首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Cell adhesion molecule L1 promotes neuritogenesis and neuronal survival through triggering MAPK pathways. Based on the findings that L1 is associated with casein kinase 2 (CK2), and that deficiency in PTEN promotes neuritogenesis in vitro and regeneration after trauma, we examined the functional relationship between L1 and PTEN. In parallel, we investigated the tumor suppressor p53, which also regulates neuritogenesis. Here, we report that the intracellular domain of L1 binds to the subunit CK2α, and that knockdown of L1 leads to CK2 dephosphorylation and an increase in PTEN and p53 levels. Overexpression of L1, but not the L1 mutants L1 (S1181N, E1184V), which reduced binding between L1 and CK2, reduced expression levels of PTEN and p53 proteins, and enhanced levels of phosphorylated CK2α and mammalian target of rapamycin, which is a downstream effector of PTEN and p53. Treatment of neurons with a CK2 inhibitor or transfection with CK2α siRNA increased levels of PTEN and p53, and inhibited neuritogenesis. The combined observations indicate that L1 downregulates expression of PTEN and p53 via direct binding to CK2α. We suggest that L1 stimulates neuritogenesis by activating CK2α leading to decreased levels of PTEN and p53 via a novel, L1‐triggered and CK2α‐mediated signal transduction pathway.

  相似文献   


4.
The mechanism by which extracellular molecules control serotonergic cell fate remains elusive. Recently, we showed that noggin, which inactivates bone morphogenetic proteins (BMPs), induces serotonergic differentiation of mouse embryonic (ES) and induced pluripotent stem cells with coordinated gene expression along the serotonergic lineage. Here, we created a rapid assay for serotonergic induction by generating knock‐in ES cells expressing a naturally secreted Gaussia luciferase driven by the enhancer of Pet‐1/Fev, a landmark of serotonergic differentiation. Using these cells, we performed candidate‐based screening and identified BMP type I receptor kinase inhibitors LDN‐193189 and DMH1 as activators of luciferase. LDN‐193189 induced ES cells to express the genes encoding Pet‐1, tryptophan hydroxylase 2, and the serotonin transporter, and increased serotonin release without altering dopamine release. In contrast, TGF‐β receptor inhibitor SB‐431542 selectively inhibited serotonergic differentiation, without changing overall neuronal differentiation. LDN‐193189 inhibited expression of the BMP signaling target gene Id, and induced the TGF‐β target gene Lefty, whereas the opposite effect was observed with SB‐431542. This study thus provides a new tool to investigate serotonergic differentiation and suggests that inhibition of BMP type I receptors and concomitant activation of TGF‐β receptor signaling are implicated in serotonergic differentiation.

  相似文献   


5.
Point mutations in the α-synuclein coding gene may lead to the development of Parkinson's disease (PD). PD is often accompanied by other psychiatric conditions, such as anxiety, depression, and drug use disorders, which typically emerge in adulthood. Some of these point mutations, such as SNCA and A30T, have been linked to behavioral effects that are not commonly associated with PD, especially regarding alcohol consumption patterns. In this study, we investigated whether the familial PD point mutation A53T is associated with changes in alcohol consumption behavior and emotional states at ages not yet characterized by α-synuclein accumulation. The affective and alcohol-drinking phenotypes remained unaltered in female PDGF-hA53T-synuclein-transgenic (A53T) mice during both early and late adulthood. Brain region-specific activation of ceramide-producing enzymes, acid sphingomyelinase (ASM), and neutral sphingomyelinase (NSM), known for their neuroprotective properties, was observed during early adulthood but not in late adulthood. In males, the A53T mutation was linked to a reduction in alcohol consumption in both early and late adulthood. However, male A53T mice displayed increased anxiety- and depression-like behaviors during both early and late adulthood. Enhanced ASM activity in the dorsal mesencephalon and ventral hippocampus may potentially contribute to these adverse behavioral effects of the mutation in males during late adulthood. In summary, the A53T gene mutation was associated with diverse changes in emotional states and alcohol consumption behavior long before the onset of PD, and these effects varied by sex. These alterations in behavior may be linked to changes in brain ceramide metabolism.

  相似文献   


6.
Peripheral myelin protein 22 (PMP 22) is a component of compact myelin in the peripheral nervous system. The amount of PMP 22 in myelin is tightly regulated, and PMP 22 over or under‐expression cause Charcot‐Marie‐Tooth 1A (CMT 1A) and Hereditary Neuropathy with Pressure Palsies (HNPP ). Despite the importance of PMP 22 , its function remains largely unknown. It was reported that PMP 22 interacts with the β4 subunit of the laminin receptor α6β4 integrin, suggesting that α6β4 integrin and laminins may contribute to the pathogenesis of CMT 1A or HNPP . Here we asked if the lack of α6β4 integrin in Schwann cells influences myelin stability in the HNPP mouse model. Our data indicate that PMP 22 and β4 integrin may not interact directly in myelinating Schwann cells, however, ablating β4 integrin delays the formation of tomacula, a characteristic feature of HNPP . In contrast, ablation of integrin β4 worsens nerve conduction velocities and non‐compact myelin organization in HNPP animals. This study demonstrates that indirect interactions between an extracellular matrix receptor and a myelin protein influence the stability and function of myelinated fibers.

  相似文献   

7.
Parkinson disease (PD) is, without doubt, a burden on modern society as the prevalence increases significantly with age. Owing to this growing number of PD cases, it is more critical than ever to understand the pathogenic mechanisms underlying PD to identify therapeutic targets. The discovery of genetic mutations associated with PD and parkinsonism paves the way toward this goal. Even though, familial forms of the disease represent the minority of PD cases and some forms are so rare that there are only a few affected families, the research on the associated genes is invaluable. Recent additions to PARK mutations are those in PARK15 that encodes the F‐box protein O‐type 7 (FBXO7). In this review, we highlight the recent research on FBXO7, which advances our knowledge of the etiopathological pathways and fills unexpected gaps therein, justifying the dedicated study of rare variants of PD.

  相似文献   


8.
Ischemic postconditioning is increasingly being investigated as a therapeutic approach for cerebral ischemia. However, the majority of studies are focused on the acute protection of neurons per se . Whether and how postconditioning affects multiple cells in the recovering neurovascular unit remains to be fully elucidated. Here, we asked whether postconditioning may modulate help‐me signaling between injured neurons and reactive microglia. Rats were subjected to 100 min of focal cerebral ischemia, then randomized into a control versus postconditioning group. After 3 days of reperfusion, infarct volumes were significantly reduced in animals treated with postconditioning, along with better neurologic outcomes. Immunostaining revealed that ischemic postconditioning increased expression of vascular endothelial growth factor (VEGF ) in neurons within peri‐infarct regions. Correspondingly, we confirmed that VEGFR 2 was expressed on Iba1‐positive microglia/macrophages, and confocal microscopy showed that in postconditioned rats, these cells were polarized to a ramified morphology with higher expression of M2‐like markers. Treating rats with a VEGF receptor 2 kinase inhibitor negated these effects of postconditioning on microglia/macrophage polarization. In vitro , postconditoning after oxygen‐glucose deprivation up‐regulated VEGF release in primary neuron cultures, and adding VEGF to microglial cultures partly shifted their M2‐like markers. Altogether, our findings support the idea that after postconditioning, injured neurons may release VEGF as a ‘help‐me’ signal that promotes microglia/macrophage polarization into potentially beneficial phenotypes.

  相似文献   

9.
10.
Thrombolysis with tissue plasminogen activator (tPA) increases matrix metalloproteinase‐9 (MMP‐9) activity in the ischemic brain, which exacerbates blood‐brain barrier injury and increases the risk of symptomatic cerebral hemorrhage. The mechanism through which tPA enhances MMP‐9 activity is not well understood. Here we report an important role of caveolin‐1 in mediating tPA‐induced MMP‐9 synthesis. Brain microvascular endothelial cell line bEnd3 cells were incubated with 5 or 20 μg/ml tPA for 24 hrs before analyzing MMP‐9 levels in the conditioned media and cellular extracts by gelatin zymography. tPA at a dose of 20 μg/mL tPA, but not 5 μg/mL, significantly increased MMP‐9 level in cultured media while decreasing it in cellular extracts. Concurrently, tPA treatment induced a 2.3‐fold increase of caveolin‐1 protein levels in endothelial cells. Interestingly, knockdown of Cav‐1 with siRNA inhibited tPA‐induced MMP‐9 mRNA up‐regulation and MMP‐9 increase in the conditioned media, but did not affect MMP‐9 decrease in cellular extracts. These results suggest that caveolin‐1 critically contributes to tPA‐mediated MMP‐9 up‐regulation, but may not facilitate MMP‐9 secretion in endothelial cells.

  相似文献   


11.
12.
The development of drugs to inhibit glioblastoma (GBM) growth requires reliable pre‐clinical models. To date, proteomic level validation of widely used patient‐derived glioblastoma xenografts (PDGX) has not been performed. In the present study, we characterized 20 PDGX models according to subtype classification based on The Cancer Genome Atlas criteria, TP53, PTEN, IDH 1/2, and TERT promoter genetic analysis, EGFR amplification status, and examined their proteomic profiles against those of their parent tumors. The 20 PDGXs belonged to three of four The Cancer Genome Atlas subtypes: eight classical, eight mesenchymal, and four proneural; none neural. Amplification of EGFR gene was observed in 9 of 20 xenografts, and of these, 3 harbored the EGFRvIII mutation. We then performed proteomic profiling of PDGX, analyzing expression/activity of several proteins including EGFR. Levels of EGFR phosphorylated at Y1068 vary considerably between PDGX samples, and this pattern was also seen in primary GBM. Partitioning of 20 PDGX into high (n = 5) and low (n = 15) groups identified a panel of proteins associated with high EGFR activity. Thus, PDGX with high EGFR activity represent an excellent pre‐clinical model to develop therapies for a subset of GBM patients whose tumors are characterized by high EGFR activity. Further, the proteins found to be associated with high EGFR activity can be monitored to assess the effectiveness of targeting EGFR.

  相似文献   


13.
The administration of pan histone deacetylase (HDAC) inhibitors reduces ischemic damage to the CNS, both in vitro and in animal models of stroke, via mechanisms which we are beginning to understand. The acetylation of p53 is regulated by Class I HDACs and, because p53 appears to play a role in ischemic pathology, the purpose of this study was to discover, using an in vitro white matter ischemia model and an in vivo cerebral ischemia model, if neuroprotection mediated by HDAC inhibition depended on p53 expression. Optic nerves were excised from wild‐type and p53‐deficient mice, and then subjected to oxygen–glucose deprivation in the presence and absence of a specific inhibitor of Class I HDACs (MS‐275, entinostat) while compound action potentials were recorded. Furthermore, transient focal ischemia was imposed on wild‐type and p53‐deficient mice, which were subsequently treated with MS‐275. Interestingly, and in both scenarios, the beneficial effects of MS‐275 were most pronounced when p53 was absent. These results suggest that modulation of p53 activity is not responsible for MS‐275‐mediated neuroprotection, and further illustrate how HDAC inhibitors variably influence p53 and associated apoptotic pathways.

  相似文献   


14.
15.
16.
Cocaine is a recreational drug of abuse that binds to the dopamine transporter, preventing reuptake of dopamine into pre‐synaptic terminals. The increased presence of synaptic dopamine results in stimulation of both pre‐ and post‐synaptic dopamine receptors, considered an important mechanism by which cocaine elicits its reinforcing properties. However, the effects of acute cocaine administration on pre‐synaptic dopamine function remain unclear. Non‐invasive imaging techniques such as positron emission tomography have revealed impaired pre‐synaptic dopamine function in chronic cocaine users. Similar impairments have been seen in animal studies, with microdialysis experiments indicating decreased basal dopamine release. Here we use micro positron emission tomography imaging techniques in mice to measure dopamine synthesis capacity and determine the effect of acute cocaine administration of pre‐synaptic dopamine function. We show that a dose of 20 mg/kg cocaine is sufficient to elicit hyperlocomotor activity, peaking 15–20 min post treatment (p < 0.001). However, dopamine synthesis capacity in the striatum was not significantly altered by acute cocaine treatment (: 0.0097 per min vs. 0.0112 per min in vehicle controls, p > 0.05). Furthermore, expression levels of two key enzymes related to dopamine synthesis, tyrosine hydroxylase and aromatic l ‐amino acid decarboxylase, within the striatum of scanned mice were not significantly affected by acute cocaine pre‐treatment (p > 0.05). Our findings suggest that while the regulation of dopamine synthesis and release in the striatum have been shown to change with chronic cocaine use, leading to a reduced basal tone, these adaptations to pre‐synaptic dopaminergic neurons are not initiated following a single exposure to the drug.

  相似文献   

17.
In this study, in vitro and in vivo experiments were carried out with the high‐affinity multifunctional D2/D3 agonist D‐512 to explore its potential neuroprotective effects in models of Parkinson's disease and the potential mechanism(s) underlying such properties. Pre‐treatment with D‐512 in vitro was found to rescue rat adrenal Pheochromocytoma PC12 cells from toxicity induced by 6‐hydroxydopamine administration in a dose‐dependent manner. Neuroprotection was found to coincide with reductions in intracellular reactive oxygen species, lipid peroxidation, and DNA damage. In vivo, pre‐treatment with 0.5 mg/kg D‐512 was protective against neurodegenerative phenotypes associated with systemic administration of MPTP, including losses in striatal dopamine, reductions in numbers of DAergic neurons in the substantia nigra (SN), and locomotor dysfunction. These observations strongly suggest that the multifunctional drug D‐512 may constitute a novel viable therapy for Parkinson's disease.

  相似文献   


18.
Secondary neuronal death is a serious stroke complication. This process is facilitated by the conversion of glial cells to the reactive pro‐inflammatory phenotype that induces neurodegeneration. Therefore, regulation of glial activation is a compelling strategy to reduce brain damage after stroke. However, drugs have difficulties to access the CNS , and to specifically target glial cells. In the present work, we explored the use core‐shell polyamidoamine tecto‐dendrimer (G5G2.5 PAMAM ) and studied its ability to target distinct populations of stroke‐activated glial cells. We found that G5G2.5 tecto‐dendrimer is actively engulfed by primary glial cells in a time‐ and dose‐dependent manner showing high cellular selectivity and lysosomal localization. In addition, oxygen‐glucose deprivation or lipopolysaccharides exposure in vitro and brain ischemia in vivo increase glial G5G2.5 uptake; not being incorporated by neurons or other cell types. We conclude that G5G2.5 tecto‐dendrimer is a highly suitable carrier for targeted drug delivery to reactive glial cells in vitro and in vivo after brain ischemia.

  相似文献   

19.
This editorial highlights a study by Rodriguez, Sanchez‐Moran et al. (2019) in the current issue of the Journal of Neurochemistry, in which the authors describe a microcephalic boy carrying the novel heterozygous de novo missense mutation c.560A> G; p.Asp187Gly in Cdh1/Fzr1 encoding the APC/C E3‐ubiquitin ligase cofactor CDH1. A functional characterization of mutant APC/CCDH1 confirms an aberrant division of neural progenitor cells, a condition known to determine the mouse brain cortex size. These data suggest that APC/CCDH1 may contribute to the regulation of the human brain size.

  相似文献   


20.
Benefits on cognition from docosahexaenoic acid (DHA, 22 : 6 n‐3) intake are absent in humans carrying apolipoprotein E ε4 allele (APOE4), the most important genetic risk factor for Alzheimer's disease (AD). To test the hypothesis that carrying APOE4 impairs DHA distribution, we evaluated plasma and brain fatty acid profiles and uptake of [14C]‐DHA using in situ cerebral perfusion through the blood–brain barrier in 4‐ and 13‐month‐old male and female APOE‐targeted replacement mice (APOE2, APOE3, and APOE4), fed with a DHA‐depleted diet. Cortical and plasma DHA were 9% lower and 34% higher in APOE4 compared to APOE2 mice, respectively. Brain uptake of [14C]‐DHA was 24% lower in APOE4 versus APOE2 mice. A significant relationship was established between DHA and apoE concentrations in the cortex of mice (r2 = 0.21) and AD patients (r2 = 0.32). Altogether, our results suggest that lower brain uptake of DHA in APOE4 than in APOE2 mice may limit the accumulation of DHA in cerebral tissues. These data provide a mechanistic explanation for the lack of benefit of DHA in APOE4 carriers on cognitive function and the risk of AD.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号