首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Cellulose is one of the major constituents of seaweeds, but reports of mechanisms in microbial seaweed degradation in marine environment are limited, in contrast to the multitude of reports for lignocellulose degradation in terrestrial environment. We studied the biochemical characteristics for marine cellulolytic bacterium Gilvimarinus japonicas 12-2T in seaweed degradation. The bacterial strain was found to degrade green and red algae, but not brown algae. It was shown that the bacterial strain employs various polysaccharide hydrolases (endocellulase, agarase, carrageenanase, xylanase, and laminarinase) to degrade seaweed polysaccharides. Electrophoretic analysis and peptide sequencing showed that the major protein bands on the electrophoresis gel were homologous to known glucanases and glycoside hydrolases. A seaweed hydrolysate harvested from the bacterial culture was found useful as a substrate for yeasts to produce ethanol. These findings will provide insights into possible seaweed decomposition mechanisms of Gilvimarinus, and its biotechnological potential for ethanol production from inedible seaweeds.  相似文献   

2.
The antioxidant activity of eight edible species of Malaysian North Borneo seaweeds obtained from Sabah waters (Kudat, Tanjung Aru and Semporna) consisting of three red seaweeds (Eucheuma cottonii, E. spinosum and Halymenia durvillaei), two green seaweeds (Caulerpa lentillifera and C. racemosa) and three brown seaweeds (Dictyota dichotoma, Sargassum polycystum and Padina sp.) were determined. Methanol and diethyl ether were used as extraction solvent. The antioxidant activities were determined by two methods, TEAC (trolox equivalent antioxidant capacity) and FRAP (ferric reducing antioxidant power) assays. The total phenolic content of the extract was determined according to the Folin–Ciocalteu method and results were expressed as phloroglucinol equivalents. The methanolic extracts of green seaweeds, C. lentillifera and C. racemosa, and the brown seaweed, S. polycystum showed better radical-scavenging and reducing power ability, and higher phenolic content than the other seaweeds. The TEAC and FRAP assays showed positive and significantly high correlation (R 2 = 0.89). There was a strong correlation (R 2 = 0.96) between the reducing power and the total phenolic content of the seaweeds methanolic dry extracts. These seaweeds could be potential rich sources of natural antioxidants.  相似文献   

3.
Antitumor activity of marine algae   总被引:16,自引:2,他引:14  
Noda  Hiroyuki  Amano  Hideomi  Arashima  Koichi  Nisizawa  Kazutosi 《Hydrobiologia》1990,204(1):577-584
Powdered tissue from 46 species of air-dried marine algae (four green, 21 brown and 21 red algae) were screened for antitumor activity. Significant activity against Ehrlich carcinoma was found in the brown algae Scytosiphon lomentaria (69.8% inhibition), Lessonia nigrescens (60.0%), Laminaria japonica (57.6%), Sargassum ringgoldianum (46.5%), the red algae Porphyra yezoensis (53.2%) and Eucheuma gelatinae (52.1%) and the green alga Enteromorpha prolifera (51.7%). Five brown and four red algae showed appreciable antitumor activity against Meth-A fibrosarcoma. To identify specific molecules with antitumor activity, 15 kinds of polysaccharide preparations of seaweed origin and 24 kinds of lipid fractions extracted from various seaweeds were tested. Appreciable inhibition of Ehrlich carcinoma was found for fucoidan preparations from Undaria pinnatifida and Sargassum ringgoldianum, for carrageenans and for porphyran. Several glycolipid and phospholipid fractions from brown and red algae were effective against Meth-A fibrosarcoma.  相似文献   

4.
Marine amoebae were isolated during a search for organisms which degrade cell walls of seaweed. One of the isolates, a multinucleated amoeba (referred to here as Amoeba-I-7 or Am-I-7) was isolated from live tissues of the brown seaweed Sargassum muticum. It digested a variety of brown and red seaweeds including their walls and cuticles. Axenic clone cultures were isolated from cells that migrated on agar. Cultures were grown on agar or in liquid media. Seaweeds, seaweed wall extracts, and unicellular algae were tested as food sources.  相似文献   

5.
Transforming kelp into a marine bioreactor   总被引:8,自引:0,他引:8  
The past decade has seen the genetic engineering of various types of seaweed. To date, genetic transformation studies have been carried out in several seaweeds, including the red seaweeds Porphyra, Gracilaria, Grateloupia, Kappaphycus and Ceramium and the green seaweed Ulva. A genetic transformation model system has been established in the most commonly cultivated seaweed, the brown seaweed Laminaria japonica (kelp), based on the transfer of technology used in land plant transformation and also by modulating the seaweed life cycle. This model showed the potential for application of transgenic kelp to the production of valuable products and an indoor cultivation system for transgenic kelp was proposed, taking into account necessary factors for bio-safety. In this review, the establishment at use of the kelp transformation model is introduced, highlighting the potential for transforming kelp into a marine bioreactor.  相似文献   

6.
The use of different seaweeds such as Sargassum sp., Turbinaria conoides, and Ulva sp. in removing mercury(II) from aqueous solutions were investigated. The initial experimental runs, conducted at different equilibrium pH conditions, demonstrated that brown seaweeds outperformed green seaweed in Hg(II) biosorption at all pH conditions. In particular, at pH 5, maximum biosorption capacities of 170.3 and 145.8 mg/g were recorded for the brown seaweeds T. conoides and Sargassum sp., respectively, compared with 138.4 mg/g for the green seaweed Ulva sp. Isotherm data were modeled and interpreted using the Langmuir, Freundlich, Redlich-Peterson, and Toth models, with the latter described the Hg(II) isotherms with high correlation coefficients and low % error values. The kinetic data indicate the rapidity of the biosorption process, with the equilibrium achieved within 90 min. Several models, including the Elovich, pseudo-first-order, and pseudo-second-order models, were examined for their suitability with the present data; the correlation coefficient and % error values, along with better prediction of equilibrium uptake values, favored the pseudo-first-order model. The desorption experiments were highly successful for T. conoides biomass with 0.05 M HCl, whereas for the other two seaweeds, 0.05 M HCl resulted in high biomass weight loss. Reusing T. conoides biomass in three successive sorption-desorption cycles resulted in only 8.8% reduction in Hg(II) biosorption capacity compared with its original uptake.  相似文献   

7.
Antimicrobial Browning-Inhibitory Effect of Flavor Compounds in Seaweeds   总被引:1,自引:0,他引:1  
Since ancient times, the antimicrobial properties of seaweeds have been recognized. However, antimicrobial activities of volatile compounds in seaweeds have not been explored so far. Here, essential oils from seaweeds including green, brown and red algae such as Laminaria japonica, Kjellmaniella crassifolia, Gracilaria verrucosa and Ulva pertusa were prepared by using SDE (simultaneous distillation and extraction) apparatus. Volatile compounds in the essential oils were identified as aldehydes, ketones, carboxylic acids, alcohols and hydrocarbons by comparison of GC-retention times and MS data with those of authentic specimens. Flavor compounds such as (3Z)-hexenal, (2E)-hexenal and (2E)-nonenal in some essential oils showed strong antimicrobial activities against Escherichia coli TG-1, and Erwinia carotovora. Inhibition of browning can be achieved during either of two stages, namely, oxidation reaction by tyrosinase or subsequent non-enzymatic polymerization. Tyrosinase activity was measured by monitoring absorbance at 475 nm originating from dopachrome formed from L-DOPA. Many kinds of aliphatic carboxylic acids, aldehydes and alcohols were used as inhibitors for PPO activity. The results indicated that the α,β-unsaturated carbonyl compounds strongly inhibit tyrosinase activity. When seaweeds are damaged or macerated, the α,β-unsaturated aldehydes such as (2E)-hexenal and (2E)-nonenal are biosynthesized via the corresponding (3Z)-unsaturated aldehydes from linolenic acid and arachidonic acid. The flavor compounds that are formed could be valuable as safe antimicrobial browning-inhibitory agents of edible seaweed origin.  相似文献   

8.
Seaweed hydrocolloid markets continue to grow, but instead of the 3?C5% achieved in the 1980s and 1990s, the growth rate has fallen to 1?C3% per year. This growth has been largely driven by emerging markets in China, Eastern Europe, Brazil, etc. Sales of agar, alginates and carrageenans in the US and Europe are holding up reasonably well in spite of the recession. However, price increases to offset costs in 2008 and 2009 have begun to have a dampening effect on sales, especially in markets where substitution or extension with less expensive ingredients is possible. These higher prices have been driven by higher energy, chemicals and seaweed costs. The higher seaweed costs reflect seaweed shortages, particularly for carrageenan-bearing seaweeds. The Philippines and Indonesia are the dominant producers of the farmed Kappaphycus and Eucheuma species upon which the carrageenan industry depends and both countries are experiencing factors limiting seaweed production. Similar tightening of seaweed supplies are beginning to show up in brown seaweeds used for extracting alginates, and in the red seaweeds for extracting agar. The structure of the industry is also undergoing change. Producers in China are getting stronger, and while they have not yet developed the marketing skills to compete effectively in the developed world markets, they have captured much of their home market. China does not produce the red and brown seaweeds needed for higher end food hydrocolloid production. Stocking their factories with raw material has led to the supply problems. Sales growth continues to suffer from few new product development successes in recent years; although some health care applications are showing some promise, i.e., carrageenan gel capsules and alginate micro-beads.  相似文献   

9.
Edible seaweeds have not been thoroughly explored for food, medicinal, or industrial purposes in the United States. This study compared selected proximate constituents of three edible seaweed species (Ulva lactuca L., Fucus vesiculosus L., and Gracilaria tikvahiae McLachan) at two sites for possible future development as a food crop on the Delmarva Peninsula. Sampling was conducted bimonthly at Chincoteague Memorial Park, Virginia, and Indian River Inlet, Delaware, from 2005 to 2008. Proximate constituents of moisture, ash, dietary fiber, proteins, and fat were measured seasonally and calorific values were calculated. Data were analyzed using correlation, paired samples t‐tests and one‐ and two‐way ANOVA. Significant variations in the proximate constituents were found among seasons, species, and between sites. The brown seaweed (Fucus) at both sites had higher fiber, fat, and ash (mineral) content than the green (Ulva) or the red (Gracilaria). Ulva and Gracilaria had higher protein content than Fucus. Seaweeds from Delaware had more fat, ash, and protein than from Virginia, potentially because of the more polluted, nutrient rich environment at the Delaware site. Positive correlations between seaweed fat and protein content may indicate an increase in the synthesis of both components under optimal growth conditions. Species' physiology differences and the water quality at the two sites likely impacted proximate constituent values. This study contributed new information to the existing body of knowledge in the areas of nutrition and ecology of seaweeds and their potential as a cash crop.  相似文献   

10.
Seaweed protoplasts: status,biotechnological perspectives and needs   总被引:3,自引:0,他引:3  
Protoplasts are living plant cells without cell walls which offer a unique uniform single cell system that facilitates several aspects of modern biotechnology, including genetic transformation and metabolic engineering. Extraction of cell wall lytic enzymes from different phycophages and microbial sources has greatly improved protoplast isolation and their yield from a number of anatomically more complex species of brown and red seaweeds which earlier remained recalcitrant. Recently, recombinant cell wall lytic enzymes were also produced and evaluated with native ones for their potential abilities in producing viable protoplasts from Laminaria. Reliable procedures are now available to isolate and culture protoplasts from diverse groups of seaweeds. To date, there are 89 species belonging to 36 genera of green, red and brown seaweeds from which successful protoplast isolation and regeneration has been reported. Of the total species studied for protoplasts, most belonged to Rhodophyta with 41 species (13 genera) followed by Chlorophyta and Phaeophyta with 24 species each belonging to 5 and 18 genera, respectively. Regeneration of protoplast-to-plant system is available for a large number of species, with extensive literature relating to their culture methods and morphogenesis. In the context of plant genetic manipulation, somatic hybridization by protoplast fusion has been accomplished in a number of economically important species with various levels of success. Protoplasts have also been used for studying foreign gene expression in Porphyra and Ulva. Isolated protoplasts are also exploited in numerous miscellaneous studies involving membrane function, cell structure, bio-chemical synthesis of cell walls etc. This article briefly reviews the status of various developments in seaweed protoplasts research and their potentials in genetic improvement of seaweeds, along with needs that must to be fulfilled for effective realization of the objectives envisaged for protoplast research.  相似文献   

11.
Toth GB  Karlsson M  Pavia H 《Oecologia》2007,152(2):245-255
Herbivory on marine macroalgae (seaweeds) in temperate areas is often dominated by relatively small gastropods and crustaceans (mesoherbivores). The effects of these herbivores on the performance of adult seaweeds have so far been almost exclusively investigated under artificial laboratory conditions. Furthermore, several recent laboratory studies with mesoherbivores indicate that inducible chemical resistance may be as common in seaweeds as in vascular plants. However, in order to further explore and test the possible ecological significance of induced chemical resistance in temperate seaweeds, data are needed that address this issue in natural populations. We investigated the effect of grazing by littorinid herbivorous snails (Littorina spp.) on the individual net growth of the brown seaweed Ascophyllum nodosum in natural field populations. Furthermore, the capacity for induced resistance in the seaweeds was assessed by removing herbivores and assaying for relaxation of defences. We found that ambient densities of gastropod herbivores significantly reduced net growth by 45% in natural field populations of A. nodosum. Seaweeds previously exposed to grazing in the field were less consumed by gastropod herbivores in feeding bioassays. Furthermore, the concentration of phlorotannins (polyphenolics), which have been shown to deter gastropod herbivores, was higher in the seaweeds that were exposed to gastropod herbivores in the field. This field study corroborates earlier laboratory experiments and demonstrates that it is important to make sure that the lack of experimental field data on marine mesoherbivory does not lead to rash conclusions about the lack of significant effects of these herbivores on seaweed performance. The results strongly suggest that gastropods exert a significant selection pressure on the evolution of defensive traits in the seaweeds, and that brown seaweeds can respond to attacks by natural densities of these herbivores through increased chemical resistance to further grazing.  相似文献   

12.
Mark E. Hay 《Oecologia》1984,64(3):396-407
Summary Between-habitat differences in macrophyte consumption by herbivorous fishes were examined on three Caribbean and two Indian Ocean coral reefs. Transplanted sections of seagrasses were used as a bioassay to compare removal rates in reef-slope, reef-flat, sand-plain, and lagoon habitats. Herbivore susceptibility of fifty-two species of seaweeds from these habitats was also measured in the field. Seagrass consumption on shallow reef slopes was always significantly greater than on shallow reef flats, deep sand plains, or sandy lagoons. Reef-slope seaweeds were consistently resistant to herbivory while reef-flat seaweeds were consistently very susceptible to herbivory. This pattern supports the hypothesis that defenses against herbivores are costly in terms of fitness and are selected against in habitats with predictably low rates of herbivory.Sand-plain and lagoon seaweeds showed a mixed response when placed in habitats with high herbivore pressure; most fleshy red seaweeds were eaten rapidly, most fleshy green seaweeds were eaten at intermediate rates, and most calcified green seaweeds were avoided or eaten at very low rates. Differences in susceptibility between red and green seaweeds from sand-plain or lagoon habitats may result from differential competitive pressures experienced by these seaweed groups or from the differential probability of being encountered by herbivores. The susceptibility of a species to removal by herbivorous fishes was relatively consistent between reefs. Preferences of the sea urchin Diadema antillarum were also similar to those of the fish guilds.Unique secondary metabolites were characteristic of almost all of the most herbivore resistant seaweeds. However, some of the herbivore susceptible species also contain chemicals that have been proposed as defensive compounds. Genera such as Sargassum, Turbinaria, Thalassia, Halodule, and Thalassodendron, which produce polyphenolics or phenolic acids, were consumed at high to intermediate rates, suggesting that these compounds are not effective deterrents for some herbivorous fishes. Additionally, potential for the production of the compounds caulerpin, caulerpicin and caulerpenyne in various species of Caulerpa did not assure low susceptibility to herbivory.Heavily calcified seaweeds were very resistant to herbivory, but all of these species also produce toxic secondary metabolites which makes it difficult to distinguish between the effects of morphological and chemical defenses. Predictions of susceptibility to herbivory based on algal toughness and external morphology were of limited value in explaining differing resistances to herbivory.  相似文献   

13.
Percentages of nitrogen and phosphorus in 10 species of seaweeds (6 green and 4 red algae) were monitored from 1997 to 2004 by seasonal sampling in Guanabara Bay, South-eastern Brazil. The species did not show consistent variations in tissue N, P and N:P that related to annual cycles. Throughout this study, higher percentages of tissue N and P were found in Bostrychia radicans and Grateloupia doryphora (red algae) and lower in Cladophora rupestris and Codium decorticatum (green algae). In November 1999, the Icaraí Submarine Sewage Outfall became operational, resulting in a reduction of visual pollution in the area and an improvement in the local quality of seawater for recreational use. Measurements of dissolved nutrients at the sampling site did not indicate significant changes in concentrations after the commissioning of the submarine sewage outfall; however, tissue P and N:P ratio of most of species were significantly lower than in the first two years of this survey. Variations in tissue nitrogen throughout this study were not significant, except for G. doryphora in some comparisons. Results show that seaweeds function very well as monitors of environmental changes in Guanabara Bay. Experimental data are needed to identify possible environmental processes which are promoting changes in chemical composition of the local seaweed populations.  相似文献   

14.
Little is known about the bulk hydrogen stable isotope composition (δ2H) of seaweeds. This study investigated the bulk δ2H in several different seaweed species collected from three different beaches in Brazil, Australia, and Argentina. Here, we show that Ulvophyceae (a group of green algae) had lower δ2H values (between ?94‰ and ?130‰) than red algae (Florideophyceae), brown algae (Phaeophyceae), and species from the class Bryopsidophyceae (another group of green algae). Overall the latter three groups of seaweeds had δ2H values between ?50‰ and ?90‰. These findings were similar at the three different geographic locations. Observed differences in δ2H values were probably related to differences in hydrogen (H) metabolism among algal groups, also observed in the δ2H values of their lipids. The marked difference between the δ2H values of Ulvophyecae and those of the other groups could be useful to trace the food source of food webs in coastal rocky shores, to assess the impacts of green tides on coastal ecosystems, and to help clarify aspects of their phylogeny. However, reference materials for seaweed δ2H are required before the full potential of using the δ2H of seaweeds for ecological studies can be exploited.  相似文献   

15.
Jae Sam Yang 《Hydrobiologia》1991,211(3):165-170
Twenty-one species of seaweed from the California coast were analyzed for rhenium. For the first time, high enrichment (thousandfolds) of rhenium relative to seawater was found in brown algae, but not in green or red algae. Brown algae was suggested as a biological sink of rhenium in the sea and the analogous behavior of technetium to rhenium was found in marine algae. Preliminary incubation experiments with a common brown alga (Pelvetia fastigiata) showed that algal surface is not a major accumulating locus of rhenium.  相似文献   

16.
The typical morphology of Monostroma oxyspermum (Kütz.) Doty is lost in axenic culture. In synthetic media of the ASP type, it grows as a colony-like mass composed of round cells with numerous rhizoids. Such a mass is a fragile structure which falls apart upon shaking, or slight touch, into small cell-groups and single cells or cells with a long rhizoid. Only temporary saccate or monostromatic fronds appear and reach 1–2 mm in length when grown in enriched seawater media, but disintegrate and become a colony-like mass. The typical morphology is easily restored by adding at specific intervals filtrates of bacterial cultures and supernatant medium from axenic brown and red algal cultures to the basal medium (ASP7), or by reinfecting the Monostroma with an appropriate bacterial flora. Furthermore, the typical morphology in also maintained by bialgal cultures between Monostroma and other axenic strains of various species of seaweeds except the species belonging to the Chlorophyceae. Monostroma thus appears to utilize some substances released by most species of brown and red algae for its typical growth. Active substances released by bacteria, brown and red algae have not yet been identified and purified. However, it is demonstrated that in axenic cultures many species of seaweeds produce active extracellular substances which play an important role in growth and Morphogenesis of other species of seaweeds.  相似文献   

17.
We investigated the potential of seaweeds as feedstock for oil‐based products, and our results support macroalgae (seaweeds) as a biomass source for oil‐based bioproducts including biodiesel. Not only do several seaweeds have high total lipid content above 10% dry weight, but in the brown alga Spatoglossum macrodontum 50% of these lipids are in the form of extractable fatty acids. S. macrodontum had the highest fatty acid content (57.40 mg g?1 dw) and a fatty acid profile rich in saturated fatty acids with a high content of C18:1, which is suitable as a biofuel feedstock. Similarly, the green seaweed Derbesia tenuissima has high levels of fatty acids (39.58 mg g?1 dw), however, with a high proportion of PUFA (n‐3) (31% of total lipid) which are suitable as nutraceuticals or fish oil replacements. Across all species of algae the critical parameter of fatty acid content (measured as fatty acid methyl esters, FAME) was positively correlated (R2 = 0.67) with total lipid content. However, the proportion of fatty acids to total lipid decreased markedly with total lipid content, generally between 30% and 50%, making it an inaccurate measure of the potential to identify seaweeds suitable for oil‐based bioproducts. Finally, we quantified within species variation of fatty acids across locations and sampling periods supporting either environmental effects on quantitative fatty acid profiles, or genotypes with specific quantitative fatty acid profiles, thereby opening the possibility to optimize the fatty acid content and quality for oil production through specific culture conditions and selective breeding.  相似文献   

18.
The physiological behavior of phycoerythrin-deficient mutants of the red seaweed Gracilaria tikvahiae (Mc-Lachlan 1979) is compared to that of their wild types. The mutants are phenotypically green while the wild types are red. Cloned scions were grown factorially at irradiances saturating and limiting to growth, and spectral distributions which were broadband (white) and narrowband (green). The green light field complements the absorptance spectrum of phycoerythrin. Experiments were performed in an outdoor continuous flow system. Physiological measurements included light-harvesting pigment composition, instantaneous photosynthesis-light relationships and growth. In all cases, the mutants performed as their wild type progenitors. Further, physiological responses occurring in no less than 8 days were dependent solely on irradiance (“intensity”), and were independent of spectral distribution (“color”). The data do not conform with the predictions of the theory of complementary chromatic adaptation for seaweeds.  相似文献   

19.
The effects were investigated of two different drying treatments (oven- andfreeze-drying) on the proximate composition, amino acid profile and somephysico-chemical properties of three subtropical brown seaweeds, Sargassum hemiphyllum, S. henslowianum and S. patens. Therewere significant differences (p < 0.05, two-way ANOVA,Tukey-HSD) in the ash, crude lipid and moisture contents of the threespecies treated by the two drying methods. The amount of total aminoacids in the oven-dried seaweed samples was significantly (p <0.05, two-way ANOVA, Tukey-HSD) lower than that of the freeze-driedones. However, there were no significant differences on the amount oftotal essential amino acids and individual amino acid between the oven- andfreeze-dried brown seaweeds. Physico-chemical properties includingswelling, water holding and oil holding capacity of the freeze-dried Sargassum species were significantly (p < 0.05, two-wayANOVA, Tukey-HSD) higher than those of the oven-dried seaweedsamples. This indicated that freeze-dried seaweeds had greater potential tobe used as food ingredients in formulated food products than oven-driedones.  相似文献   

20.
The use of nitrogen‐to‐protein conversion factors (N‐Prot factors) is the most practical way of determining protein content. The accuracy of protein determination by this method depends on the establishment of N‐Prot factors specific to individual species. Experimental data are needed to allow the use of this methodology with seaweeds. The present study was designed to characterize the amino acid composition and to establish specific N‐Prot factors for six green, four brown and nine red marine algae. Mean values for individual amino acids tended to be similar among the three groups, but some differences were found. Green algae tended to show lower percentages of both aspartic acid and glutamic acid than the other two groups of algae. The percentages of both lysine and arginine were higher in red algae, while brown algae tended to show more methionine than green and red algae. The actual protein content of the species, based on the sum of amino acid residues, varied from 10.8% (Chnoospora minima, brown algae) to 23.1% (Aglaothamnion uru‐guayense, red algae) of the dry weight. Nitrogen‐to‐protein conversion factors were established for the species studied, based on the ratio of amino acid residues to total nitrogen, with values ranging from 3.75 (Cryptonemia seminervis, red algae) to 5.72 (Padina gymnospora, brown algae). The relative importance of non‐protein nitrogen is greater in red algae, and consequently lower N‐Prot factors were calculated for these species (average value 4.59). Conversely, protein nitrogen content in both green and brown algae tends to be higher, and average N‐Prot factors were 5.13 and 5.38, respectively. An overall average N‐Prot factor for all species studied of 4.92 ± 0.59 (n = 57) was established. This study confirms that the use of the traditional factor 6.25 is unsuitable for seaweeds, and the use of the N‐Prot factors proposed here is recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号