首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Precambrian Shield rocks host the oldest fracture fluids on Earth, with residence times up to a billion years or more. Water–rock reactions in these fracture systems over geological time have produced highly saline fluids, which can contain millimolar concentrations of H2. Mixing of these ancient Precambrian fluids with meteoric or palaeo-meteoric water can occur through tectonic fracturing, providing microbial inocula and redox couples to fuel blooms of subsurface growth. Here, we present geochemical and microbiological data from a series of borehole fluids of varying ionic strength (0.6–6.4 M) from the Thompson Mine (Manitoba) within the Canadian Precambrian Shield. Thermodynamic calculations demonstrate sufficient energy for H2-based catabolic reactions across the entire range of ionic strengths during mixing of high ionic strength fracture fluids with meteoric water, although microbial H2 consumption and cultivable H2-utilizing microbes were only detected in fluids of ≤1.9 M ionic strength. This pattern of microbial H2 utilization can be explained by the higher potential bioenergetic cost of organic osmolyte synthesis at increasing ionic strengths. We propose that further research into the bioenergetics of osmolyte regulation in halophiles is warranted to better constrain the habitability zones of hydrogenotrophic ecosystems in both terrestrial subsurface, including potential future radioactive waste disposal sites, and other planetary body crustal environments, including Mars.  相似文献   

2.
Water–rock interactions in ultramafic lithosphere generate reduced chemical species such as hydrogen that can fuel subsurface microbial communities. Sampling of this environment is expensive and technically demanding. However, highly accessible, uplifted oceanic lithospheres emplaced onto continental margins (ophiolites) are potential model systems for studies of the subsurface biosphere in ultramafic rocks. Here, we describe a microbiological investigation of partially serpentinized dunite from the Leka ophiolite (Norway). We analysed samples of mineral coatings on subsurface fracture surfaces from different depths (10–160 cm) and groundwater from a 50‐m‐deep borehole that penetrates several major fracture zones in the rock. The samples are suggested to represent subsurface habitats ranging from highly anaerobic to aerobic conditions. Water from a surface pond was analysed for comparison. To explore the microbial diversity and to make assessments about potential metabolisms, the samples were analysed by microscopy, construction of small subunit ribosomal RNA gene clone libraries, culturing and quantitative‐PCR. Different microbial communities were observed in the groundwater, the fracture‐coating material and the surface water, indicating that distinct microbial ecosystems exist in the rock. Close relatives of hydrogen‐oxidizing Hydrogenophaga dominated (30% of the bacterial clones) in the oxic groundwater, indicating that microbial communities in ultramafic rocks at Leka could partially be driven by H2 produced by low‐temperature water–rock reactions. Heterotrophic organisms, including close relatives of hydrocarbon degraders possibly feeding on products from Fischer–Tropsch‐type reactions, dominated in the fracture‐coating material. Putative hydrogen‐, ammonia‐, manganese‐ and iron‐oxidizers were also detected in fracture coatings and the groundwater. The microbial communities reflect the existence of different subsurface redox conditions generated by differences in fracture size and distribution, and mixing of fluids. The particularly dense microbial communities in the shallow fracture coatings seem to be fuelled by both photosynthesis and oxidation of reduced chemical species produced by water–rock reactions.  相似文献   

3.
Alkaline, sulfidic, 54 to 60 degrees C, 4 to 53 million-year-old meteoric water emanating from a borehole intersecting quartzite-hosted fractures >3.3 km beneath the surface supported a microbial community dominated by a bacterial species affiliated with Desulfotomaculum spp. and an archaeal species related to Methanobacterium spp. The geochemical homogeneity over the 650-m length of the borehole, the lack of dividing cells, and the absence of these microorganisms in mine service water support an indigenous origin for the microbial community. The coexistence of these two microorganisms is consistent with a limiting flux of inorganic carbon and SO4(2-) in the presence of high pH, high concentrations of H2 and CH4, and minimal free energy for autotrophic methanogenesis. Sulfide isotopic compositions were highly enriched, consistent with microbial SO4(2-) reduction under hydrologic isolation. An analogous microbial couple and similar abiogenic gas chemistry have been reported recently for hydrothermal carbonate vents of the Lost City near the Mid-Atlantic Ridge (D. S. Kelly et al., Science 307:1428-1434, 2005), suggesting that these features may be common to deep subsurface habitats (continental and marine) bearing this geochemical signature. The geochemical setting and microbial communities described here are notably different from microbial ecosystems reported for shallower continental subsurface environments.  相似文献   

4.
Hydrothermal springs harbor unique microbial communities that have provided insight into the early evolution of life, expanded known microbial diversity, and documented a deep Earth biosphere. Mesothermal (cool but above ambient temperature) continental springs, however, have largely been ignored although they may also harbor unique populations of micro‐organisms influenced by deep subsurface fluid mixing with near surface fluids. We investigated the microbial communities of 28 mesothermal springs in diverse geologic provinces of the western United States that demonstrate differential mixing of deeply and shallowly circulated water. Culture‐independent analysis of the communities yielded 1966 bacterial and 283 archaeal 16S rRNA gene sequences. The springs harbored diverse taxa and shared few operational taxonomic units (OTUs) across sites. The Proteobacteria phylum accounted for most of the dataset (81.2% of all 16S rRNA genes), with 31 other phyla/candidate divisions comprising the remainder. A small percentage (~6%) of bacterial 16S rRNA genes could not be classified at the phylum level, but were mostly distributed in those springs with greatest inputs of deeply sourced fluids. Archaeal diversity was limited to only four springs and was primarily composed of well‐characterized Thaumarchaeota. Geochemistry across the dataset was varied, but statistical analyses suggested that greater input of deeply sourced fluids was correlated with community structure. Those with lesser input contained genera typical of surficial waters, while some of the springs with greater input may contain putatively chemolithotrophic communities. The results reported here expand our understanding of microbial diversity of continental geothermal systems and suggest that these communities are influenced by the geochemical and hydrologic characteristics arising from deeply sourced (mantle‐derived) fluid mixing. The springs and communities we report here provide evidence for opportunities to understand new dimensions of continental geobiological processes where warm, highly reduced fluids are mixing with more oxidized surficial waters.  相似文献   

5.
Spatial and resource factors influencing high microbial diversity in soil.   总被引:16,自引:0,他引:16  
To begin defining the key determinants that drive microbial community structure in soil, we examined 29 soil samples from four geographically distinct locations taken from the surface, vadose zone, and saturated subsurface using a small-subunit rRNA-based cloning approach. While microbial communities in low-carbon, saturated, subsurface soils showed dominance, microbial communities in low-carbon surface soils showed remarkably uniform distributions, and all species were equally abundant. Two diversity indices, the reciprocal of Simpson's index (1/D) and the log series index, effectively distinguished between the dominant and uniform diversity patterns. For example, the uniform profiles characteristic of the surface communities had diversity index values that were 2 to 3 orders of magnitude greater than those for the high-dominance, saturated, subsurface communities. In a site richer in organic carbon, microbial communities consistently exhibited the uniform distribution pattern regardless of soil water content and depth. The uniform distribution implies that competition does not shape the structure of these microbial communities. Theoretical studies based on mathematical modeling suggested that spatial isolation could limit competition in surface soils, thereby supporting the high diversity and a uniform community structure. Carbon resource heterogeneity may explain the uniform diversity patterns observed in the high-carbon samples even in the saturated zone. Very high levels of chromium contamination (e.g., >20%) in the high-organic-matter soils did not greatly reduce the diversity. Understanding mechanisms that may control community structure, such as spatial isolation, has important implications for preservation of biodiversity, management of microbial communities for bioremediation, biocontrol of root diseases, and improved soil fertility.  相似文献   

6.
Lateral gene transfer (LGT) plays a vital role in increasing the genetic diversity of microorganisms and promoting the spread of fitness-enhancing phenotypes throughout microbial communities. To date, LGT has been investigated in surface soils, natural waters, and biofilm communities but not in the deep terrestrial subsurface. Here we used a combination of molecular analyses to investigate the role of LGT in the evolution of metal homeostasis in lead-resistant subsurface bacteria. A nested PCR approach was employed to obtain DNA sequences encoding P(IB)-type ATPases, which are proteins that transport toxic or essential soft metals such as Zn(II), Cd(II), and Pb(II) through the cell wall. Phylogenetic incongruencies between a 16S rRNA gene tree and a tree based on 48 P(IB)-type ATPase amplicons and sequences available for complete bacterial genomes revealed an ancient transfer from a member of the beta subclass of the Proteobacteria (beta-proteobacterium) that may have predated the diversification of the genus PSEUDOMONAS: Four additional phylogenetic incongruencies indicate that LGT has occurred among groups of beta- and gamma-proteobacteria. Two of these transfers appeared to be recent, as indicated by an unusual G+C content of the P(IB)-type ATPase amplicons. This finding provides evidence that LGT plays a distinct role in the evolution of metal homeostasis in deep subsurface bacteria, and it shows that molecular evolutionary approaches may be used for investigation of this process in microbial communities in specific environments.  相似文献   

7.

The concept of a deep microbial biosphere has advanced over the past several decades from a hypothesis viewed with considerable skepticism to being widely accepted. Phylogenetically diverse prokaryotes have been cultured from or detected via characterization of directly-extracted nucleic acids from a wide range of deep terrestrial environments. Recent advances have linked the metabolic potential of these microorganisms, determined directly or inferred from phylogeny, to biogeochemical reactions determined via geochemical measurements and modeling. Buried organic matter or kerogen is an important source of energy for sustaining anaerobic heterotrophic microbial communities in deep sediments and sedimentary rock although rates of respiration are among the slowest rates measured on the planet. In contrast, Subsurface Lithoautotrophic Microbial Ecosystems based on H 2 as the primary energy source appear to dominate in many crystalline rock environments. These photosynthesis-independent ecosystems remain an enigma due to the difficulty in accessing and characterizing appropriate samples. Deep mines and dedicated rock laboratories, however, may offer unprecedented opportunities for investigating subsurface microbial communities and their interactions with the geosphere.  相似文献   

8.
Reactions associated with the geochemical process of serpentinization can generate copious quantities of hydrogen and low-molecular-weight organic carbon compounds, which may provide energy and nutrients to sustain subsurface microbial communities independently of the photosynthetically supported surface biosphere. Previous microbial ecology studies have tested this hypothesis in deep sea hydrothermal vents, such as the Lost City hydrothermal field. This study applied similar methods, including molecular fingerprinting and tag sequencing of the 16S rRNA gene, to ultrabasic continental springs emanating from serpentinizing ultramafic rocks. These molecular surveys were linked with geochemical measurements of the fluids in an interdisciplinary approach designed to distinguish potential subsurface organisms from those derived from surface habitats. The betaproteobacterial genus Hydrogenophaga was identified as a likely inhabitant of transition zones where hydrogen-enriched subsurface fluids mix with oxygenated surface water. The Firmicutes genus Erysipelothrix was most strongly correlated with geochemical factors indicative of subsurface fluids and was identified as the most likely inhabitant of a serpentinization-powered subsurface biosphere. Both of these taxa have been identified in multiple hydrogen-enriched subsurface habitats worldwide, and the results of this study contribute to an emerging biogeographic pattern in which Betaproteobacteria occur in near-surface mixing zones and Firmicutes are present in deeper, anoxic subsurface habitats.  相似文献   

9.
This study deals with the chemical characterization of the biogeochemical processes occurring in a shallow aquifer in crystalline rocks. The influence of rock heterogeneity and the related physical processes on the aquifer biogeochemistry have been investigated. A hydrochemical survey (major anion and cation analysis) shows that rock heterogeneity leads to a stronger spatial than temporal variability. Some rapidly recharged and low- mineralized waters are present at the soil/rock interface. However the pumped well intersects a preferential flow path and pumps nitrate-rich water. Sulfur and oxygen isotope data from sulfates in the pumped water clearly show sulfide oxidation with only 20–30% of the oxygen atoms in sulfates formed by sulfide oxidation coming from atmospheric oxygen. This low contribution of molecular oxygen in sulfide oxidation, associated with the drastic decrease in nitrate concentration, involves a marked relationship between the nitrogen and sulfur cycles through denitrification, coupled with sulfide oxidation. Conversely, for rapidly recharged waters, the rock physical heterogeneity allows sulfide oxidation by molecular oxygen indicated by a contribution of atmospheric oxygen of nearly 70% in the newly formed sulfate. As the aquifer biogeochemistry is controlled by the physical characteristics of the rocks, pumping may overcome the natural flux pattern described previously. This anthropogenic disturbance leads to a modification of water pathways (spatial mixing or relative contribution of the fracture/matrix waters to the global fluxes) and, consequently, to a modification of the physical and biogeochemical processes occurring in the aquifer.  相似文献   

10.
Background

Nothing is currently known about microbial composition of saline lakes of the Novosibirsk region and its dependence on physical-chemical parameters of waters. We studied the structure of microbial communities of saline lakes of the Novosibirsk region and the effect of physical-chemical parameters of waters on microbial communities of these lakes.

Results

According to the ion content, the lakes were classified either as chloride or chloride-sulfate types. Water salinity ranges from 4.3 to 290 g L−1. Many diverse microbial communities were found. Filamentous and colonial Cyanobacteria of the genera Scytonema, Aphanocapsa, and/or filamentous Algae dominated in littoral communities. Spatial and temporal organization of planktonic microbial communities and the quantities of Archaea and Bacteria were investigated using fluorescent in situ hybridization. We have found that the dominant planktonic component is represented by Archaea, or, less frequently, by Bacteria. Various phylogenetic groups (Bacteria, Archaea, Algae, and Cyanobacteria) are nonuniformly distributed. The principal component analysis was used to detect environmental factors that affect microorganism abundance. We found the principal components responsible for 71.1 % of the observed variation. It was demonstrated that two-block partial least squares was a better method than principal component analysis for analysis of the data. We observed general relationships between microbial abundance and water salinity.

Conclusions

We have performed the first-ever study of the structure of the microbial communities of eleven saline lakes in the Novosibirsk region along with their physical-chemical parameters of waters. Our study demonstrates that saline lakes in the Novosibirsk region contain a unique microbial communities that may become a prolific source of microorganisms for fundamental and applied studies in various fields of ecology, microbiology, geochemistry, and biotechnology, and deserve further metagenomic investigation.

  相似文献   

11.
To begin defining the key determinants that drive microbial community structure in soil, we examined 29 soil samples from four geographically distinct locations taken from the surface, vadose zone, and saturated subsurface using a small-subunit rRNA-based cloning approach. While microbial communities in low-carbon, saturated, subsurface soils showed dominance, microbial communities in low-carbon surface soils showed remarkably uniform distributions, and all species were equally abundant. Two diversity indices, the reciprocal of Simpson’s index (1/D) and the log series index, effectively distinguished between the dominant and uniform diversity patterns. For example, the uniform profiles characteristic of the surface communities had diversity index values that were 2 to 3 orders of magnitude greater than those for the high-dominance, saturated, subsurface communities. In a site richer in organic carbon, microbial communities consistently exhibited the uniform distribution pattern regardless of soil water content and depth. The uniform distribution implies that competition does not shape the structure of these microbial communities. Theoretical studies based on mathematical modeling suggested that spatial isolation could limit competition in surface soils, thereby supporting the high diversity and a uniform community structure. Carbon resource heterogeneity may explain the uniform diversity patterns observed in the high-carbon samples even in the saturated zone. Very high levels of chromium contamination (e.g., >20%) in the high-organic-matter soils did not greatly reduce the diversity. Understanding mechanisms that may control community structure, such as spatial isolation, has important implications for preservation of biodiversity, management of microbial communities for bioremediation, biocontrol of root diseases, and improved soil fertility.  相似文献   

12.
Alkaline, sulfidic, 54 to 60°C, 4 to 53 million-year-old meteoric water emanating from a borehole intersecting quartzite-hosted fractures >3.3 km beneath the surface supported a microbial community dominated by a bacterial species affiliated with Desulfotomaculum spp. and an archaeal species related to Methanobacterium spp. The geochemical homogeneity over the 650-m length of the borehole, the lack of dividing cells, and the absence of these microorganisms in mine service water support an indigenous origin for the microbial community. The coexistence of these two microorganisms is consistent with a limiting flux of inorganic carbon and SO42− in the presence of high pH, high concentrations of H2 and CH4, and minimal free energy for autotrophic methanogenesis. Sulfide isotopic compositions were highly enriched, consistent with microbial SO42− reduction under hydrologic isolation. An analogous microbial couple and similar abiogenic gas chemistry have been reported recently for hydrothermal carbonate vents of the Lost City near the Mid-Atlantic Ridge (D. S. Kelly et al., Science 307:1428-1434, 2005), suggesting that these features may be common to deep subsurface habitats (continental and marine) bearing this geochemical signature. The geochemical setting and microbial communities described here are notably different from microbial ecosystems reported for shallower continental subsurface environments.  相似文献   

13.
In order to fully delineate the interactions of microorganisms with geological substrates, unequivocal identification of intact microbial cells within geologic samples is required without the disruption of either the rock texture or the relationship of the microorganisms to the mineral fabric. To achieve this objective we developed a protocol that enables the visualization of intact microbial cells in petrographic thin sections, avoids detaching the cells from their host mineral surfaces and avoids microbial contamination during the lapidary process. Propidium iodide and POPO-3, nucleic acid stains that specifically target double-stranded DNA and RNA were utilized for in situ visualization of cells in surface and subsurface basalts from northeastern Idaho. Additionally, examination of samples incubated with acetic acid-UL-14C via phosphor imagining facilitated the in situ visualization of 14C labeled biomass. Biomass observed was low (<10(7) cells/g). These observations indicate that the microbial distribution in these rocks exhibits a high degree of spatial heterogeneity at the sub-centimeter scale.  相似文献   

14.

Recent studies have shown that the biosphere extends to depths that exceed 3 km, raising questions regarding the age of the microbes in these deep ecosystems and their sources of energy for metabolism. Abiogenic energy sources that are derived from in situ, purely geochemical sources and thus independent from photosynthesis have been suggested. We sampled saline fracture water emanating from a 3.1-km deep borehole in a Au mine in the Witwatersrand Basin of South Africa and characterized the chemical constituents (including stable isotopes), groundwater age, and indigenous microorganisms. Salinity data and ratios of dissolved noble gases indicate that extremely ancient (2.0 Ga) saline fracture water has mixed with meteoric water to yield an average subsurface residence time of 20–160 Ma, the oldest age of any waters collected to date in the Witwatersrand Basin. H2 isotope data suggest the water originated from a depth of 4 to 5 km. Sulfur isotope fractionation indicates biological sulfate reduction. Calculations of free energies and steady state energy fluxes based on water chemistry data also support sulfate reduction as the dominant terminal electron accepting process. Lipid and flow cytometry data indicate a sparse microbial community (103 cells ml?1), despite the presence of relatively high concentrations of energy-rich compounds (H2, CH4, CO, ethane, propane, butane, and acetate). The H2 can be explained by radiolysis of water. Stable isotopic signatures of the CH4 and short chain hydrocarbons indicate abiogenic synthesis. The persistence of energy-rich compounds suggests that other factors are limiting to microbial metabolism and growth, e.g., availability of an inorganic nutrient, such as Fe or phosphate.  相似文献   

15.
页岩气是一种特殊的天然气聚集,以吸附或游离状态存在于页岩之中。页岩气资源储量丰富,约占全球天然气能源的三分之一,主要分布在中国、北美、俄罗斯等国家和地区。页岩气开采所使用的水力压裂技术会对深地微生物产生显著影响,在水力压裂的不同阶段,微生物群落组成存在明显差异。其中,产甲烷菌能够提高页岩气的产量,而产酸细菌会造成设备腐蚀,降低页岩气的回收效率。本文概述了页岩气的开采现状、开采过程以及微生物种群的变化和潜在影响,以期促进页岩气开采与深地微生物相互影响的研究,最终推动页岩气的绿色、高效开采。  相似文献   

16.

Background

Nothing is currently known about microbial composition of saline lakes of the Novosibirsk region and its dependence on physical-chemical parameters of waters. We studied the structure of microbial communities of saline lakes of the Novosibirsk region and the effect of physical-chemical parameters of waters on microbial communities of these lakes.

Results

According to the ion content, the lakes were classified either as chloride or chloride-sulfate types. Water salinity ranges from 4.3 to 290 g L?1. Many diverse microbial communities were found. Filamentous and colonial Cyanobacteria of the genera Scytonema, Aphanocapsa, and/or filamentous Algae dominated in littoral communities. Spatial and temporal organization of planktonic microbial communities and the quantities of Archaea and Bacteria were investigated using fluorescent in situ hybridization. We have found that the dominant planktonic component is represented by Archaea, or, less frequently, by Bacteria. Various phylogenetic groups (Bacteria, Archaea, Algae, and Cyanobacteria) are nonuniformly distributed. The principal component analysis was used to detect environmental factors that affect microorganism abundance. We found the principal components responsible for 71.1 % of the observed variation. It was demonstrated that two-block partial least squares was a better method than principal component analysis for analysis of the data. We observed general relationships between microbial abundance and water salinity.

Conclusions

We have performed the first-ever study of the structure of the microbial communities of eleven saline lakes in the Novosibirsk region along with their physical-chemical parameters of waters. Our study demonstrates that saline lakes in the Novosibirsk region contain a unique microbial communities that may become a prolific source of microorganisms for fundamental and applied studies in various fields of ecology, microbiology, geochemistry, and biotechnology, and deserve further metagenomic investigation.
  相似文献   

17.
Energetics of microbial food webs   总被引:13,自引:10,他引:3  
The energetic demand of microorganisms in natural waters and the flux of energy between microorganisms and metazoans has been evaluated by empirical measurements in nature, in microcosms and mesocosms, and by simulation models. Microorganisms in temperate and tropical waters often use half or more of the energy fixed by photosynthesis. Most simulations and some experimental results suggest significant energy transfer to metazoans, but empirical evidence is mixed. Considerations of the range of growth yields of microorganisms and the number of trophic transfers among them indicate major energy losses within microbial food webs. Our ability to verify and quantify these processes is limited by the variability of assimilation efficiency and uncertainty about the structure of microbial food webs. However, even a two-step microbial chain is a major energy sink. As an energetic link to metazoans, the detritus food web is inefficient, and its significance may have been overstated. There is not enough bacterial biomass associated with detritus to support metazoan detritivores. Much detritus is digestible by metazoans directly. Thus, metazoans and bacteria may to a considerable degree compete for a common resource. Microorganisms, together with metazoans, are important to the stability of planktonic communities through their roles as rapid mineralizers of organic matter, releasing inorganic nutrients. The competition for organic matter and the resultant rapid mineralization help maintain stable populations of phytoplankton in the absence of advective nutrient supply. At temperatures near O °C, bacterial metabolism is suppressed more than is the rate of photosynthesis. As a result, the products of the spring phytoplankton bloom in high-temperate latitudes are not utilized rapidly by bacteria. At temperatures below 0°C microbial food webs are neither energy sinks or links: they are suppressed. Because the underlying mechanism of low-temperature inhibition is not known, we cannot yet generalize about this as a control of food web processes. Microorganisms may operate on several trophic levels simultaneously. Therefore, the realism of the trophic level concept and the reality of the use of ecological efficiency calculations in ecosystem models is questionable.  相似文献   

18.
Viruses play important roles in marine surface ecosystems, but little is known about viral ecology and virus-mediated processes in deep-sea hydrothermal microbial communities. In this study, we examined virus-like particle (VLP) abundances in planktonic and attached microbial communities, which occur in physical and chemical gradients in both deep and shallow submarine hydrothermal environments (mixing waters between hydrothermal fluids and ambient seawater and dense microbial communities attached to chimney surface areas or macrofaunal bodies and colonies). We found that viruses were widely distributed in a variety of hydrothermal microbial habitats, with the exception of the interior parts of hydrothermal chimney structures. The VLP abundance and VLP-to-prokaryote ratio (VPR) in the planktonic habitats increased as the ratio of hydrothermal fluid to mixing water increased. On the other hand, the VLP abundance in attached microbial communities was significantly and positively correlated with the whole prokaryotic abundance; however, the VPRs were always much lower than those for the surrounding hydrothermal waters. This is the first report to show VLP abundance in the attached microbial communities of submarine hydrothermal environments, which presented VPR values significantly lower than those in planktonic microbial communities reported before. These results suggested that viral lifestyles (e.g., lysogenic prevalence) and virus interactions with prokaryotes are significantly different among the planktonic and attached microbial communities that are developing in the submarine hydrothermal environments.  相似文献   

19.
The microbial ecology associated with siliceous sinters was studied in five geochemically diverse Icelandic geothermal systems. Bacterial 16S rRNA clone libraries were constructed from water-saturated precipitates from each site resulting in a total of 342 bacterial clone sequences and 43 species level phylotypes. In near-neutral, saline (2.6–4.7% salinity) geothermal waters where sinter growth varied between 10 and ~300 kg year−1 m−2, 16S rRNA gene analyses revealed very low (no OTUs could be detected) to medium (9 OTUs) microbial activity. The most dominant phylotypes found in these waters belong to marine genera of the Proteobacteria. In contrast, in alkaline (pH = 9–10), meteoric geothermal waters with temperature = 66–96°C and <1–20 kg year−1m−2 sinter growth, extensive biofilms (a total of 34 OTUs) were observed within the waters and these were dominated by members of the class Aquificae (mostly related to Thermocrinis), Deinococci (Thermus species) as well as Proteobacteria. The observed phylogenetic diversity (i.e., number and composition of detected OTUs) is argued to be related to the physico-chemical regime prevalent in the studied geothermal waters; alkaliphilic thermophilic microbial communities with phylotypes related to heterotrophic and autotrophic microorganisms developed in alkaline high temperature waters, whereas halophilic mesophilic communities dominated coastal geothermal waters.  相似文献   

20.
The microbial communities present in two underground coal mines in the Bowen Basin, Queensland, Australia, were investigated to deduce the effect of pumping and mining on subsurface methanogens and methanotrophs. The micro‐organisms in pumped water from the actively mined areas, as well as, pre‐ and post‐mining formation waters were analyzed using 16S rRNA gene amplicon sequencing. The methane stable isotope composition of Bowen Basin coal seam indicates that methanogenesis has occurred in the geological past. More recently at the mine site, changing groundwater flow dynamics and the introduction of oxygen in the subsurface has increased microbial biomass and diversity. Consistent with microbial communities found in other coal seam environments, pumped coal mine waters from the subsurface were dominated by bacteria belonging to the genera Pseudomonas and the family Rhodocyclaceae. These environments and bacterial communities supported a methanogen population, including Methanobacteriaceae, Methanococcaceae and Methanosaeta. However, one of the most ubiquitous micro‐organisms in anoxic coal mine waters belonged to the family ‘Candidatus Methanoperedenaceae’. As the Archaeal family ‘Candidatus Methanoperedenaceae’ has not been extensively defined, the one studied species in the family is capable of anaerobic methane oxidation coupled to nitrate reduction. This introduces the possibility that a methane cycle between archaeal methanogenesis and methanotrophy may exist in the anoxic waters of the coal seam after hydrogeological disturbance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号