首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells of Saccharomyces cerevisiae contain a major cytosolic cyclophilin (Cyp)-related peptidyl-prolyl cis-trans isomerase (PPIase) which is the target for cyclosporin A (CsA) cytotoxicity and which is encoded by the CYP1 gene [Haendler et al., Gene 83 (1989) 39-46]. We recently identified a second Cyp-related gene in yeast, CYP2 [Koser et al., Nucleic Acids Res. 18 (1990) 1643] which predicts a protein with a hydrophobic leader sequence. A sequence lacking 33 codons from the 5'-end of the CYP2 open reading frame was generated by the polymerase chain reaction and engineered for expression in Escherichia coli. The corresponding recombinant truncated protein was purified and found to exhibit PPIase activity which was inhibited by CsA. The CYP2 gene is genetically unlinked to CYP1. As with CYP1, genomic disruption of CYP2 had no effect on haploid cell viability. Disruption of all three of the known yeast PPIase-encoding genes [CYP1, CYP2, and RBP1 for rapamycin-binding protein; Koltin et al., Mol. Cell. Biol. 11 (1991) 1718-1723] in the same haploid cell also resulted in no apparent cellular phenotype, suggesting either that none of these enzymes have an essential function or that additional PPIases can compensate for their specific absence. Whereas cells containing a genomic disruption of CYP1 exhibited a CsA-resistant phenotype, genomic disruption of CYP2 had no effect on CsA sensitivity. This suggests that the CYP1 gene product is the primary cellular target for CsA toxicity in yeast. Since both purified Cyps display CsA sensitivity in vitro, our data suggest that Cyp1 and Cyp2 differ in terms of their cellular function and/or localization.  相似文献   

2.
3.
Four beta-glycosides of flavonoligan silybin, i.e. silybin beta-galactoside, silybin beta-glucoside, silybin beta-maltoside, silybin beta-lactoside were synthesized in order to improve silybin water solubility and bioavailability (Kren et al., J Chem Soc, Perkin Trans 1, 2467-2474, 1997). The presented paper deals with the effect of silybin and its synthetic beta-glycosides on the expression of two major cytochrome P450 isoforms, CYP1A2 and CYP3A4. Primary cultures of human hepatocytes were the model of choice. mRNAs were analyzed using Northern blot and P-radiolabelled probes. CYP protein content was determined by immunoblotting using specific antibodies. Silybin and its beta-glycosides do not induce expression of CYP1A2 and CYP3A4. Tested compounds did not affect inducible expression of CYP1A2 and CYP3A4 by dioxin and rifampicin, respectively, as evaluated at the level of mRNAs and proteins. Silybin and its beta-glycosides do not interfere with the expression of CYP1A2 and CYP3A4, are not likely to produce drug-drug interactions in terms of the inducibility of two important cytochromes P450.  相似文献   

4.
Regulatory mechanisms for human CYP27A1 enzyme have not yet been fully investigated. Our approach was to add different hormones and cytokines to cultured human monocyte-derived macrophages, and assess the effects on the CYP27A1 by measuring the production of 27-hydroxylated cholesterol in the media. Of the different hormones and cytokines tested, only transforming growth factor beta1 (TGF-beta1) had a clear effect on CYP27A1. Further experiments showed a significant increase in 27-hydroxylated cholesterol products (27-hydroxycholesterol and 3beta-hydroxy-5-cholestenoic acid). A concomitant increase in CYP27A1 mRNA levels was also seen and this positive effect was confirmed using a human CYP27A1 luciferase reporter gene expressed in HepG2 cells. Experiments with progressive deletion/luciferase reporter gene constructs indicated that a TGF-beta1 responsive sequence might be localized in a region about 400 bp upstream of the CYP27A1 translation start. The possibility is discussed that induction of CYP27A1 by TGF-beta1 may be responsible for some of the anti-atherogenic properties of this cytokine.  相似文献   

5.
6.
7.
The mammalian CYP1A1, CYP1A2, and CYP1B1 genes (encoding cytochromes P450 1A1, 1A2, and 1B1, respectively) are regulated by the aromatic hydrocarbon receptor (AHR). The CYP1 enzymes are responsible for both metabolically activating and detoxifying numerous polycyclic aromatic hydrocarbons (PAHs) and aromatic amines present in combustion products. Many substrates for CYP1 enzymes are AHR ligands. Differences in AHR affinity between inbred mouse strains reflect variations in CYP1 inducibility and clearly have been shown to be associated with differences in risk of toxicity or cancer caused by PAHs and arylamines. Variability in the human AHR affinity exists, but differences in human risk of toxicity or cancer related to AHR activation remain unproven. Mouse lines having one or another of the Cyp1 genes disrupted have shown paradoxical effects; in the test tube or in cell culture these enzymes show metabolic activation of PAHs or arylamines, whereas in the intact animal these enzymes are sometimes more important in the role of detoxification than metabolic potentiation. Intact animal data contradict pharmaceutical company policies that routinely test drugs under development; if a candidate drug shows CYP1 inducibility, further testing is generally discontinued for fear of possible toxic or carcinogenic effects. In the future, use of "humanized" mouse lines, containing a human AHR or CYP1 allele in place of the orthologous mouse gene, is one likely approach to show that the AHR and the CYP1 enzymes in human behave similarly to that in mouse.  相似文献   

8.
9.
10.
11.
12.
The present study investigated the involvement of catecholamines in stress-mediated alterations in CYP1A1 induction by benzo(alpha)pyrene (B(alpha)P) in Wistar rats. This was achieved by measuring EROD activity and CYP1A1 mRNA levels in liver tissue from rats exposed to restraint stress and B(alpha)P coupled with pharmacological modulation of peripheral and central catecholamine levels and different adrenoceptors. In a state of reserpine-induced central and peripheral catecholamine depletion, stress strongly suppressed EROD induction. Peripheral catecholamines do not appear to play a critical role in the stress-mediated modulation of EROD inducibility by B(alpha)P. Stress did not alter EROD inducibility by B(alpha)P when peripheral catecholamines were either depleted by guanethidine or supplemented by peripheral adrenaline administration. On the other hand, central noradrenergic systems appear to have a role in the stress-mediated changes in B(alpha)P-induced EROD activity and Cyp1A1 gene expression. Stimulation or blockade of noradrenaline release with atipamezole and dexmedetomidine, respectively, significantly modified the up-regulating effect of stress. Alpha1 adrenoceptors also appear to participate in the effect of stress on EROD inducibility. Alpha1-blockade with prazosin potentiated the up-regulating effect of stress, possibly preventing the down-regulating effect of noradrenaline. Beta adrenoceptors also seem to be involved directly or indirectly in the stress-mediated modulation of Cyp1A1, as propranolol (beta-antagonist) blocked the down-regulating effect of stress on B(alpha)P-induced Cyp1A1 gene expression. Plasma corticosterone alterations after stress were not related to alterations in the B(alpha)P-induced EROD activity and Cyp1A1 gene expression. In conclusion, stress appears to interfere in the regulation of B(alpha)P-induced hepatic CYP1A1 in an unpredictable manner and via signalling pathways not always directly related to catecholamines. In particular, whenever drug treatment disrupts noradrenergic neurotransmission, other stress-stimulated factors appear to modify the induction of CYP1A1. In summary, regulation of induction of hepatic CYP1A1 during stress appears to involve various components of the stress system, including central and peripheral catecholamines, which interact in a complex manner, yet to be elucidated.  相似文献   

13.
The genetic variability of the CYP1A1 I462V polymorphism (CYP1A1*2C) was investigated in four Brazilian populations: three groups of African descent and one group of European descent. The CYP1A1 polymorphism was analyzed by two different procedures, first by the allele-specific polymerase chain reaction (PCR) method and then by the PCR-restricted fragment length polymorphism (PCR-RFLP) method before digestion with BsrDI. The frequency of CYP1A1 *2C was 11% in Brazilians of European descent, a frequency that is slightly higher but not statistically different from that observed in European populations. In Brazilians of African ancestry this value was very high (12% to 15%). This allele was not observed in the only two African populations investigated thus far. By themselves, the two factors of interethnic admixture (with populations of European descent and/or Amerindian populations) and genetic drift cannot explain the high values observed here. Our findings suggest that the CYP1A1 *2C allele may possibly be present in Africa, but restricted to some ethnic groups not yet investigated. Environmental factors in South America might also have acted as selective factors increasing the CYP1A1 *2C gene frequency. Our data also suggest that the CYP1A1 *2C allele might possibly have originated in Africa.  相似文献   

14.
The use of CYP2E1 (cytochrome P4502E1) expression as a biomarker for xenobiotic contamination may be useful, but for full understanding of the response, components of inheritance need to be understood. CYP2E1 expression was examined in P. lucida (M61-31), two strains of P. occidentalis (V87-15 and AV76-7), and their F1, F2, and backcross progeny. Phenotypic expression of CYP2E1 in Poeciliopsis has two distinct components – maximal activity and temperature optimum (T0) (Kaplan et al. 1991). In all P. occidentalis and P. lucida crosses, CYP2E1 activity segregated in up to three phenotypic groups. In F1 individuals (P. lucida×P. occidentalis V87-15), an overdominant phenotype was generated in 50% of the progeny. The P. lucida phenotype was absent suggesting a maternal effect on the F1 phenotype. Backcrosses of these F1 progeny to P. lucida females resulted in a recovery of the P. lucida phenotype while maintaining expression of an overdominant phenotype in 50% of the progeny. Among F2 progeny, an overdominant phenotype was expressed less often as compared to the F1 generation, and parental phenotypes were observed in equal numbers. Phenotypic expression patterns of CYP2E1 activity among F1 fish changed significantly with replacement of P. occidentalis V87-15 by P. occidentalis AV76-7. The P. lucida and P. occidentalis phenotype was equally distributed among progeny without evidence of an overdominant phenotype. Backcrosses of F1 progeny to P. lucida females resulted in equal amounts of the parental phenotypes. Backcross of an F1 male to a P. occidentalis AV76-7 female increased the P. occidentalis phenotype at the expense of the P. lucida phenotype in resulting progeny. Backcross of a F1 female to a P. lucida male resulted in equal distribution of the parental phenotypes. In addition, a greater number of F2 fish expressed the P. occidentalis phenotype as compared to the P. lucida phenotype. No significant difference in the sex ratios was seen in any of the crosses with the exception of one backcross.  相似文献   

15.
16.
Thromboxane synthase (CYP5A1) catalyzes the conversion of prostaglandin H2 to thromboxane A2, a potent mediator of platelet aggregation, vasoconstriction and bronchoconstriction. It has been implicated in the patho-physiological process of a variety of diseases, such as atherosclerosis, myocardial infarction, stroke and asthma. On the basis of the hypothesis that variations of the CYP5A1 gene may play an important role in human diseases, we performed a screening for variations in the human CYP5A1 gene sequence. We examined genomic DNA from 200 individuals, for mutations in the promoter region, the protein encoding sequences and the 3'-untranslated region of the CYP5A1. Eleven polymorphisms have been identified in the CYP5A1 gene including eight missense mutations R61H, D161E, N246S, L357V, Q417E, E450K, T451N and R466Q. This is the first report of genetic variants in the human CYP5A1 altering the protein sequence. The effect of these variants on the metabolic activity of CYP5A1 remains to be further evaluated.  相似文献   

17.
1,3-Butadiene (BD) is a common chemical in the human environment. Diepoxybutane (DEB) is the most reactive epoxide metabolite of BD. The aim of the present study was to evaluate the influence of polymorphisms in enzymes operating in DEB-metabolism (epoxide hydrolase mEH, CYP2E1 and GSTT1), as well as in the DNA-repair enzyme RAD51, on the frequency of sister chromatid exchange (SCE) induced by DEB in lymphocyte cultures from 63 healthy donors. Their genotypes were determined using PCR and restriction fragment length polymorphism (RFLP)-PCR techniques. The analysis of xenobiotic-metabolizing genes revealed that GSTT1 and CYP2E1 polymorphisms have an influence on DEB-induced SCE frequency. Individuals with the GSTT1 null genotype and CYP2E1 c2 variant allele heterozygotes were observed to have significantly higher SCE frequency than individuals with more common genotypes. A correlation between sensitivity to DEB and GSTT1 null genotype indicates that this pathway is a major detoxification step in DEB metabolism in whole-blood lymphocyte cultures, which has been shown in many studies. The analysis of combined polymorphisms indicated that, in the presence of GSTT1, a significantly higher DEB-induced SCE frequency is observed in the CYP2E1 c2 variant allele heterozygotes than in individuals with the most common CYP2E1 genotype. In the absence of GSTT1, however, the CYP2E1 polymorphism has no influence on DEB-induced SCEs. A significant difference was also observed between individuals characterized by low and high mEH activity, but only in subjects with the GSTT1 null genotype. Lack of GSTT1 resulted in higher SCE frequency in individuals with mEH high-activity genotypes than in individuals with mEH low-activity genotype. In the present study no statistically significant difference in DEB-induced SCEs was observed for the RAD51 polymorphism. The influence of GSTT1 genotype on SCE-frequency in RAD51 variant allele carriers was not analysed as all individuals in this group (except one person) had the GSTT1 gene present. Our study shows that the combined analysis of polymorphisms in metabolizing enzymes may lead to a better understanding of their contribution to an individual's susceptibility to DEB.  相似文献   

18.
A new P450 gene has been found in humans. It has 44% sequence identity to CYP26A1 from human and mouse, which places it in a new subfamily, CYP26B. There is only one human EST from a retinal library (AA012833) that matches the coding region. No homologous ESTs are found in mouse. A zebrafish EST AI721901 shows 68% identity to the human protein. This zebrafish EST is only 41% identical to the zebrafish CYP26A1 protein sequence, so it represents the homolog of the human CYP26B1 sequence. It is not known if this gene product will act on all-trans-retinoic acid like the CYP26A1 protein or if it might hydroxylate the 9-cis- or 13-cis-retinoic acid isoforms not recognized by CYP26A1. The importance of the CYP26A1 P450 in mouse and zebrafish development flags the CYP26B1 gene as a potential developmental gene.  相似文献   

19.
PGC-1alpha activates CYP7A1 and bile acid biosynthesis   总被引:6,自引:0,他引:6  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号