首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
First described in Arabidopsis thaliana, Tousled-like kinases (Tlks) are highly conserved in both plants and animals. In plants, Tousled kinase is essential for proper flower and leaf development, but no direct functional link to any other plant gene product has yet been established. Likewise, the role of Tlks in animals is unknown. In human cells, two structurally similar Tlks, Tlk1 and Tlk2, were recently shown to be cell cycle-regulated kinases with maximal activities during S phase. Here, we report the identification of two human homologs of the Drosophila chromatin assembly factor Asf1 (anti-silencing function 1) as physiological substrates of Tlks. We show that human Asf1 proteins are phosphorylated by Tlks both in vivo and in vitro. Furthermore, Asf1 proteins are phosphorylated during S phase, when Tlks are maximally active. Conversely, Asf1 proteins are dephosphorylated upon the activation of the DNA replication checkpoint, concomitant with the rapid inactivation of Tlks. These data indicate that Tlk family members regulate chromatin assembly during DNA replication, and they suggest a plausible explanation for the pleiotropic developmental defects of plant tousled mutants.  相似文献   

2.
All eukaryotes respond to DNA damage by modulation of diverse cellular processes to preserve genomic integrity and ensure survival. Here we identify mammalian Tousled like kinases (Tlks) as a novel target of the DNA damage checkpoint. During S-phase progression, when Tlks are maximally active, generation of DNA double-strand breaks (DSBs) leads to rapid and transient inhibition of Tlk activity. Experiments with chemical inhibitors, genetic models and gene targeting through RNA interference demonstrate that this response to DSBs requires ATM and Chk1 function. Chk1 phosphorylates Tlk1 on serine 695 (S695) in vitro, and this UCN-01- and caffeine-sensitive site is phosphorylated in vivo in response to DNA damage. Substitution of S695 to alanine impaired efficient downregulation of Tlk1 after DNA damage. These findings identify an unprecedented functional co- operation between ATM and Chk1 in propagation of a checkpoint response during S phase and suggest that, through transient inhibition of Tlk kinases, the ATM-Chk1-Tlk pathway may regulate processes involved in chromatin assembly.  相似文献   

3.
4.
The TOUSLED (TSL)-like nuclear protein kinase family is highly conserved in plants and animals. tsl loss of function mutations cause pleiotropic defects in both leaf and flower development, and growth and initiation of floral organ primordia is abnormal, suggesting that basic cellular processes are affected. TSL is more highly expressed in exponentially growing Arabidopsis culture cells than in stationary, nondividing cells. While its expression remains constant throughout the cell cycle in dividing cells, TSL kinase activity is higher in enriched late G2/M-phase and G1-phase populations of Arabidopsis suspension culture cells compared to those in S-phase. tsl mutants also display an aberrant pattern and increased expression levels of the mitotic cyclin gene CycB1;1, suggesting that TSL represses CycB1;1 expression at certain times during development or that cells are delayed in mitosis. TSL interacts with and phosphorylates one of two Arabidopsis homologs of the nucleosome assembly/silencing protein Asf1 and histone H3, as in humans, and a novel plant SANT/myb-domain protein, TKI1, suggesting that TSL plays a role in chromatin metabolism.  相似文献   

5.
6.
Herpesviruses, which are major human pathogens, establish life-long persistent infections. Although the α, β, and γ herpesviruses infect different tissues and cause distinct diseases, they each encode a conserved serine/threonine kinase that is critical for virus replication and spread. The extent of substrate conservation and the key common cell-signaling pathways targeted by these kinases are unknown. Using a human protein microarray high-throughput approach, we identify shared substrates of the conserved kinases from herpes simplex virus, human cytomegalovirus, Epstein-Barr virus (EBV), and Kaposi's sarcoma-associated herpesvirus. DNA damage response (DDR) proteins were statistically enriched, and the histone acetyltransferase TIP60, an upstream regulator of the DDR pathway, was required for efficient herpesvirus replication. During EBV replication, TIP60 activation by the BGLF4 kinase triggers EBV-induced DDR and also mediates induction of viral lytic gene expression. Identification of key cellular targets of the conserved herpesvirus kinases will facilitate the development of broadly effective antiviral strategies.  相似文献   

7.
This paper reports on the isolation of a novel class of plant serine/threonine protein kinase genes, MsK-1 , MsK-2 and MsK-3 . They belong to the superfamily of cdc2 -like genes, but show highest identity to the Drosophila shaggy and rat GSK-3 proteins (66–70%). All of these kinases share a highly conserved catalytic protein kinase domain. Different amino-terminal extensions distinguish the different proteins. The different plant kinases do not originate from differential processing of the same gene as is found for shaggy , but are encoded by different members of a gene family. Similarly to the shaggy kinases, the plant kinases show different organ-specific and stage-specific developmental expression patterns. Since the shaggy kinases play an important role in intercellular communication in Drosophila development, the MsK kinases are expected to perform a similar function in plants.  相似文献   

8.
Most signaling networks are regulated by reversible protein phosphorylation. The specificity of this regulation depends in part on the capacity of protein kinases to recognize and efficiently phosphorylate particular sequence motifs in their substrates. Sequenced plant genomes potentially encode over than 1000 protein kinases, representing 4% of the proteins, twice the proportion found in humans. This plethora of plant kinases requires the development of high-throughput strategies to identify their substrates. In this study, we have implemented a semi-degenerate peptide array screen to define the phosphorylation preferences of four kinases from Arabidopsis thaliana that are representative of the plant calcium-dependent protein kinase and Snf1-related kinase superfamily. We converted these quantitative data into position-specific scoring matrices to identify putative substrates of these kinases in silico in protein sequence databases. Our data show that these kinases display related but nevertheless distinct phosphorylation motif preferences, suggesting that they might share common targets but are likely to have specific substrates. Our analysis also reveals that a conserved motif found in the stress-related dehydrin protein family may be targeted by the SnRK2-10 kinase. Our results indicate that semi-degenerate peptide array screening is a versatile strategy that can be used on numerous plant kinases to facilitate identification of their substrates, and therefore represents a valuable tool to decipher phosphorylation-regulated signaling networks in plants.  相似文献   

9.
10.
Plant orthologs of the yeast sucrose non-fermenting (Snf1) kinase and mammalian AMP-activated protein kinase (AMPK) represent an emerging class of important regulators of metabolic and stress signalling. The catalytic alpha-subunits of plant Snf1-related kinases (SnRKs) interact in the yeast two-hybrid system with different proteins that share conserved domains with the beta- and gamma-subunits of Snf1 and AMPKs. However, due to the lack of a robust technique allowing the detection of protein interactions in plant cells, it is unknown whether these proteins indeed occur in SnRK complexes in vivo. Here we describe a double-labelling technique, using intron-tagged hemagglutinin (HA) and c-Myc epitope sequences, which provides a simple tool for co-immunopurification of interacting proteins expressed in Agrobacterium-transformed Arabidopsis cells. This generally applicable plant protein interaction assay was used to demonstrate that AKINbeta2, a plant ortholog of conserved Snf1/AMPK beta-subunits, forms different complexes with the catalytic alpha-subunits of Arabidopsis SnRK protein kinases AKIN10 and AKIN11 in vivo.  相似文献   

11.
Phosphorylation by protein tyrosine kinases is crucial to the control of growth and development of multicellular eukaryotes, including humans, and it also seems to play an important role in multicellular prokaryotes. A plant tyrosine-specific kinase has not been identified yet; hence, plants have been suggested to share with unicellular eukaryote yeast a tyrosine phosphorylation system where a limited number of stress proteins are tyrosyl-phosphorylated only by a few dual-specificity (serine/threonine and tyrosine) kinases. However, preliminary evidence obtained so far suggests that tyrosine phosphorylation in plants depends on the developmental conditions. Since sequencing of the genome of the model flowering plant Arabidopsis thaliana has been recently completed, we have performed a bioinformatic screening of the whole Arabidopsis proteome to identify a model complement of bona fide protein tyrosine kinases. In silico analyses suggest that < 4% of Arabidopsis kinases are tyrosine-specific kinases, whose gene expression has been assessed by a preliminary polymerase chain reaction screening of an Arabidopsis cDNA library. Finally, immunological evidence confirms that the number of Arabidopsis proteins specifically phosphorylated on tyrosine residues is much higher than in yeast.  相似文献   

12.
Mini-chromosome maintenance (MCM) proteins form heterohexameric complex (MCM2–7) to serve as licensing factor for DNA replication to make sure that genomic DNA is replicated completely and accurately once during S phase in a single cell cycle. MCMs were initially identified in yeast for their role in plasmid replication or cell cycle progression. Each of six MCM contains highly conserved sequence called “MCM box”, which contains two ATPase consensus Walker A and Walker B motifs. Studies on MCM proteins showed that (a) the replication origins are licensed by stable binding of MCM2–7 to form pre-RC (pre-replicative complex) during G1 phase of the cell cycle, (b) the activation of MCM proteins by CDKs (cyclin-dependent kinases) and DDKs (Dbf4-dependent kinases) and their helicase activity are important for pre-RC to initiate the DNA replication, and (c) the release of MCMs from chromatin renders the origins “unlicensed”. DNA replication licensing in plant is, in general, less characterized. The MCMs have been reported from Arabidopsis, maize, tobacco, pea and rice, where they are found to be highly expressed in dividing tissues such as shoot apex and root tips, localized in nucleus and cytosol and play important role in DNA replication, megagametophyte and embryo development. The identification of six MCM coding genes from pea and Arabidopsis suggest six distinct classes of MCM protein in higher plant, and the conserved function right across the eukaryotes. This overview of MCMs contains an emphasis on MCMs from plants and the novel role of MCM6 in abiotic stress tolerance.  相似文献   

13.
Tousled-like kinase 1 (or protein kinase ubiquitous, PKU-beta/TLK1) is a serine/threonine protein kinase that is implicated in chromatin remodeling, DNA replication and mitosis. RNAi-mediated PKU-beta/TLK1-depleted human cells showed aneuploidy, and immunofluorescence analysis of these cells revealed the unequal segregation of daughter chromosomes. Immunoblots indicated a substantial reduction in the phosphorylation level of Ser19/Thr18 on the myosin II regulatory light chain (MRLC) in PKU-beta/TLK1-depleted cells, with no change in total MRLC protein. To confirm the relationship between mitotic aberration and MRLC dysfunction, we expressed wild type MRLC or DD-MRLC (mimics diphosphorylation; substitution of both Thr18 and Ser19 with aspartate) in PKU-beta/TLK1-depleted cells. DD-MRLC expression dramatically reduced the unequal segregation of chromosomes. Our data suggest that human PKU-beta/TLK1 plays an important role in chromosome integrity via the regulation of myosin II dynamics by phosphorylating MRLC during mitosis.  相似文献   

14.
15.
Wang D  Harper JF  Gribskov M 《Plant physiology》2003,132(4):2152-2165
The genome of the budding yeast (Saccharomyces cerevisiae) provides an important paradigm for transgenomic comparisons with other eukaryotic species. Here, we report a systematic comparison of the protein kinases of yeast (119 kinases) and a reference plant Arabidopsis (1,019 kinases). Using a whole-protein-based, hierarchical clustering approach, the complete set of protein kinases from both species were clustered. We validated our clustering by three observations: (a) clustering pattern of functional orthologs proven in genetic complementation experiments, (b) consistency with reported classifications of yeast kinases, and (c) consistency with the biochemical properties of those Arabidopsis kinases already experimentally characterized. The clustering pattern identified no overlap between yeast kinases and the receptor-like kinases (RLKs) of Arabidopsis. Ten more kinase families were found to be specific for one of the two species. Among them, the calcium-dependent protein kinase and phosphoenolpyruvate carboxylase kinase families are specific for plants, whereas the Ca(2+)/calmodulin-dependent protein kinase and provirus insertion in mouse-like kinase families were found only in yeast and animals. Three yeast kinase families, nitrogen permease reactivator/halotolerance-5), polyamine transport kinase, and negative regulator of sexual conjugation and meiosis, are absent in both plants and animals. The majority of yeast kinase families (21 of 26) display Arabidopsis counterparts, and all are mapped into Arabidopsis families of intracellular kinases that are not related to RLKs. Representatives from 11 of the common families (54 kinases from Arabidopsis and 17 from yeast) share an extremely high degree of similarity (blast E value < 10(-80)), suggesting the likelihood of orthologous functions. Selective expansion of yeast kinase families was observed in Arabidopsis. This is most evident for yeast genes CBK1, HRR25, and SNF1 and the kinase family S6K. Reduction of kinase families was also observed, as in the case of the NEK-like family. The distinguishing features between the two sets of kinases are the selective expansion of yeast families and the generation of a limited number of new kinase families for new functionality in Arabidopsis, most notably, the Arabidopsis RLKs that constitute important components of plant intercellular communication apparatus.  相似文献   

16.
Protein kinases are known to be involved in signal transduction for numerous physiological events. However, little is known about the roles of protein kinases in insect immunity. A fragment around 150 bp was amplified by polymerase chain reaction using cDNA templates from bacterial inoculated mosquitoes and primers corresponding to the conserved domain of protein kinases. Based on sequence analysis, 11 groups of protein kinases were characterized including 3 nonreceptor tyrosine kinases, 3 receptor tyrosine kinases, 3 serine/threonine kinases, and 2 novel protein kinases. The most abundant kinase obtained in this study reveals a high degree of similarity to human cholinesterase-related cell division controller (CHED) protein kinase. The expression of this mosquito CHED-like kinase is not detectable in normal female mosquitoes, but induced only after bacterial inoculation and trauma. A mosquito protein kinase was demonstrated to share homology with a plant Tousled gene, but has not yet been characterized in the animal system. In addition, analysis of the sequences of several protein kinases cloned from mosquitoes suggests that they might be involved in the regulation of cellular or humoral immunity.  相似文献   

17.
Mitogen-activated protein kinases (MAPKs) play a key role in plant responses to stress and pathogens. Activation and inactivation of MAPKs involve phosphorylation and dephosphorylation on both threonine and tyrosine residues in the kinase domain. Here we report the identification of an Arabidopsis gene encoding a dual-specificity protein phosphatase capable of hydrolysing both phosphoserine/threonine and phosphotyrosine in protein substrates. This enzyme, designated AtDsPTP1 (Arabidopsis thaliana dual-specificity protein tyrosine phosphatase), dephosphorylated and inactivated AtMPK4, a MAPK member from the same plant. Replacement of a highly conserved cysteine by serine abolished phosphatase activity of AtDsPTP1, indicating a conserved catalytic mechanism of dual-specificity protein phosphatases from all eukaryotes.  相似文献   

18.
The evolutionarily conserved mitogen-activated protein kinase (MAPK) signaling network comprises connected protein kinases arranged in MAPK modules. In this Opinion article, we analyze MAPK signaling components in evolutionarily representative species of the plant lineage and in Naegleria gruberi, a member of an early diverging eukaryotic clade. In Naegleria, there are two closely related MAPK kinases (MKKs) and a single conventional MAPK, whereas in several species of algae, there are two distinct MKKs and multiple MAPKs belonging to different groups. This suggests that the formation of multiple MAPK modules began early during plant evolution. The expansion of MAPK signaling components through gene duplications and the evolution of interaction motifs could have contributed to the highly connected complex MAPK signaling network that we know in Arabidopsis.  相似文献   

19.
Studies in model organisms have contributed to elucidate multiple levels at which regulation of eukaryotic DNA replication occurs. Cdc7, an evolutionarily conserved serine-threonine kinase, plays a pivotal role in linking cell cycle regulation to genome duplication, being essential for the firing of DNA replication origins. Binding of the cell cycle-regulated subunit Dbf4 to Cdc7 is necessary for in vitro kinase activity. This binding is also thought to be the key regulatory event that controls Cdc7 activity in cells. Here, we describe a novel human protein, Drf1, related to both human and yeast Dbf4. Drf1 is a nuclear cell cycle-regulated protein, it binds to Cdc7 and activates the kinase. Therefore, human Cdc7, like cyclin-dependent kinases, can be activated by alternative regulatory subunits. Since the Drf1 gene is either absent or not yet identified in the genome of model organisms such as yeast and Drosophila, these findings introduce a new level of complexity in the regulation of DNA replication of the human genome.  相似文献   

20.
Synthesis of trehalose in the yeast Saccharomyces cerevisiae is catalysed by the trehalose-6-phosphate (Tre6 P ) synthase/phosphatase complex, which is composed of at least three different subunits encoded by the genes TPS1 , TPS2 , and TSL1 . Previous studies indicated that Tps1 and Tps2 carry the catalytic activities of trehalose synthesis, namely Tre6 P synthase (Tps1) and Tre6 P phosphatase (Tps2), while Tsl1 was suggested to have regulatory functions. In this study two different approaches have been used to clarify the molecular composition of the trehalose synthase complex as well as the functional role of its potential subunits. Two-hybrid analyses of the in vivo interactions of Tps1, Tps2, Tsl1, and Tps3, a protein with high homology to Tsl1, revealed that both Tsl1 and Tps3 can interact with Tps1 and Tps2; the latter two proteins also interact with each other. In addition, trehalose metabolism upon heat shock was analysed in a set of 16 isogenic yeast strains carrying deletions of TPS1 , TPS2 , TSL1 , and TPS3 in all possible combinations. These results not only confirm the previously suggested roles for Tps1 and Tps2, but also provide, for the first time, evidence that Tsl1 and Tps3 may share a common function with respect to regulation and/or structural stabilization of the Tre6 P synthase/phosphatase complex in exponentially growing, heat-shocked cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号