitats.The length of the largest and the smallest stomata and the numberof undulations in the epidermal cells in kudzu plant populationswere not affected by environmental pollution. Subsidiary cellcomplex consisting of two cells also remained the same in allthe plant populations sampled in polluted and relatively unpollutedhabitats. Puerarialobata Willd., kudzu, environmental pollution, cuticular features, stomatal frequency, trichome frequency  相似文献   

16.
1. Understanding relationships between resource and consumer diversity is essential to predicting how changes in resource diversity might affect several trophic levels and overall ecosystem functioning. 2. We tested for the effects of leaf litter species diversity (i.e. litter mixing) on litter mass remaining and macroinvertebrate communities (taxon diversity, abundance and biomass) during breakdown in a detritus‐based headwater stream (North Carolina, U.S.A.). We used full‐factorial analyses of single‐ and mixed‐species litter from dominant riparian tree species with distinct leaf chemistries [red maple (Acer rubrum), tulip poplar (Liriodendron tulipifera), chestnut oak (Quercus prinus) and rhododendron (Rhododendron maximum)] to test for additivity (single‐species litter presence/absence effects) and non‐additivity (emergent effects of litter species interactions). 3. Significant non‐additive effects of litter mixing on litter mass remaining were explained by species composition, but not richness, and litter‐mixing effects were variable throughout breakdown. Specifically, small differences in observed versus expected litter mass remaining were measured on day 14; whereas observed litter mass remaining in mixed‐species leaf packs was significantly higher on day 70 and lower on day 118 than expected from data for single‐species leaf packs. 4. Litter mixing had non‐additive effects on macroinvertebrate community structure. The number of species in litter mixtures (two to four), but not litter species composition, was a significant predictor of the dominance of particular macroinvertebrates (i.e. indicator taxa) within mixed‐species packs. 5. In addition, the presence/absence of high‐ (L. tulipifera) and low‐quality (R. maximum) litter had additive effects on macroinvertebrate taxon richness, abundance and biomass. The presence of L. tulipifera litter had both positive (synergistic) and negative (antagonistic) effects on invertebrate taxon richness, that varied during breakdown but were not related to litter chemistry. In contrast, the presence/absence of L. tulipifera had a negative relationship with total macroinvertebrate biomass (due to low leaf mass remaining when L. tulipifera was present and higher condensed and hydrolysable tannins associated with leaf packs lacking L. tulipifera). Macroinvertebrate abundance was consistently lower when R. maximum was present, which was partially explained by litter chemistry [e.g., high concentrations of lignin, condensed tannins, hydrolysable tannins and total phenolics and high carbon to nutrient (N and P) ratios]. 6. The bottom‐up effects of litter species diversity on stream macroinvertebrates and litter breakdown are different, which suggests that structural attributes of macroinvertebrate communities may only partially explain the effects of litter‐mixing on organic matter processing in streams. In addition, stream macroinvertebrates colonising decomposing litter are influenced by resource diversity as well as resource availability. Broad‐scale shifts in riparian tree species composition will alter litter inputs to streams, and our results suggest that changes in the diversity and availability of terrestrial litter may alter stream food webs and organic matter processing.  相似文献   

17.
Previous work in terrestrial and aquatic ecosystems has suggested that the relationship between breakdown rates of leaf litter and plant species richness may change unpredictability due to non‐additive effects mediated by the presence of key‐species. By using single‐ and mixed‐species leaf bags (7 possible combinations of three litter species differing in toughness; common alder [Alnus glutinosa ], sweet chestnut [Castanea sativa ], and Spanish oak [Quercus ilex ilex ]), I tested whether leaf species diversity, measured as richness and composition, affects breakdown dynamics and macroinvertebrate colonization (abundance, richness and composition) during 90 days incubation in a stream. Decomposition rates were additive, i.e., observed decomposition rates were not different from expected ones. However, decomposition rates of individual leaf species were affected by the mixture, i.e., there were species‐specific responses to mixing litter. The invertebrate communities colonizing the mixtures were not richer and more diverse in mixtures than in single‐species leaf bags. On the opposite, mixing leaf species had a negative, non‐additive effect on rates of shredder and taxa colonization and on macroinvertebrate diversity. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We investigated the relationship between diversity and ecosystem function, which is controversial and has rarely been examined for consumer assemblages, for the process of leaf breakdown by the shredder guild in a tropical stream. We manipulated species richness, evenness and identity of four macroinvertebrate shredder species (three caddisflies and one mayfly) in microcosms and tested their effect on leaf breakdown rates measured as leaf mass loss per capita and per milligram of animal. Species richness, evenness and species identity all affected leaf breakdown rates. Breakdown rates tended to increase with higher richness, but only for the three caddisflies, probably through a release of intraspecific interference, although other mechanisms such as niche complementarity or facilitation cannot be discarded. Leaf breakdown by the caddisflies was reduced in the presence of the mayfly, possibly because of its mode of movement by swimming instead of crawling and its similarity to some predators that are common in leaf litter. Species identity was more important than species richness in determining leaf breakdown rates, indicating that some species within the shredder guild are not redundant, and suggesting important consequences of particular species loss for the functioning of the ecosystem.  相似文献   

19.
1. Leaf breakdown rates of Alnus glutinosa were determined and the structure of decomposer assemblages associated with leaves were analysed to assess the effect of pollution on the ecological condition of the Ave River (North‐west Portugal). 2. Increase in organic and inorganic nutrients was associated with an increase in density and a decrease in richness of macroinvertebrates, a dramatic decline in the conidial production of aquatic hyphomycetes, but no major change in the richness of aquatic hyphomycetes. 3. Downstream nutrient enrichment was correlated with accelerated leaf breakdown rates. 4. The degree of functional impairment assessed by the ratio of leaf breakdown rates in coarse‐mesh and fine‐mesh bags was in accordance with the gradient of pollution defined by two biotic indices. 5. This study supports the contention that leaf breakdown experiments are a valuable tool to assess the effect of pollution on the ecological condition of rivers.  相似文献   

20.
Functional processes in freshwater ecosystems are highly influenced by acidic conditions. Foodwebs are affected and macroinvertebrate species diversity is decreased. This study aims to investigate leaf decomposition at very low pH in the acidic Banyupahit–Banyuputih river originating from the acidic crater lake Kawah Ijen in Indonesia. Leaf decomposition experiments were carried out for 200 days in the acidic river at pHs of approximately 0.7, 2.3 and 3.0 and in the neutral Kali Sengon river, using leaves from teak, Tectona grandis, and bamboo, Bambusa sp. Two different types of leaf packs were used: fine mesh size packs were used to exclude macroinvertebrates and coarse mesh size packs allowed macroinvertebrate colonization. Clear differences in decomposition rate were observed between the neutral Kali Sengon and the acidic Banyupahit–Banyuputih river with decomposition in the Kali Sengon river proceeding significantly faster for both leaf types. In the Kali Sengon k values (d−1) over 46 days were 0.0202 for fine teak, 0.0236 for coarse teak, 0.0114 for fine bamboo and 0.0151 for coarse bamboo. No significant differences were observed between the three sites in the acidic Banyupahit–Banyuputih river with k values of 0.0034–0.0066 for fine teak, 0.0002–0.0057 for coarse teak, 0.0029–0.0054 for fine bamboo and 0.0000–0.0068 for coarse bamboo. Moreover, no clear adaptation of macroinvertebrates or microbes to low pH conditions could be detected. The coarse mesh leaf packs in the neutral Kali Sengon river revealed that macroinvertebrates are important in the breakdown process. Fine mesh packs revealed that microbial activity is depressed under acidic conditions. Based on this evidence, we conclude that the toxicity at low pH conditions, and probably also the precipitation of metals on the leaf material, seriously affects leaf decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号