首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zahiri, R., Kitching, I. J., Lafontaine, J. D., Mutanen, M., Kaila, L., Holloway, J. D. & Wahlberg, N. (2010). A new molecular phylogeny offers hope for a stable family level classification of the Noctuoidea (Lepidoptera). —Zoologica Scripta, 40, 158–173. To examine the higher level phylogeny and evolutionary affinities of the megadiverse superfamily Noctuoidea, an extensive molecular systematic study was undertaken with special emphasis on Noctuidae, the most controversial group in Noctuoidea and arguably the entire Lepidoptera. DNA sequence data for one mitochondrial gene (cytochrome oxidase subunit I) and seven nuclear genes (Elongation Factor‐1α, wingless, Ribosomal protein S5, Isocitrate dehydrogenase, Cytosolic malate dehydrogenase, Glyceraldehyde‐3‐phosphate dehydrogenase and Carbamoylphosphate synthase domain protein) were analysed for 152 taxa of principally type genera/species for family group taxa. Data matrices (6407 bp total) were analysed by parsimony with equal weighting and model‐based evolutionary methods (maximum likelihood), which revealed a new high‐level phylogenetic hypothesis comprising six major, well‐supported lineages that we here interpret as families: Oenosandridae, Notodontidae, Erebidae, Nolidae, Euteliidae and Noctuidae.  相似文献   

2.
To elucidate the evolutionary relationships of the major lineages within the moth family Nolidae, we analysed a molecular dataset comprising eight independent gene regions (6.4 kbp), cytochrome c oxidase subunit I (COI) from the mitochondrial genome, and elongation factor‐1α (EF‐1α), ribosomal protein S5 (RpS5), carbamoylphosphate synthase domain protein (CAD), cytosolic malate dehydrogenase (MDH), glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH), isocitrate dehydrogenase (IDH) and wingless genes from the nuclear genome, using parsimony and model‐based evolutionary methods (maximum likelihood and Bayesian inference). Our analyses revealed a well‐resolved phylogenetic hypothesis, again recovering the six previously recognized families within Noctuoidea (i.e. Oenosandridae, Notodontidae, Euteliidae, Erebidae, Nolidae and Noctuidae), and monophyly of the quadrifid Noctuoidea (i.e. Euteliidae, Erebidae, Nolidae and Noctuidae). The family Nolidae is diagnosed and characterized by two synapomorphies from morphology: construction of a ridged boat‐shaped cocoon that bears a vertical exit slit at one end; and two other morphological character states: elongation of the forewing retinaculum into a bar‐like or digitate condition and possession of a postpiracular counter‐tympanal hood. We present a new phylogenetic hypothesis for Nolidae consisting of eight strongly supported subfamilies, two of which are erected here: Diphtherinae, Risobinae, Collomeninae subfam. nov., Beaninae subfam. nov., Eligminae, Westermanniinae, Nolinae and Chloephorinae. Where we are able, each monophyletic lineage is diagnosed by morphological autapomorphies and within each subfamily, monophyletic tribes and subtribes are circumscribed, most of which are also diagnosable by morphological apomorphies. We also describe two new taxa: Gelastocerini trib. nov. and Etannina subtrib. nov. The Neotropical subfamily Diphtherinae, here newly circumscribed, is considered to be the plesiomorphic sister lineage to the rest of Nolidae. Diphtherinae are characterized by loss of the proximal pair of metatibial spurs in males and by the presence of a frontal tubercle, which is presumably associated with a derived strategy of emergence from the cocoon.  相似文献   

3.
《Genomics》2019,111(6):1239-1248
In this study, mitogenome of Somena scintillans (Lepidoptera: Erebidae) were sequenced and compared with other Noctuoidea species. The mitogenome is 15,410 base pairs in length. All 13 protein-coding genes (PCGs) are initiated by ATN codons except cox1 with CGA and all of PCGs terminate with TAA except nad4 with TAG. The codons ACG and CGC are absent. All the tRNA genes could be folded into the typical cloverleaf secondary structure except the trnS1 which not only loses dihydrouridine (DHU) arm but also mutates its anticodon into TCT. In the AT-rich region of the mitogenome the motif ‘ATAGA’ mutates to ‘ATATA’ and two copies of 161 bp-tandem repeats and two ‘TA’ short tandem repeats are founded. Phylogenetic analyses showed that S. scintillans is clustered into subfamily Lymatriinae. The phylogenetic relationships within Noctuoidea is (((Nolidae + (Euteliidae + Noctuidae)) + Erebidae) + Notodontidae)  相似文献   

4.
《Genomics》2020,112(6):4577-4584
Mitochondrial genomes (mitogenomes) have been widely used for studies on phylogenetic relationships and molecular evolutionary biology. Here, the complete mitogenome sequence of Spilosoma lubricipedum (Noctuoidea: Erebidae: Arctiinae) was determined (total length 15,375 bp) and phylogenetic analyses S. lubricipedum were inferred from available noctuid sequence data. The mitogenome of S. lubricipedum was found to be highly A + T-biased (81.39%) and exhibited negative AT- and GC-skews. All 13 protein-coding genes (PCGs) were initiated by ATN codons, except for cox1 with CGA. All tRNAs exhibited typical clover-leaf secondary structures, except for trnS1. The gene order of the S. lubricipedum mitogenome was trnM-trnI-trnQ-nad2. The A + T-rich region of S. lubricipedum contained several conservative features common to noctuid insects. Phylogenetic analysis within Noctuoidea was carried out based on mitochondrial data. Results showed that S. lubricipedum belonged to Erebidae and the Noctuoidea insects could be divided into five well-supported families (Notodontidae + (Erebidae + (Nolidae + (Euteliidae + Noctuidae)))).  相似文献   

5.
Major progress has been made recently toward resolving the phylogeny of Noctuoidea, the largest superfamily of Lepidoptera. However, numerous questions and weakly supported nodes remain. In this paper we independently check and extend the main findings of multiple recent authors by performing maximum‐likelihood analyses of 5–19 genes (6.7–18.6 kb) in 74 noctuoids representing all the families and a majority of the subfamilies. Our results strongly support the six family system of Zahiri et al., with the former Lymantriidae and Arctiidae subsumed within the huge family Erebidae, and Noctuidae restricted largely to the subfamilies with so‐called trifine hindwing venation. Our data also strongly corroborate monophyly of the set of four families with quadrifid forewing venation, to the exclusion of Notodontidae, and removal from the latter of Oenosandridae. Other among‐family relationships, however, remain unsettled. Our evidence is equivocal on the position of Oenosandridae, which are sister group to either Notodontidae alone or to all other noctuoids. Like other recent nuclear gene studies, our results also provide no strong support for relationships among the four quadrifid forewing families. In contrast, within families our analyses significantly expand the list of robustly resolved relationships, while introducing no strong conflicts with previous molecular studies. Within Notodontidae, for which we present the largest molecular taxon sample to date, we find strong evidence for polyphyly for some, or all, recent definitions of the subfamilies Thaumetopoeinae, Pygaerinae, Notodontinae and Heterocampinae. Deeper divergences are incompletely resolved but there is strong support for multiple ‘backbone’ nodes subtending most of the subfamilies studied. Within Erebidae, we find much agreement and no strong conflict with a recent previous study regarding relationships among subfamilies, and somewhat stronger support. Although many questions remain, the two studies together firmly resolve positions for over half the subfamilies. Within Noctuidae, we find no strong conflict with previous molecular studies regarding relationships among subfamilies, but much stronger resolution along the ‘backbone’ of the phylogeny. Combining information from multiple studies yields strongly resolved positions for most of the subfamilies. Finally, our results strongly suggest that the tribes Pseudeustrotiini and Prodeniini, currently assigned to the largest subfamily, Noctuinae, do not belong there. In sum, our results provide additional corroboration for the main outlines of family‐level phylogeny in Noctuoidea, and contribute toward resolving relationships within families.  相似文献   

6.
The results of long-term faunistic studies of the noctuoid moths in the Baikal region and the literature review are presented. An annotated check-list including 83 species of the families Notodontidae, Erebidae, Nolidae, and Noctuidae is given. Data on the previous records of the species from the study region are given. The Noctuoidea fauna of Irkutsk Province comprises 462 species, that of the Republic of Buryatia, 419 species, and that of the Baikal region as a whole, 510 species. The distribution limits are expanded for 17 species of the Noctuoidea complex: the new eastern range boundary is established for 11 species of Erebidae and Noctuidae, and the new western one is established for 5 representatives of Notodontidae, Erebidae and Noctuidae. Two species, Actebia confinis (Staudinger, 1881) and Actebia confusa (Alphéraky, 1882), are new to the Russian fauna. The trophic associations of Phidrimana amurensis (Staudinger, 1892) are established: the larvae of this Euro-Siberian species feed on the leaves of different species of elms (Ulmus japonica Rehder, Ulmus pumila L.). Three noctuid species, Calyptra lata (Butler, 1881), Bryophila granitalis (Butler, 1881) and Cosmia trapezinula (Filipjev, 1927), with large disjunctions of their ranges are reported; these moths are apparently relicts of the Atlantic Period of the Holocene.  相似文献   

7.
Bilins, derived from biliverdin IXα, are known from animals, plants and microorganisms, where they play vital roles as light-absorbing pigments. Bilins occur also in many insects. Recently, we discovered in insects a novel structural type of bilins with a farnesyl substituent at pyrrole ring A of biliverdin IXα. The first of these unusual bilins with a molecular mass of 852 (C48H60O10N4) was identified in Cerura vinula, subsequently in Spodoptera littoralis; both species are members of the Noctuoidea superfamily of moths. From an evolutionary point of view, it was of interest to examine other species and families of this monophyletic clade. Here, we show that other moths species in this clade (three Notodontidae species, one Erebidae species, and one Noctuidae species) have farnesylated biliverdins IXα that are present as a mixture of three bilins, differing by the number of oxygen atoms (O8-10). These bilins are associated with typical hemolymph storage proteins, which were identified by mass spectroscopic sequencing of tryptic peptides as arylphorins (a class of 500-kDa hexamerins) in the Notodontidae and Erebidae families, and as 350-kDa very high-density lipoproteins in the Noctuidae family. Circular dichroism spectroscopy revealed that the bilins adopt opposite conformations in complex with the two different classes of proteins. At present, farnesylated biliverdins and IXα-isomers of bilins in general are known only from species of the Noctuoidea clade; the sister clades of Bombycoidea and Papilionoidea synthesise the IXγ-isomer of biliverdin and derivatives thereof.  相似文献   

8.
As a step towards understanding the higher‐level phylogeny and evolutionary affinities of quadrifid noctuoid moths, we have undertaken the first large‐scale molecular phylogenetic analysis of the moth family Erebidae, including almost all subfamilies, as well as most tribes and subtribes. DNA sequence data for one mitochondrial gene (COI) and seven nuclear genes (EF‐1α, wingless, RpS5, IDH, MDH, GAPDH and CAD) were analysed for a total of 237 taxa, principally type genera of higher taxa. Data matrices (6407 bp in total) were analysed by parsimony with equal weighting and model‐based evolutionary methods (maximum likelihood), which revealed a well‐resolved skeleton phylogenetic hypothesis with 18 major lineages, which we treat here as subfamilies of Erebidae. We thus present a new phylogeny for Erebidae consisting of 18 moderate to strongly supported subfamilies: Scoliopteryginae, Rivulinae, Anobinae, Hypeninae, Lymantriinae, Pangraptinae, Herminiinae, Aganainae, Arctiinae, Calpinae, Hypocalinae, Eulepidotinae, Toxocampinae, Tinoliinae, Scolecocampinae, Hypenodinae, Boletobiinae and Erebinae. Where possible, each monophyletic lineage is diagnosed by autapomorphic morphological character states, and within each subfamily, monophyletic tribes and subtribes can be circumscribed, most of which can also be diagnosed by morphological apomorphies. All additional taxa sampled fell within one of the four previously recognized quadrifid families (mostly into Erebidae), which are now found to include two unusual monobasic taxa from New Guinea: Cocytiinae (now in Erebidae: Erebinae) and Eucocytiinae (now in Noctuidae: Pantheinae).  相似文献   

9.
We newly sequenced mitochondrial genomes of Spodoptera litura and Cnaphalocrocis medinalis belonging to Lepidoptera to obtain further insight into mitochondrial genome evolution in this group and investigated the influence of optimal strategies on phylogenetic reconstruction of Lepidoptera. Estimation of p-distances of each mitochondrial gene for available taxonomic levels has shown the highest value in ND6, whereas the lowest values in COI and COII at the nucleotide level, suggesting different utility of each gene for different hierarchical group when individual genes are utilized for phylogenetic analysis. Phylogenetic analyses mainly yielded the relationships (((((Bombycoidea + Geometroidea) + Noctuoidea) + Pyraloidea) + Papilionoidea) + Tortricoidea), evidencing the polyphyly of Macrolepidoptera. The Noctuoidea concordantly recovered the familial relationships (((Arctiidae + Lymantriidae) + Noctuidae) + Notodontidae). The tests of optimality strategies, such as exclusion of third codon positions, inclusion of rRNA and tRNA genes, data partitioning, RY recoding approach, and recoding nucleotides into amino acids suggested that the majority of the strategies did not substantially alter phylogenetic topologies or nodal supports, except for the sister relationship between Lycaenidae and Pieridae only in the amino acid dataset, which was in contrast to the sister relationship between Lycaenidae and Nymphalidae in Papilionoidea in the remaining datasets.  相似文献   

10.
Two independent methods of comparison, serial homology and phylogenetic character mapping, are employed to investigate the evolutionary origin of the noctuoid moth (Noctuoidea) ear sensory organ. First, neurobiotin and Janus green B staining techniques are used to describe a novel mesothoracic chordotonal organ in the hawkmoth, Manduca sexta, which is shown to be serially homologous to the noctuoid metathoracic tympanal organ. This chordotonal organ comprises a proximal scolopidial region with three bipolar sensory cells, and a long flexible strand (composed of attachment cells) that connects peripherally to an unspecialized membrane ventral to the axillary cord of the fore-wing. Homology to the tympanal chordotonal organ in the Noctuoidea is proposed from anatomical comparisons of the meso- and metathoracic nerve branches and their corresponding peripheral attachment sites. Second, the general structure (noting sensory cell numbers, gross anatomy, and location of peripheral attachment sites) of both meso- and metathoracic organs is surveyed in 23 species representing seven superfamilies of the Lepidoptera. The structure of the wing-hinge chordotonal organ in both thoracic segments was found to be remarkably conserved in all superfamilies of the Macrolepidoptera examined except the Noctuoidea, where fewer than three cells occur in the metathoracic ear (one cell in representatives of the Notodontidae and two cells in those of other families examined), and at the mesothoracic wing-hinge (two cells) in the Notodontidae only. By mapping cell numbers onto current phylogenies of the Macrolepidoptera, we demonstrate that the three-celled wing-hinge chordotonal organ, believed to be a wing proprioceptor, represents the plesiomorphic state from which the tympanal organ in the Noctuoidea evolved. This ’trend toward simplicity’ in the noctuoid ear contrasts an apparent ’trend toward complexity’ in several other insect hearing organs where atympanate homologues have been studied. The advantages to having fewer rather than more cells in the moth ear, which functions primarily to detect the echolocation calls of bats, is discussed. Accepted: 18 June 1999  相似文献   

11.
Threadfin breams and relatives of the family Nemipteridae comprise 69 currently recognized species in five genera. They are found in the tropical and subtropical Indo‐West Pacific and most are commercially important. Using recently developed molecule‐based approaches exploiting DNA sequence variation among species/specimens, this study reconstructed a comprehensive phylogeny of the Nemipteridae, examined the validity of species and explored the cryptic diversity of the family, and tested previous phylogenetic hypotheses. A combined data set (105 taxa from 41 morphospecies) with newly determined sequences from two nuclear genes (RAG1 and RH) and one mitochondrial gene (COI), and a data set with only COI gene sequences (329 newly obtained plus 328 from public databases from a total of 53 morphospecies) were used in the phylogenetic analysis. The latter was further used for species delimitation analyses with two different tools to explore species diversity. Our phylogenetic results showed that all the currently recognized genera were monophyletic. The monotypic genus Scaevius is the sister group of Pentapodus and they together are sister to Nemipterus. These three genera combined to form the sister group of the clade comprising Parascolopsis and Scolopsis. The validity of most of the examined species was confirmed except in some cases. The combined evidence from the results of different analyses revealed a gap in our existing knowledge of species diversity in the Nemipteridae. We found several currently recognized species contain multiple separately evolving metapopulation lineages within species; some lineages should be considered as new species for further assignment. Finally, some problematic sequences deposited in public databases (probably due to misidentification) were also revised in this study to improve the accuracy for prospective DNA barcoding work on nemipterid fishes.  相似文献   

12.
We reconstructed a phylogenetic tree of Chinese vascular plants (Tracheophyta) using sequences of the chloroplast genes atpB, matK, ndhF, and rbcL and mitochondrial matR. We produced a matrix comprising 6098 species and including 13?695 DNA sequences, of which 1803 were newly generated. Our taxonomic sampling spanned 3114 genera representing 323 families of Chinese vascular plants, covering more than 93% of all genera known from China. The comprehensive large phylogeny supports most relationships among and within families recognized by recent molecular phylogenetic studies for lycophytes, ferns (monilophytes), gymnosperms, and angiosperms. For angiosperms, most families in Angiosperm Phylogeny Group IV are supported as monophyletic, except for a paraphyletic Dipterocarpaceae and Santalaceae. The infrafamilial relationships of several large families and monophyly of some large genera are well supported by our dense taxonomic sampling. Our results showed that two species of Eberhardtia are sister to a clade formed by all other taxa of Sapotaceae, except Sarcosperma. We have made our phylogeny of Chinese vascular plants publically available for the creation of subtrees via SoTree (http://www.darwintree.cn/flora/index.shtml), an automated phylogeny assembly tool for ecologists.  相似文献   

13.
We sampled macromoths from 2005 to 2011 at six sites in Mt. Jirisan National Park (JNP), the oldest and largest national park in South Korea, to address the following questions: (1) what is the total macromoth species richness of JNP and can the total moth species richness be estimated after 7-years? (2) What is the proportion of moth families and is this pattern of family dominance similar to that seen in other areas? (3) What are the yearly and monthly patterns of macromoth richness? In total, 24,890 individuals belonging to 948 species of 14 families of macrolepidoptera were collected. An estimated species number of 1096 was calculated using the Chao 1 estimator. A rank abundance plot showed a typical log-normal distribution. The proportions of dominant families were similar to those reported in temperate and tropical moth fauna studies: Noctuidae was the most species-rich taxon, followed by Geometridae, Erebidae, Notodontidae, Drepanidae, and Sphingidae. Overall species richness and abundance were greatest in June, but the patterns of species richness and abundance varied by season and site. Within years, patterns of species richness were correlated with phenology but not the proximity of sites to one another in JNP. We provide various hypotheses to explain the high moth diversity in JNP, and future perspectives based on the results of our 7-year moth monitoring study.  相似文献   

14.
I. Hasenfuss 《Zoomorphology》1997,117(3):155-164
 The patterns of scolopal organs and their innervation were studied by the methylene blue method in larvae, pupae and adults of an Yponomeuta species (Yponomeutidae) and of tympanate adult representatives of the Noctuoidea, Geometridae, Drepanidae and Pyraloidea. The studies were focused mainly on the mesothorax, the metathorax and some anterior abdominal segments. In the abdominal tympanal organs of Geometridae, Drepanidae and Pyraloidea, the auditory scolopidia are homologous with the lateral scolopal organs of the first abdominal segment; however, the hearing organs as such evolved independently in the three taxa. The studies confirm that the tympanal organ in the Noctuoidea is derived from the caudal dorsolateral region of the metathorax including its dorsal scolopal organ and the B-cell. The adult scolopal organs are present already in the larvae and are maintained nearly unchanged during metamorphosis to the adult. Only in the Noctuoidea are the three sensory cells of the larval scolopal organs, which become part of the tympanal organs, reduced to one (in Notodontidae) or two (in other Noctuoidea) during metamorphosis. A hypothetical scenario of the evolution of the tympanal organs is outlined. Accepted: 12 March 1997  相似文献   

15.
To test its phylogenetic utility, nucleotide sequence variation in a 1,240-bp fragment of the elongation factor-1 alpha (EF-1 alpha) gene was examined in 49 moth species representing the major groups of the superfamily Noctuoidea. Both parsimony and distance analyses supported the monophyly of nearly all groups for which there are clear morphological synapomorphies. Clades of subfamily rank and lower, probably mid-Tertiary and younger, were strongly supported. The third codon position contains 88% of variable sites, and approaches saturation at approximately 20% sequence divergence, possibly due to among-site rate heterogeneity and composition bias; higher divergences occur only in association with shifts in composition. Surprisingly, the few nonsynonymous changes appear no more phylogenetically reliable than synonymous changes. Signal strength for basal divergences is weak and fails to improve with character weighting; thus, dense taxon sampling is probably needed for strong inference from EF-1 alpha regarding deeper splits in Noctuoidea (probably early Tertiary). EF-1 alpha synonymous changes show promise for phylogeny reconstruction within Noctuidae and other groups of Tertiary age.   相似文献   

16.
This study represents the first formal morphological and combined (morphological and molecular) phylogenetic analyses of the order Ephemeroptera. Taxonomic sampling comprised 112 species in 107 genera, including 42 recognized families (all major lineages of Ephemeroptera). Morphological data consisted of 101 morphological characters. Molecular data were acquired from DNA sequences of the 12S, 16S, 18S, 28S and H3 genes. The Asian genus Siphluriscus (Siphluriscidae) was supported as sister to all other mayflies. The lineages Carapacea, Furcatergalia, Fossoriae, Pannota, Caenoidea and Ephemerelloidea were supported as monophyletic, as were many of the families. However, some recognized families (for example, Ameletopsidae and Coloburiscidae) and major lineages (such as Setisura, Pisciforma and Ephemeroidea among others) were not supported as monophyletic, mainly due to convergences within nymphal characters. Clade robustness was evaluated by multiple methods and approaches.  相似文献   

17.
The Cerithioidea is a very diverse group of gastropods with ca. 14 extant families and more than 200 genera occupying, and often dominating, marine, estuarine, and freshwater habitats. While the composition of Cerithioidea is now better understood due to recent anatomical and ultrastructural studies, the phylogenetic relationships among families remain chaotic. Morphology-based studies have provided conflicting views of relationships among families. We generated a phylogeny of cerithioideans based on mitochondrial large subunit rRNA and flanking tRNA gene sequences (total aligned data set 1873 bp). Nucleotide evidence and the presence of a unique pair of tRNA genes (i.e., threonine + glycine) between valine-mtLSU and the mtSSU rRNA gene support conclusions based on ultrastructural data that Vermetidae and Campanilidae are not Cerithioidea, certain anatomical similarities being due to convergent evolution. The molecular phylogeny shows support for the monophyly of the marine families Cerithiidae [corrected], Turritellidae, Batillariidae, Potamididae, and Scaliolidae as currently recognized. The phylogenetic data reveal that freshwater taxa evolved on three separate occasions; however, all three recognized freshwater families (Pleuroceridae, Melanopsidae, and Thiaridae) are polyphyletic. Mitochondrial rDNA sequences provide valuable data for testing the monophyly of cerithioidean [corrected] families and relationships within families, but fail to provide strong evidence for resolving relationships among families. It appears that the deepest phylogenetic limits for resolving caenogastropod relationships is less than about 245--241 mya, based on estimates of divergence derived from the fossil record.  相似文献   

18.
Phylogenetic utility for the nuclear gene encoding dopa decarboxylase (DDC), little used in systematics, was recently demonstrated within the noctuid moth subfamily Heliothinae. Here we extend the test of the utility of a 709-bp DDC fragment to deeper levels, analyzing 49 species representing major groups across the superfamily Noctuoidea. Parsimony, distance, and maximum-likelihood analyses recover all or nearly all of a set of "test clades" supported by clear morphological synapomorphies, spanning a wide range of taxonomic levels. DDC also upholds a recent proposal that the Noctuidae are paraphyletic. Nt3 contributes a majority of the signal and recovers the basal split between Notodontidae and all other noctuoids, despite a plateau of nt3 divergence at this level. However, nonsynonymous changes also support groups at all levels, and in contrast to nt3, amino acid divergence shows no plateau. The utility of DDC promises to extend back to the early Tertiary and Cretaceous, a time span for which few suitable genes have been identified.  相似文献   

19.
The gastropod genus Colubraria includes marine shallow‐water species from tropical, subtropical, and temperate rocky coral environments. At least six species are known to feed on fish blood. Although there is general consensus in placing Colubraria in the Neogastropoda, the actual relationships and the systematic position of Colubraria and related genera are unknown. This is partly the consequence of the lack of a clear phylogenetic framework for the Neogastropoda. This study attempts to propose a phylogenetic framework for the Neogastropoda, by testing: (1) a preliminary phylogenetic arrangement for a large number of recognized neogastropod families; (2) the position of Colubraria within the neogastropods; and (3) the relationships of Colubraria within one of the major neogastropod lineages. We used two different molecular data sets. The first set included representatives of at least 14 neogastropod families, for points (1) and (2), and was based on mitochondrial (16S, 12S, and cytochrome oxidase subunit I, COI) and nuclear (28S) DNA sequences, giving a total of 3443 aligned positions. The second data set, for point (3), included 30 buccinoid sequences from mitochondrial 16S, giving a total of 1029 aligned positions. We also studied the anatomy of the type species of Colubraria and compared it with other neogastropods within the new phylogenetic framework. The results included the first phylogeny of the neogastropod based on 50% of the recognized families. This clearly indicated that the nematoglossan Cancellariidae represent a basal offshoot of the monophyletic Neogastropoda, and that the toxoglossan Conoidea are the sister group to the Rachiglossa. Within the Rachiglossa, a colubrariid clade, worthy of family ranking, showed clear buccinoid affinities. Most of the anatomy of Colubraria is congruent with a buccinoid model. The peculiar anatomical features that do not conform to the buccinoid model seem to be related to the evolution of haematophagous feeding. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 158 , 779–800.  相似文献   

20.
The sequence of the mitochondrial COII gene has been widely used to estimate phylogenetic relationships at different taxomonic levels across insects. We investigated the molecular evolution of the COII gene and its usefulness for reconstructing phylogenetic relationships within and among four collembolan families. The collembolan COII gene showed the lowest A + T content of all insects so far examined, confirming that the well-known A + T bias in insect mitochondrial genes tends to increase from the basal to apical orders. Fifty-seven percent of all nucleotide positions were variable and most of the third codon positions appeared free to vary. Values of genetic distance between congeneric species and between families were remarkably high; in some cases the latter were higher than divergence values between other orders of insects. The remarkably high divergence levels observed here provide evidence that collembolan taxa are quite old; divergence levels among collembolan families equaled or exceeded divergences among pterygote insect orders. Once the saturated third-codon positions (which violated stationarity of base frequencies) were removed, the COII sequences contained phylogenetic information, but the extent of that information was overestimated by parsimony methods relative to likelihood methods. In the phylogenetic analysis, consistent statistical support was obtained for the monophyly of all four genera examined, but relationships among genera/families were not well supported. Within the genus Orchesella, relationships were well resolved and agreed with allozyme data. Within the genus Isotomurus, although three pairs of populations were consistently identified, these appeared to have arisen in a burst of evolution from an earlier ancestor. Isotomurus italicus always appeared as basal and I. palustris appeared to harbor a cryptic species, corroborating allozyme data. Received: 12 January 1996 / Accepted: 10 August 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号