首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Scarlata S 《Biochemistry》2002,41(22):7092-7099
One function of membrane domains of liquid-ordered lipids or "rafts" may be to stabilize complexes of signaling proteins, thereby playing a role in the transduction of cellular signals. Here, we have used fluorescence methods to directly test this idea by assessing the ability of phospholipase Cbeta2 (PLCbeta2) to associate with G protein subunits on model membranes in the fluid phase and on membranes that contain domains of lipids in the liquid-ordered phase (rafts). We find that the apparent dissociation constant for the equilibrium between PLCbeta2 and Galpha(q)(GTPgammaS) was identical on both types of membrane surfaces. However, the degree of association between PLCbeta2 and Gbetagamma subunits was significantly reduced on the surfaces containing rafts. Time studies indicate that this phenomenon is a dynamic process. Incorporating the lipid substrate of PLCbeta2 into membranes that forms rafts, we find that its basal activity is unaffected. However, its activation by Gbetagamma subunits is inhibited, supporting a reduced degree of interaction between these two proteins when rafts are present. Since lipid rafts affected PLCbeta2-Gbetagamma association and not PLCbeta2-Galpha(q)(GTPgammaS) association, we explored the possibility that the membrane interaction of Gbetagamma differed when rafts are present. We find that although the membrane partition coefficient of Gbetagamma is not significantly changed in the presence of rafts, proteolysis of Gbetagamma by trypsin increases and the ability of Gbetagamma Tyr/Trp fluorescence to be quenched by iodide ions decreases when rafts are present. These results suggest a model in which lipid rafts occlude the PLCbeta2 interaction site on Gbetagamma subunits by localizing these subunits at the domain interface.  相似文献   

2.
Mast cells are activated by Ag-induced clustering of IgE bound to FcepsilonRI receptors or by basic secretagogues that stimulate pertussis toxin-sensitive heterotrimeric G proteins. The cell response includes the secretion of stored molecules, such as histamine, through exocytosis and of de novo synthesized mediators, such as arachidonate metabolites. The respective roles of G proteins alpha and betagamma subunits as well as various types of phospholipase C (PLC) in the signaling pathways elicited by basic secretagogues remain unknown. We show that a specific Ab produced against the C-terminus of Galpha(i3) and an anti-recombinant Galpha(i2) Ab inhibited, with additive effects, both exocytosis and arachidonate release from permeabilized rat peritoneal mast cells elicited by the basic secretagogues mastoparan and spermine. A specific Ab directed against Gbetagamma dimers prevented both secretions. Anti-PLCbeta Abs selectively prevented exocytosis. The selective phosphatidylinositol 3-kinase inhibitor LY 294002 prevented arachidonate release without modifying exocytosis. Gbetagamma coimmunoprecipitated with PLCbeta and phosphatidylinositol 3-kinase. The anti-PLCgamma1 and anti-phospholipase A(2) Abs selectively blocked arachidonate release. Protein tyrosine phosphorylation was inhibited by anti-Gbetagamma Abs, LY294002, and anti PLCgamma1 Abs. These data show that the early step of basic secretagogue transduction is common to both signaling pathways, involving betagamma subunits of G(i2) and G(i3) proteins. Activated Gbetagamma interacts, on one hand, with PLCbeta to elicit exocytosis and, on the other hand, with phosphatidylinositol 3-kinase to initiate the sequential activation of PLCgamma1, tyrosine kinases, and phospholipase A(2), leading to arachidonate release.  相似文献   

3.
The protein kinase KSR-1 is a recently identified participant in the Ras signaling pathway. The subcellular localization of KSR-1 is variable. In serum-deprived cultured cells, KSR-1 is primarily found in the cytoplasm; in serum-stimulated cells, a significant portion of KSR-1 is found at the plasma membrane. To identify the mechanism that mediates KSR-1 translocation, we performed a yeast two-hybrid screen. Three clones that interacted with KSR-1 were found to encode the full-length gamma10 subunit of heterotrimeric G-proteins. KSR-1 also interacted with gamma2 and gamma3 in a two-hybrid assay. Deletion analysis demonstrated that the isolated CA3 domain of KSR-1, which contains a cysteine-rich zinc finger-like domain, interacted with gamma subunits. Coimmunoprecipitation experiments demonstrated that KSR-1 bound to beta1 gamma3 subunits when all three were transfected into cultured cells. Lysophosphatidic acid treatment of cells induced KSR-1 translocation to the plasma membrane from the cytoplasm that was blocked by administration of pertussis toxin but not by dominant-negative Ras. Finally, transfection of wild-type KSR-1 inhibited beta1 gamma3-induced mitogen-activated protein kinase activation in cultured cells. These results demonstrate that KSR-1 translocation to the plasma membrane is mediated, at least in part, by an interaction with beta gamma and that this interaction may modulate mitogen-activated protein kinase signaling.  相似文献   

4.
It has been previously reported (Kerbiriou &; Hervé, 1972) that, when a uracil-requiring mutant of Escherichia coli is derepressed for the biosynthesis of the enzymes of the pyrimidine pathway in the presence of 2-thiouracil, it synthesizes a modified aspartate transcarbamylase which is still sensitive to the feedback inhibitor CTP, but which does not show homotropic positive interactions between catalytic sites. It is shown here that these homotropic interactions do not reappear upon strong inhibition by CTP, indicating that the two types of interactions are really disconnected and must involve different molecular mechanisms. CTP is acting at the level of the apparent Km of the enzyme for aspartate. It is also the case for ATP, which stimulates 2-thiouracil aspartate-transcarbamylase. Kinetic studies of the hybrid molecules made up of subunits prepared from normal and modified enzymes show that it is a modification at the level of the regulatory subunits which is responsible for the lack of co-operative interactions between catalytic sites. These results are discussed in terms of a four-state model.  相似文献   

5.
The intradiskal surface of the transmembrane protein, rhodopsin, consists of the amino terminal domain and three loops connecting six of the seven transmembrane helices. This surface corresponds to the extracellular surface of other G-protein receptors. Peptides that represent each of the extramembraneous domains on this surface (three loops and the amino terminus) were synthesized. These peptides also included residues which, based on a hydrophobic plot, could be expected to be part of the transmembrane helix. The structure of each of these peptides in solution was then determined using two-dimensional 1H nuclear magnetic resonance. All peptide domains showed ordered structures in solution. The structures of each of the peptides from intradiskal loops of rhodopsin exhibited a turn in the central region of the peptide. The ends of the peptides show an unwinding of the transmembrane helices to form this turn. The amino terminal domain peptide exhibited alpha-helical regions with breaks and bends at proline residues. This region forms a compact domain. Together, the structures for the loop and amino terminus domains indicate that the intradiskal surface of rhodopsin is ordered. These data further suggest a structural motif for short loops in transmembrane proteins. The ordered structures of these loops, in the absence of the transmembrane helices, indicate that the primary sequences of these loops are sufficient to code for the turn.  相似文献   

6.
Phospholipase Cbeta (PLCbeta) isoforms, which are under the control of Galphaq and Gbetagamma subunits, generate Ca2+ signals induced by a broad array of extracellular agonists, whereas PLCdelta isoforms depend on a rise in cytosolic Ca2+ for their activation. Here we find that PLCbeta2 binds strongly to PLCdelta1 and inhibits its catalytic activity in vitro and in living cells. In vitro, this PLC complex can be disrupted by increasing concentrations of free Gbetagamma subunits. Such competition has consequences for signaling, because in HEK293 cells PLCbeta2 suppresses elevated basal [Ca2+] and inositol phosphates levels and the sustained agonist-induced elevation of Ca2+ levels caused by PLCdelta1. Also, expression of both PLCs results in a synergistic release of [Ca2+] upon stimulation in A10 cells. These results support a model in which PLCbeta2 suppresses the basal catalytic activity of PLCdelta1, which is relieved by binding of Gbetagamma subunits to PLCbeta2 allowing for amplified calcium signals.  相似文献   

7.
Bovine liver cytosol contains a phosphoinositide phospholipase C (PLCcyt) that is activated by guanosine 5'-O-(3-thio)triphosphate (GTP gamma S)-activated G-proteins from liver plasma membranes. Heparin-Sepharose chromatography indicated that PLCcyt was immunologically distinct from PLC-beta 1, PLC-gamma 1, or PLC-delta 1 from brain. Initial purification of the GTP gamma S-activated G-proteins that stimulated PLCcyt indicated that the beta gamma complex was responsible. G-proteins were subsequently extracted from liver membranes as heterotrimers and purified in the presence of AlCl3, MgCl2, and NaF to allow reversible activation. Immunoblot analysis with an antiserum selective for the beta subunit showed that the stimulatory activity corresponded with the presence of this protein at every chromatographic step. When liver beta gamma complex was purified and separated from all detectable alpha subunits, as shown by immunoblotting and silver staining, it strongly stimulated PLCcyt after removal of the activating ligand [AlF4]- by gel filtration. beta gamma prepared from brain was approximately equipotent with that from liver. beta gamma was half-maximally effective at 33 nM and produced a maximal 50-fold activation of the PLC. Under identical conditions, beta gamma had no effect on brain PLC-gamma 1 or PLC-delta 1 and produced a 2-fold stimulation of PLC-beta 1 activity. Addition of purified GDP-bound alpha o, which had no effect by itself, completely reversed the beta gamma activation of PLCcyt, confirming that beta gamma was the active species. These data provide evidence for a novel mechanism by which beta gamma subunits of pertussis toxin-sensitive or -insensitive G-proteins activate phospholipase C.  相似文献   

8.
Drin G  Douguet D  Scarlata S 《Biochemistry》2006,45(18):5712-5724
Phospholipase Cbeta (PLCbeta) enzymes are activated by Galpha q and Gbetagamma subunits and catalyze the hydrolysis of the minor membrane lipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Activation of PLCbeta2 by Gbetagamma subunits has been shown to be conferred through its N-terminal pleckstrin homology (PH) domain, although the underlying mechanism is unclear. Also unclear are observations that the extent of Gbetagamma activation differs on different membrane surfaces. In this study, we have identified a unique region of the PH domain of the PLCbeta2 domain (residues 71-88) which, when added to the enzyme as a peptide, causes enzyme activation similar to that with Gbetagamma subunits. This PH domain segment interacts strongly with membranes composed of lipid mixtures but not those containing lipids with electrically neutral zwitterionic headgroups. Also, addition of this segment perturbs interaction of the catalytic domain, but not the PH domain, with membrane surfaces. We monitored the orientation of the PH and catalytic domains of PLC by intermolecular fluorescence resonance energy transfer (FRET) using the Gbetagamma activatable mutant, PLCbeta2/delta1(C193S). We find an increase in the level of FRET with binding to membranes with mixed lipids but not to those containing only lipids with electrically neutral headgroups. These results suggest that enzymatic activation can be conferred through optimal association of the PHbeta71-88 region to specific membrane surfaces. These studies allow us to understand the basis of variations of Gbetagamma activation on different membrane surfaces.  相似文献   

9.
Activation of the Galpha subunit of heterotrimeric GTP-binding proteins by transmembrane receptors requires the propagation of structural signals from the receptor-binding site to the nucleotide-binding site at the opposite side of the protein. In a previous model, it was suggested that the Gbeta-Ggamma dimer is tilted away from Galpha by a lever-arm motion of the Galpha N-terminal helix. Here, we propose that the motion occurs in the opposite direction, close-packing the Galpha-Gbeta interface and creating a novel interface between the helical domain of Galpha and the N terminus of Ggamma, which determines the specificity of activation.  相似文献   

10.
11.
Homologous amino acid sequences of phospholipases A2 of snakes belonging to families Elapidae, Viperidae and Colubridae were considered in order to study the location of conservative and variable regions. To identify significant conservative and variable regions a comparison between two groups of aligned sequences of snake phospholipases A2 was successfully applied. The phospholipases A2 sequences were divided into two groups (taxons) according to the phylogenetic tree reconstructed from the pair distance matrix. Results of the comparison were plotted to facilitate the identification of significant conservative and variable regions. It was shown, that the results of the comparison between two phylogenetic groups of snake phospholipases A2 didn't depend much on the number of each group representatives, and the location of conservative and variable regions didn't significantly change if one of the groups was represented by the single sequence. It should be mentioned, that the more the phylogenetic difference between groups of phospholipases A2 the more was the number of significant conservative and variable regions. The knowledge of the number and location of conservative and variable regions and their dependence on phylogenetic relations between the compared taxons can be used to predict the synthetic peptide structure to obtain antibodies of various specificity. These antibodies may have either a wide range of cross-reactivity against all of phospholipases A2 or a limited range of cross-reactivity against phospholipases A2 of one taxon.  相似文献   

12.
Protein phosphatase 2A (PP2A) is a family of multifunctional serine/threonine phosphatases all composed of a catalytic C, a structural A, and a regulatory B subunit. Assembly of the complex with the appropriate B subunit forms the key to the functional specificity and regulation of PP2A. Emerging evidence suggests a crucial role for methylation and phosphorylation of the PP2A C subunit in this process. In this study, we show that PP2A C subunit methylation was not absolutely required for binding the PR61/B' and PR72/B' subunit families, whereas binding of the PR55/B subunit family was determined by methylation and the nature of the C-terminal amino acid side chain. Moreover mutation of the phosphorylatable Tyr(307) or Thr(304) residues differentially affected binding of distinct B subunit family members. Down-regulation of the PP2A methyltransferase LCMT1 by RNA interference gradually reduced the cellular amount of methylated C subunit and induced a dynamic redistribution of the remaining methylated PP2A(C) between different PP2A trimers consistent with their methylation requirements. Persistent knockdown of LCMT1 eventually resulted in specific degradation of the PR55/B subunit and apoptotic cell death. Together these results establish a crucial foundation for understanding PP2A regulatory subunit selection.  相似文献   

13.
Sterol carrier protein-2 (SCP2) is a small, 123 amino acid, protein postulated to play a role in intracellular transport and metabolism of lipids such as cholesterol, phospholipids, and branched chain fatty acids. While it is thought that interaction of SCP2 with membranes is necessary for lipid transfer, evidence for this possibility and identification of a membrane interaction domain within SCP2 has remained elusive. As shown herein with circular dichroism and a direct binding assay, SCP2 bound to small unilamellar vesicle (SUV) membranes to undergo significant alteration in secondary structure. The SCP2 amphipathic N-terminal 32 amino acids, comprised of two alpha-helical segments, were postulated to represent a putative phospholipid interaction site. This hypothesis was tested with a series of SCP2 N-terminal peptides, circular dichroism, and direct binding studies. The SCP2 N-terminal peptide (1-32)SCP2, primarily random coil in aqueous buffer, adopted alpha-helical structure upon interaction with membranes. The induction of alpha-helical structure in the peptide was maximal when the membranes contained a high mole percent of negatively charged phospholipid and of cholesterol. While deletion of the second alpha-helical segment within this peptide had no effect on formation of the first alpha-helix, it significantly weakened the peptide interaction with membranes. Substitution of Leu(20) with Glu(20) in the N-terminal peptide disrupted the alpha-helix structure and greatly weakened the peptide interaction with membranes. Finally, deletion of the first nine nonhelical amino acids had no effect either on formation of alpha-helix or on peptide binding to membranes. N-Terminal peptide (1-32)SCP2 competed with SCP2 for binding to SUV. These data were consistent with the N-terminus of SCP2 providing a membrane interaction domain that preferentially bound to membranes rich in anionic phospholipid and cholesterol.  相似文献   

14.
Turkey erythrocyte membranes possess a phospholipase C that is markedly activated by P2Y-purinergic receptor agonists and guanine nucleotides. Reconstitution of [3H]inositol-labeled turkey erythrocyte membranes with guanine nucleotide regulatory protein (G-protein) beta gamma subunits resulted in inhibition of both AlF-4-stimulated adenylate cyclase and AlF-4-stimulated phospholipase C activities. The apparent potency (K0.5 approximately 1 microgram or 20 pmol of beta gamma/mg of membrane protein) of beta gamma subunits for inhibition of each enzyme activity was similar and occurred with beta gamma purified by different methodologies from turkey erythrocyte, bovine brain, or human placenta membranes. In contrast to the effect on AlF-4-stimulated activity, the stimulatory effect on phospholipase C of the P2Y-purinergic receptor agonist 2-methylthioadenosine 5'-triphosphate in the presence of guanine nucleotides was potentiated by 50-100% in a concentration-dependent manner by reconstitution of beta gamma subunits. beta gamma subunits did not affect the K0.5 value of 2-methylthioadenosine 5'-triphosphate for the stimulation of phospholipase C activity. These results indicate that beta gamma subunits influence phospholipase C activity in a concentration range similar to that necessary for regulation of adenylate cyclase activity and suggest the involvement of a G-protein possessing an alpha beta gamma heterotrimeric structure in coupling hormone receptors to phospholipase C.  相似文献   

15.
The activity of phospholipase D (PLD) is regulated by a variety of hormonal stimuli and provides a mechanistic pathway for response of cells to extracellular stimuli. The two identified mammalian PLD enzymes possess highly homologous C termini, which are required for catalytic activity. Mutational analysis of PLD1 and PLD2 reveals that modification of as little as the C-terminal threonine or the addition of a single alanine attenuates activity of the enzyme. Protein folding appears to be intact because mutant enzymes express to similar levels in Sf9 cells and addition of peptides representing the C-terminal amino acids, including the simple hexamer PMEVWT, restores partial activity to several of the mutants. Analysis of several mutants suggests a requirement for the hydrophobic reside at the -2-position but not an absolute requirement for the hydroxyl side chain of threonine at the C terminus. The inability of peptides amidated at their C termini to effect restoration of activity indicates the involvement of the C-terminal alpha carboxyl group in functional activity of these enzymes. The ability of peptides to restore activity to PLD enzymes mutated at the C terminus suggests a flexible interaction of this portion of the molecule with a catalytic core constructed on conserved HKD motifs. Participation of these C termini residues in either stabilization of the catalytic site or the enzymatic reaction itself remains to be determined. This requirement for the C terminus provides an excellent potential site for interaction with regulatory proteins that may either enhance or down-regulate the activity of these enzymes in vitro.  相似文献   

16.
Current studies involve an investigation of the role of the pleckstrin homology (PH) domain in membrane targeting and activation of phospholipase Cbeta(1) (PLCbeta(1)). Here we report studies on the membrane localization of the isolated PH domain from the amino terminus of PLCbeta(1) (PLCbeta(1)-PH) using fluorescence microscopy of a green fluorescent protein fusion protein. Whereas PLCbeta(1)-PH does not localize to the plasma membrane in serum-starved cells, it undergoes a rapid but transient migration to the plasma membrane upon stimulation of cells with serum or lysophosphatidic acid (LPA). Regulation of the plasma membrane localization of PLCbeta(1)-PH by phosphoinositides was also investigated. PLCbeta(1)-PH was found to bind phosphatidylinositol 3-phosphate most strongly, whereas other phosphoinositides were bound with lower affinity. The plasma membrane localization of PLCbeta(1)-PH induced by serum and LPA was blocked by wortmannin pretreatment and by LY294002. In parallel, activation of PLCbeta by LPA was inhibited by wortmannin, by LY294002, or by the overexpression of PLCbeta(1)-PH. Microinjection of betagamma subunits of G proteins in serum-starved cells induced the translocation of PLCbeta(1)-PH to the plasma membrane. These results demonstrate that a cooperative mechanism involving phosphatidylinositol 3-phosphate and the Gbetagamma subunit regulates the plasma membrane localization and activation of PLCbeta(1)-PH.  相似文献   

17.
Recent studies demonstrate that processing of N-linked glycans plays an important role in the quality control of major histocompatibility complex (MHC) class I transport from the endoplasmic reticulum (ER) to the Golgi complex and beyond. Here, we investigated the importance of oligosaccharide chain length on the association of MHC class I proteins with molecular chaperones and their intracellular transport from the ER to the Golgi. These data show that calnexin interaction with class I proteins having truncated N-glycans was reduced compared to normal class I molecules, whereas the assembly of class I with calreticulin and TAP was unperturbed by N-glycan chain length. Additionally, these results demonstrate that class I proteins containing truncated N-glycans showed decreased detachment from calreticulin and TAP relative to class I proteins bearing typical oligosaccharides. Taken together, these studies show that N-glycan chain length is an important determinant for the quality control of newly synthesized MHC class I proteins in the ER.  相似文献   

18.
Factor XIa (FXIa) is a serine protease important for initiating the intrinsic pathway of blood coagulation. Protease nexin 2 (PN2) is a Kunitz-type protease inhibitor secreted by activated platelets and a physiologically important inhibitor of FXIa. Inhibition of FXIa by PN2 requires interactions between the two proteins that are confined to the catalytic domain of the enzyme and the Kunitz protease inhibitor (KPI) domain of PN2. Recombinant PN2KPI and a mutant form of the FXI catalytic domain (FXIac) were expressed in yeast, purified to homogeneity, co-crystallized, and the structure of the complex was solved at 2.6 angstroms (Protein Data Bank code 1ZJD). In this complex, PN2KPI has a characteristic, disulfide-stabilized double loop structure that fits into the FXIac active site. To determine the contributions of residues within PN2KPI to its inhibitory activity, selected point mutations in PN2KPI loop 1 11TGPCRAMISR20 and loop 2 34FYGGC38 were tested for their ability to inhibit FXIa. The P1 site mutation R15A completely abolished its ability to inhibit FXIa. IC50 values for the wild type protein and the remaining mutants were as follows: PN2KPI WT, 1.28 nM; P13A, 5.92 nM; M17A, 1.62 nM; S19A, 1.86 nM; R20A, 5.67 nM; F34A, 9.85 nM. The IC50 values for the M17A and S19A mutants were not significantly different from those obtained with wild type PN2KPI. These functional studies and activated partial thromboplastin time analysis validate predictions made from the PN2KPI-FXIac co-crystal structure and implicate PN2KPI residues, in descending order of importance, Arg15, Phe34, Pro13, and Arg20 in FXIa inhibition by PN2KPI.  相似文献   

19.
Li HC  Song L  Salzameda B  Cremo CR  Fajer PG 《Biochemistry》2006,45(19):6212-6221
Domain dynamics of the chicken gizzard smooth muscle myosin catalytic domain (heavy chain Cys-717) and regulatory domain (regulatory light chain Cys-108) were determined in the absence of nucleotides using saturation-transfer electron paramagnetic resonance. In unphosphorylated synthetic filaments, the effective rotational correlation times, tau(r), were 24 +/- 6 micros and 441 +/- 79 micros for the catalytic and regulatory domains, respectively. The corresponding amplitudes of motion were 42 +/- 4 degrees and 24 +/- 9 degrees as determined from steady-state phosphorescence anisotropy. These results suggest that the two domains have independent mobility due to a hinge between the two domains. Although a similar hinge was observed for skeletal myosin (Adhikari and Fajer (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 9643-9647. Brown et al. (2001) Biochemistry 40, 8283-8291), the latter displayed higher regulatory domain mobility, tau(r)= 40 +/- 3 micros, suggesting a smooth muscle specific mechanism of constraining regulatory domain dynamics. In the myosin monomers the correlation times for both domains were the same (approximately 4 micros) for both smooth and skeletal myosin, suggesting that the motional difference between the two isoforms in the filaments was not due to intrinsic variation of hinge stiffness. Heavy chain/regulatory light chain chimeras of smooth and skeletal myosin pinpointed the origin of the restriction to the heavy chain and established correlation between the regulatory domain dynamics with the ability of myosin to switch off but not to switch on the ATPase and the actin sliding velocity. Phosphorylation of smooth muscle myosin filaments caused a small increase in the amplitude of motion of the regulatory domain (from 24 +/- 4 degrees to 36 +/- 7 degrees ) but did not significantly affect the rotational correlation time of the regulatory domain (441 to 408 micros) or the catalytic domain (24 to 17 micros). These data are not consistent with a stable interaction between the two catalytic domains in unphosphorylated smooth muscle myosin filaments in the absence of nucleotides.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号