首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
These experiments were conducted to determine the effects of dipyridemole on human platelet aggregation, platelet thromboxane A2 (TXA2) and human vessel wall prostacyclin (PGI2) generation. Dipyridamole in varying concentrations (5 to 50 μg/ml) had no direct effect on ADP-induced platelet aggregation in vitro, but it potentiated PGI2-induced platelet aggregation inhibition at these concentrations. Dipyridamole also inhibited arachidonic acid-induced platelet TXA2 generation at these concentrations. In continuously perfused umbilical vein segments, dipyridamole treatment resulted in stimulation of PGI2 release determined by bioassay and by measurement of its stable metabolite 6-keto-PGF. Minimum concentration of dipyridamole causing PGI2 release was 50 μg/ml. These in vitro studies suggest that anti-thrombotic effects of dipyridamole in man are mediated mainly by potentiation of PGI2 activity and to some extent by TXA2 suppression. Stimulation of PGI2 release by human vessels may not be seen in usual therapeutic concentrations.  相似文献   

2.
The levels of the stable degradation products of prostacyclin (PGI2) and thromboxane A2 (TXA2): 6-oxo-prostaglandin F(6-oxo-PGE) and thromboxane B2 (TXB2) respectively were determined in the effluent of the rabbit epigastric skin flap after infusion of exogenous arachidonic acid. The blood to the flap passes through the microcirculation and thus the changes in eicosanoid biosynthesis in this part of the vasculature were recorded. The aim was to use inhibitors of arachidonic acid metabolism to increase the PGI2/TXA2 ratio. This may be potentially beneficial to ischaemic skin flaps by reducing platelet aggregation associated with damaged microvascular endothelium, overcoming vasospasm and increasing microvascular blood flow. Increased PGI2/TXA2 ratios (up to 5-fold) were best achieved using TXA2 synthetase inhibitors such as dazoxiben hydrochloride. These were significantly more potent than the phosphodiesterase inhibitor dipyridamole, and the lipoxygenase inhibitor Bay g6575. No increase in blood flow was achieved. The cyclooxygenase inhibitor indomethacin did slow the blood flow at high concentrations (above 10−5 M), and inhibited both PGI2 and TXA2 synthesis. Approximately 2-fold higher concentrations of dazoxiben hydrochloride and dipyridamole were required to produce the same TXA2 synthetase inhibition in the flap microvasculature compared with platelets .  相似文献   

3.
Three clinically efficacious vasodilatory drugs were found to be selective inhibitors of thromboxane A2 biosynthesis. Hydralazine, dipyridamole, and diazoxide inhibited platelet aggregation at 1 × 10?4 M, 1.75 × 10?4 M, and 2 × 10?3 M respectively. Their relative inhibitory potencies on thromboxane B2 production in human platelet microsomes were examined and found to be similar to that observed for their inhibition on human platelet aggregation. At 10?3 M, hydralazine, dipyridamole, and diazoxide inhibited thromboxane B2 formation by 65 percent, 27 percent and 18 percent respectively. These compounds were examined in the sheep vesicular gland system, and they were shown not to be inhibitors of the cyclooxygenase enzyme. Thus, the inhibition of thromboxane A2 biosynthesis by these three drugs in human platelet microsomes appeared to be specific at the thromboxane synthetase level.  相似文献   

4.
Exogenous arachidonate addition to the coupled system of platelets and aortic microsomes resulted in production of TXA2 and PGI2 (detected as the stable degradation products, TXB2 and 6-keto PGF, respectively). Imidazole, papaverine and dipyridamole increased PGI2 and decreased TXA2 in the coupled system. All of these agents inhibited TXA2 formation by platelets from arachidonate. Nitroglycerin did not show any effect on PGI2 and TXA2 formation in the coupled system and on TXA2 formation by platelets. In contrast with these compounds, in spite of showing no inhibitory effect on TXA2 formation by platelets alone, 2-nicotinamidoethyl nitrate (SG-75) increased PGI2 and decreased TXA2 in the coupled system. It is suggested that SG-75 accelerated the conversion of PGH2 to PGI2 so that smaller amounts of TXA2 was produced in the coupled system.  相似文献   

5.
New series of 5-benzyl-6-methyl-4-oxo pyridazin-2-yl alkanoic acids, N-[(pyridazin-2-yl)alkyl] succinyl and glutaryl amides have been synthesized and evaluated in vitro as TXA2 biosynthesis inhibitors. The experiments were carried out using arachidonic acid (32.8 μM) as a substrate and horse platelet microsomes as sources of TXA2 synthase. The presence of TXB2, a stable metabolite of TXA2, was determined by RIA. The potency of active compounds (1.10−4 < IC 50 < 1.10−6 M) greatly depends on the length of the chain at the N-2 position on the pyridazine ring. Furthermore, enzyme inhibition in vitro is increased with the presence of a halogen atom on the aromatic moiety of the benzyl group at C-5. Compound 4f having a pentanoic side chain and a 4-fluoro benzyl moiety was the most active derivative with an IC50 value of 6.69 × 10−6 M. Molecular modelling studies were done on all the synthesized pyridazinones and on prostaglandin H2 (PGH2) suggesting spatial features and volumes of TXA2 synthase pharmacophore mode in these series of derivatives.  相似文献   

6.
We have investigated the presence of thromboxane A2 (TXA2) receptor associated with lipid rafts in human platelets and the regulation of platelet function in response to TXA2 receptor agonists when lipid rafts are disrupted by cholesterol extraction. Platelet aggregation with TXA2 analogs U46619 and IBOP was almost blunted in cholesterol-depleted platelets, as well as αIIbβ3 integrin activation and P-selectin exposure. Raft disruption also inhibited TXA2-induced cytosolic calcium increase and nucleotide release, ruling out an implication of P2Y12 receptor. An important proportion of TXA2 receptor (40%) was colocalized at lipid rafts. The presence of the TXA2 receptor associated with lipid rafts in platelets is important for functional platelet responses to TXA2.  相似文献   

7.
Rat aortic strips and rabbit aortic strips were superfused in series with Krebs solution. Comparison of the sensitivity of the tissues to thromboxane A2 (TXA2), generated by mixing prostaglandin (PG)H2 with human platelet microsomes (HPM), indicated that the rat aorta was just as sensitive an assay tissue as the rabbit aorta. Furthermore, it was equally selective in that it did not respond to low levels of the other metabolites of arachidonic acid. When the two tissues were used simultaneously to assay aortic contracting activity released from perfused guinea pig lung by bradykinin, both tissues detected activity that could be matched with similar known amounts of TXA2. However, when ovalbumin was used to release aortic contracting activity from sensitized guinea pig lung, the amounts of TXA2 needed to match the responses of the assay tissues often differed by 2–3 fold. This suggested that other substances, as well as TXA2, released during anaphylaxis can affect the aortic strips and thus influence the bioassay of TXA2. This discrepancy in assay of TXA2 can be detected only when more than one assay tissue is used. In the series of experiments in which we used the assay tissues to detect TXA2 released by bradykinin, we noted that bradykinin released more TXA2 from unsensitized lungs than from sensitized ones. Although the significance of this observation remains unclear, it suggests that there are quantitative differences in the PG biosynthetic pathways induced by the sensitization process.  相似文献   

8.
The goal of this study was to synthesize a macromolecular probe of the TXA2 receptor antagonist BM13.505 which is unable to penetrate the platelet membrane for localization and characterization of the TXA2 receptor. The active NHS-ester of BM13.505 was synthesized and purified. It was used for covalent coupling of BM13.505 to bovine serum albumin, a macromolecular carrier. Inhibitory effects of free and macromolecular bound BM13.505 on aggregatory properties of U46619-stimulated platelets were measured and compared to TXA2 generation in platelets, as determined by TXB2 radioimmuno assay. No inhibitory effects of free and macromolecular-bound BM13.505 on ADP- or thrombin-induced platelet aggregation were observed. Equimolar concentrations of free or macromolecular bound BM13.505 inhibited U46619-induced platelet aggregation and TXA2 generation with equal potency. IC50-values for platelet aggregation inhibition by free and macromolecular bound BM13.505 were 64 nM and 96 nM respectively. It appears that the TXA2 receptor ligand binding site is located close to the outer membrane surface of platelets. Interaction of macromolecular bound BM13.505 with the platelet thromboxane receptor does not depend on the availability of the free carboxyl residue in BM13.505. The method for coupling a TXA2 receptor antagonist to a macromolecule will aid in constructing probes for the localization and characterization of the TXA2 receptor.  相似文献   

9.
Two selective thromboxane A2 synthetase inhibitors, imidazole and 9,11-azoprosta-5,13-dienoic acid (azo analog I) were compared to determine their effects on the quantitative formation of thromboxane B2 and prostaglandin E2 accompanying human platelet aggregation. Azo analog I was at least 200 times more potent, on a molar basis, than imidazole in suppressing thromboxane B2 formation in either platelet-rich plasma or washed platelet suspensions aggregated with arachidonic acid or prostaglandin H2. The inhibitors differed in their effect on the aggregation response itself. Azo analog I selectively suppressed thromboxane A2 formation with an accompanying, parallel, suppression of the platelet aggregation.Imidazole selectively suppressed thromboxane A2 formation, but only suppressed the accompanying aggregation in platelet rich plasma, and not washed platelet suspensions. The results indicate that azo analog I functions by competitive inhibition of prostaglandin H2 on the thromboxane synthetase, and that imidazole, while it suppresses thromboxane A2 formation, may have an associated agonist activity that enhances platelet aggregation. The data presented support this hypothesis, and they emphasize the importance of thromboxane A2 in arachidonate mediated platelet aggregation.  相似文献   

10.
Imidazole inhibits the enzymatic conversion of the endoperoxides (PGG2 and PGH2) to thromboxane A2 by platelet microsomes (IC50: 22 μg/ml; determined by bioassay). The inhibitor is selective, for prostaglandin cyclo-oxygenase is only affected at high doses. Radiochemical data confirms that imidazole blocks the formation of 14C-thromboxane B2 from 14C-PHG2. Several imidazole analogues and other substances were tested but only 1-methyl-imidadole was more potent that imidazole iteself. The use of imidazole of inhibit thromboxane formation could help to elucidate the role of thromboxanes in physiology or pathophysiology.  相似文献   

11.
The influence of platelets and platelet membranes on the generation of prostacyclin (PGI2) and thromboxane A2(TXA2) by isolated rat lung and porcine aortic endothelial cell, as measured by RIA of their stable end-producs, 6-oxo-PGF and TXB2 respectively, was studied. After introduction of either aspirin-treated platelets or membranes from aspirin-treated platelets to the perfusate, 1 5-fold increase in the amount of 6-oxo-PGF and TXB2 in the perfusate was observed. Treatment of the lung with aspirin produced a 50% reduction in the platelet-stimulated release of PGI2 and TXA2. Treatment of the lung with the phospholipase inhibitor, mepacrine, significantly reduced the platelet-stimulated release of PGI2 and TXA2. Incubation of endothelial cells with untreated platelet membranes did not alter the generation of PGI2. These results suggest that platelet-stimulated release of PGI2 and TXA2 occurs via mechanical stimulation of phospholipase A2, liberating arachidonic acid.  相似文献   

12.
Acute renal failure (ARF) was induced in 35 week-old conscious female Wistar rats, by intramuscular (IM) injection of glycerol. Intraperitoneal (IP) injection of imidazole, an inhibitor of thromboxane (TXA2) synthesis, partially protected the animals against ARF. This protection was accompanied by a significant decrease in renal TXB2 (the stable chemical metabolite of TXA2) and a significant increase in renal 6-keto-PGF1α (the stable chemical metabolite of PGI2) synthesis. Intraperitoneal injection of captopril (SQ 14225) an angiotensin-converting-enzyme inhibitor, did not protect the animals against ARF. This lack of protection was accompanied by a significant increase in renal TXB2 and a significant decrease in renal 6-keto-PGF1α synthesis. The results suggest that: (a) the renin-angiotensin (R-A) system does not play a role, or has only a secondary one in the development of ARF; (b) thromboxane A2 (the most potent vasoconstrictor and platelet aggregator agent known) is the preponderant agent responsible for the development of this pathological syndrome.  相似文献   

13.
The aim of the study was to determine the prostacyclin (PGI2) and thromboxane A2 (TXA2) synthetase activities of myocardial tissue and their variation during ischemia and reperfusion. Regional ischemia was induced by 10 min occlusion of the left anterior descending coronary artery in isolated Langendorff rabbit hearts. Biosynthesis of PGI2 and TXA2 were carried out by using arachidonic acid as substrate and left ventricle microsomes (LVM) from ischemic and non-ischemic areas as sources of PGI2 and TXA2 synthetase. 6-keto-PGF and TXB2, stable metabolites of PGI2 and TXA2 respectively, were determined by radioimmunoassay. Experiments carried out under the adopted conditions showed that LVM were able to synthetise PGI2 as well as TXA2 from arachidonic acid. On the other hand, ischemia depressed both PGI2 and TXA2 synthetase activities of cardiac tissue: the depression was more pronounced on TXA2 synthetase than on PGI2 synthetase with no significant difference between ischemic and non-ischemic regions. Moreover, ischemia increased the ratio indicating therefore that it can facilitate the formation of PGI2. The post ischemic reperfusion of the heart counteracted the decrease in PGI2 synthetase induced by ischemia which returned to the normal level: reperfusion also slightly reversed the decrease in TXA2 synthetase. However, the diminution in TXA2 synthetase of non-ischemic myocardium was attenuated but it remained lower than the normal level. These results suggested that the whole left ventricle is affected by regional ischemia. Furthermore it appears that myocardial TXA2 synthetase is more vulnerable than PGI2 synthetase to a lack of oxygen and nutrients.  相似文献   

14.
《Life sciences》1996,58(11):PL207-PL210
The effects of a new ASA-nitroderivative compound, NCX 4016 (ASA-NO2), on platelet TXA2 synthesis after single and repeated doses in the rat were investigated. Compared to ASA, cumulative doses of ASA-NO2 showed similar inhibitory effects on platelet TXA2 synthesis and significant increases in nitrite/nitrate plasma concentrations l h after the last drug administration: 24 h later nitrite/nitrate plasma levels returned to the control values, while serum TXA2 concentrations did not change. A time-course study after a single dose of ASA-NO2 showed a significant inhibition of platelet TXA2 production also 24 h after drug administration and a significant increase in nitrite/nitrate plasma levels until 10 h.  相似文献   

15.
The effects of repeated antigen exposure on the synthesis of mediators by lung tissues are not well understood. To investigate the influence of antigen challenge on the synthesis of prostaglandins by central airway and peripheral lung tissues, fourteen sensitive sheep underwent biweekly exposure to aerosolized Ascaris suu antigen (7) or saline (7). Following the fifth exposure, microsomal and high speed supernatant fractions were prepared from trachealis muscle and lung parenchyma. Synthesis of thromboxane (TX) A2, prostaglandin (PG) D2 and PGI2 from the PG endoperoxide intermediate, PGH2, was assayed over a range of substrate concentrations from 3–200 uM. Synthesis of PGI2 by trachealis microsomes was approximately 5-fold greater than that of TXA2. PGI2 and TXA2 production was identical in tracheal preparations from Ascaris- and saline-exposed animals. In parenchymal tissues, where TXA2 production predominated over PGI2 by 9-fold, preparations from Ascaris- exposed animals synthesized 50% more TXA2 than controls at PGH2 concentrations of 25 uM and above, whereas synthesis of PGI2 and PGD2 were similar in preparations from both groups of animals. The density of pulmonary mast cells was decreased by 21% in the Ascaris group, whereas polymorphonuclear leukocyte density was unchanged. These results demonstrate the differential synthesis of TXA2 and PGI2 in central airways and peripheral lung regions of the sheep. They further indicate that repeated exposure of the airways to antigen selectively enhances TXA2 synthesis in the lung periphery of sensitized animals. The site of this increased enzymatic activity, whether in resident cells or newly-infiltrated cells, has not been determined.  相似文献   

16.
The activity of prostacyclin (PGI2), PGE1 or PGD2 as inhibitors of platelet aggregation in plasma from human, dog, rabbit, rat, sheep and horse was investigated. Prostacyclin was the most potent inhibitor in all species. PGD2 was a weak inhibitor in dog, rabbit and rat plasma whereas PGE1 and prostacyclin were highly active. Theophylline or dipyridamole potentiated the inhibition of human platelet aggregation by prostacyclin, PGE1 or PGD2. Compound N-0164 abolished the inhibition by PGD2 of human platelet aggregation but did not inhibit the effects of PGE1 or prostacyclin. The results suggest that prostacyclin and PGE1 act on similar sites on platelets which are distinct from those for PGD2.  相似文献   

17.
《Bone and mineral》1991,12(1):15-23
Throm☐ane A2 (TXA2) is a powerful promoter of platelet aggregation and smooth muscle contraction. However, this compound is highly unstable and is rapidly hydrated to a more stable metabolite, throm☐ane B2 (TXB2). TXA2 has been considered to be involved in bone resorption, in particular bone loss caused by inflammatory diseases and by orthodontic treatment. However precise mechanisms of bone resorption caused by TXA2 have not yet been proved because of its highly unstable nature.Recently, a chemically stable analogue of TXA2, 9,11-epithio-11,12-methanothrom☐ane A2 (STA2), was successfully synthesized. Using this synthetic compound, we examined its in vitro bone resorbing activity and induction of osteoclast-like cells in a mouse marrow culture system in comparison with related compounds with bone resorbing activity. Like prostaglandin E2 (PGE2), a well-known bone resorbing agent. STA2 time-and dose-dependently stimulated the release of 45Ca from prelabelled mouse calvariae. Both STA2 and PGE2 induced the accumulation of cAMP in mouse calvariae. The TXA2, agonist. ONO-3708, inhibited STA2-induced release of 45Ca, TXB2 induced neither bone resolor cAMP accumulation. When mouse marrow cells were cultured with STA2 for 8 days, osteoclast-like multinucleated cells appeared in parallel with the increase of the amount of STA2 added. Again TXB2 showed no effect on osteoclast-like cell formation. These results indicate a role for TXA2 in some form of bone resorption.  相似文献   

18.
Metabolism and action of the prostaglandin endoperoxide PGH2 in rat kidney   总被引:3,自引:0,他引:3  
Kidney membrane fractions metabolized [1-14C]PGH2 to TXB2, PGE2, PGF, PGD2, 6-keto PGF, and HHT. TXA2, as measured by TXB2, was enzymatically formed in cortex microsomes and was identified by thin layer chromatography and gas chromatography - mass spectrometry. PGH2 caused a labile inhibition of cortical PGE2-stimulated adenylate cyclase. PGE2, PGF, and PGD2 are stimulators of cortical adenylate cyclase. The inability of two thromboxane synthetase inhibitors, imidazole and 9,11-azoprosta-5,13 dienoic acid, to block PGH2 inhibition suggested that TXA2 was not an obligatory intermediate in this process. Therefore, a potential function of cortical PGH2 is inhibition of adenylate cyclase.  相似文献   

19.
The effects of imidazole, 1-methyl-imidazole and benzimidazole on bone metabolism in vitro were investigated. The relative potencies of these compounds with respect to the inhibition of bone resorption was found to be comparable to their relative effectiveness as inhibitors of platelet microsome thromboxane synthetase activity. Since studies by others have shown that thromboxanes are produced by resorbing bone in vitro, these results suggest that the inhibition of bone resorption by imidazole is related to the inhibition of thromboxane A2 formation. This could imply that thromboxane A2 is an additional arachidonic acid oxidation product that is of importance in the regulation of bone metabolism.  相似文献   

20.
Previous studies have demonstrated that 13-azaprostanoic acid (13-APA) is a potent and specific antagonist of thromboxane A2/prostaglandin H2 (TXA2/PGH2) at the platelet receptor level. In the present study we evaluated the effects of a new azaprostanoid, 2-(6-carboxyhexyl) cyclopentanone hexylhydrazone (CPH), on human platelet function. This hydrazone was found to completely inhibit arachidonic acid (AA)-induced platelet aggregation at 1 uM CPH. On the other hand, CPH was not an effective inhibitor of PGH2-induced aggregation. Furthermore, 100 uM CPH was completely ineffective in blocking platelet aggregation stimulated by adenosine diphosphate (ADP) or the stable prostaglandin endoperoxide analog U46619 (which presumably acts at the TXA2/PGH2 receptor). Measurement of platelet thromboxane B2 (TXB2) production demonstrated that the primary site-of-action of CPH is at the cyclo-oxygenase level. Thus, CPH inhibited TXB2 formation from AA in a dose-dependent manner (0.1 uM–100 uM CPH)2. In contrast, CPH blocked TXB2 production from PGH2 only at the highest CPH concentration tested, i.e., 100 uM. These results indicate that relative to 13-APA, addition of a second nitrogen at C14 and a double bond between the 12- and 13- positions results in a loss of receptor activity but produces a high affinity for the platelet cyclo-oxygenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号